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Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent
risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy
may be reversed to reduce this risk have not been fully determined to the point where mechanism-
specific therapies have been developed. Recently, proteases in the calpain family have been
implicated in regulating the development of cardiac hypertrophy in preclinical animal models. In
this review, we summarize the molecular mechanisms by which calpain inhibition has been shown
to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within
which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is
then discussed.
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Introduction
Cardiac hypertrophy develops most commonly in response to hypertension and is an
independent risk factor for the development of heart failure and more generally an increased
morbidity and mortality1. Although the mechanisms by which cardiac hypertrophy may be
reversed to reduce the increased risk have not been fully determined to the point where
mechanism-specific therapies have been developed, epidemiologic studies suggest that
regression of hypertrophy is a salutary clinical goal 2, 3. The increase in cardiomyocyte mass
involves the increase in protein synthesis stimulated by a variety of intracellular signaling
pathways 4. In parallel, changes in the rate of protein degradation occur, both increasing and
decreasing depending on the hypertrophic stimuli 5, 67-10. Therefore, the reversal of cardiac
hypertrophy therapeutically would likely involve either decreasing protein synthesis and/or
increasing the rate of protein degradation. In this review, we discuss the newly discovered
role that the calpain proteolytic system plays in mediating signal transduction pathways
involved in cardiac ventricular hypertrophy.
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Degradation of proteins in the cardiomyocyte, as in other cells, involves 3 parallel systems
that function both separately and cooperatively: 1) the ubiquitin proteasome system; 2)
lysosomes and the process of autophagy; and 3) the calpain proteases. The ubiquitin
proteasome system (UPS) includes a series of enzymes that target specific substrate proteins
for degradation by the 26S proteasome. The UPS-mediated regulation of cardiac mass has
been shown to be mediated by multiple ubiquitin ligases, the components of the UPS that
give it its specificity, as well as the proteasome. The ubiquitin ligases muscle ring finger-1
(MuRF1) and MAFbx (aka atrogin-1) play a role in regulating cardiac mass 11-14. There is
some evidence suggesting that inhibition of the proteasome may play a role in regulating
cardiac hypertrophy in vivo, at least experimentally 15. However, there is also evidence that
proteasomal inhibition actually causes cardiac hypertrophy under baseline conditions and
enhances the development of hypertrophy in aortic-banded animals 16, leaving the issue
unclear as to whether inhibition of the proteasome in the setting of cardiac hypertrophy is
protective or detrimental.

The second system involved in cardiac protein degradation involves lysosomal proteolysis.
Inhibiting lysosome function in the heart results in an approximately 25-30% reduction in
the overall rate of protein degradation 17. While lysosome activity does not appear to affect
myosin degradation, it does play a role in the degradation of organellar proteins, including
mitochondrial cytochromes and microtubules 17, 18. Autophagy, which is involved with
targeted lysosomal degradation of proteins and organelles, occurs constitutively at a low
level during normal cardiac function 19. However, during times of cardiac stress, autophagic
activity increases, presumably as an adaptive response to the significant amount of structural
remodeling that accompanies the cardiac stress response 20-22.

The third proteolytic system active in the heart is the calpain system, which includes a
family of calcium-dependent, non-lysosomal cysteine proteases that are expressed
ubiquitously within all cells and whose function in muscle appears to involve both atrophic
and hypertrophic pathways 23, 24. Several recent publications have reported the role of
calpain proteases in regulating the development of cardiac hypertrophy. These studies add
numerous novel details to our understanding of how calpains, and their interactions with
specific cell signaling pathways, might be involved in the complex regulation of cardiac
hypertrophy. With few therapies available to regulate or reverse cardiac hypertrophy, the
identification of cardiac calpains as a potential therapeutic target is exciting since a large
body of work already exists describing the regulatory pathways involved in this form of
proteolysis. This review gives a brief background on the role of calpains in the heart and
then focuses on their role in regulating cell signaling in cardiac hypertrophy.

The calcium ion-dependent papain-like protease (Calpain) family of
proteases

Members of the calpain family of intracellular Ca2+-activated proteases are critical
mediators of the action of calcium. At least 16 calpains have been described, most found
ubiquitously, although some being tissue specific (see recent review by Bukowska et al.,
2010 25). Calpains are generally localized to the cytosol as inactive pro-enzymes that may be
activated by increases in intracellular calcium. Calpains operate by processing proteins,
through interactions with a limited number of motifs, to transform their activities and
structure. Calpain activity is specific and does not induce widespread degradation of proteins
(see Table 1). The conventional calpains, calpain 1 and 2 (also known as μ and m-calpain),
are tightly regulated by an endogenous inhibitor, called calpastatin23. The four inhibitory
domains of calpastatin bind reversibly to the active calpain domains to inhibit their activity.
The activity of calpain is also inhibited by post-translational modification by phosphate
groups23. For example, phosphorylation of Ser369 by protein kinase A (PKA) prevents the
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formation of the active site necessary for calpain activity 26. Calpains have been implicated
in degrading a diverse array of substrates, involved in various areas of biology (see Table 1).

Calpains in the heart in health and disease
Both calpain 1 and calpain 2 are present in moderate amounts within the muscle where they
are localized to the Z disk of muscle fibers 27, 28and have been associated with the in vitro
degradation of sarcomeric proteins such as α-tropomyosin 29, 30. The majority of the studies
looking at calpain activity in the heart have focused on the role of this proteolytic system in
response to pathological cardiac conditions, such as post-ischemic cardiac injury 31-33.
However, at least one study has examined the role of the calpains in baseline cardiac
function. In cultured cardiomyocytes, calpain 1, but not calpain 2, is found to be active at
physiological levels of calcium, resulting in the proteolysis of specific substrates (e.g.
desmin and protein kinase Cα) as well as increased protein ubiquitination and protein
turnover by the 26S proteasome 34. Mice in which the calpain inhibitor calpastatin is
ectopically expressed at increased levels in the heart exhibit a decrease in ubiquitination of
some specific cardiac proteins, but no overall change in cardiac protein ubiquitination,
suggesting that the effect of calpain 1 (the only calpain moiety affected by the
overexpression of calpastatin) is on the actual ubiquitination step and not on 26S proteasome
activity34. Most interestingly, however, is the finding that inhibition of calpain 1 activity by
forced expression of calpastatin results in a progressive, dilated cardiomyopathy that is
accompanied by an accumulation of aggregated protein complexes, formation of
autophagasomes, and destruction of sarcomere integrity 34. Together, these findings suggest
that calpain 1 activity is essential for normal cardiac function and is integral to the regulation
of protein turnover of specific cardiac proteins (the identity of which have not yet been
confirmed) whose accumulation leads to disruption of normal myofibril activity and
subsequent cardiomyopathy. More broadly, calpains have been implicated in cell cycle
(calpain 2), contraction, apoptosis (calpain 2), cell migration (calpain 1), cell differentiation
(calpain 2) and cellular signal transduction in muscle (calpain 3) 35-40.

The involvement of calpain activity in the progression of cardiac pathologies is well
known 41. Calpain activity mediates alterations in sarcomere structure and affects contractile
dysfunction in ischemia reperfusion injury (calpains 1 and 2), myocardial stunning (calpain
1) and atrial fibrillation (calpain 1) 25, 32, 42-47. One mechanism by which calpain 1 activity
may be linked to atrial fibrillation is through its cleavage of specific L-type Ca2+ channel
proteins, leading to the disruption of the excitation-contraction coupling mediated by Ca2+

channels 48-50. Likewise, calpain activation in reperfusion following ischemic insult has
been proposed as one possible mechanism mediating myocyte cell death, either by activation
of apoptosis via Bid and/or necrosis by increasing fragility due to degradation of sarcomeric
proteins (recently reviewed by Inserte et al., 2009 51). In isolated rabbit hearts exposed to
global ischemic injury, calpain activity cleaves Bid, resulting in the enhanced release of
cytochrome c from mitochondria leading to apoptosis 52. There is also evidence for calpain
involvement in congestive heart failure as well as in the atrophic remodeling that
accompanies cardiac unloading. Ventricular tissue isolated from congestive heart failure
patients exhibits a marked increase in calpain expression 53. In milder cases of congestive
heart failure (rated as class II on the New York Heart Association (NYHA) scale) an
increase in the protein level of calpain 1, but not calpain 2 is observed. However, when heart
failure progresses to a more severe level (NYHA III and IV) a significant increase in the
protein levels of both calpains is seen. Mechanical unloading of the failing human heart
results in a slight increase in calpain 1 expression and a significant increase in expression of
calpain 2 54. Likewise, in the unloaded rat heart, both calpain 1 and 2 expression and activity
levels are increased 54, providing further evidence of calpain’s involvement in the tissue
remodeling associated with various cardiac pathologies.
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Calpain regulation of signaling in cardiac hypertrophy
The development of pathologic cardiac hypertrophy, such as that induced by pressure
overload, occurs in response to the stimulation of multiple signaling pathways that in turn
activate a handful of transcription factors to activate pro-hypertrophic gene expression
programs (see recent reviews4, 55, 56). Despite the complexity of these signaling pathways,
only a relatively few number of transcription factors have been shown to drive this process,
including NF-κB, GATA4, NFAT, SRF, and MEF2 55-59. The signaling pathways driven by
these transcription factors facilitate hypertrophic growth of cardiomyocytes and activate so-
called “fetal genes”. The concept of re-expressing genes normally expressed only during the
fetal period of heart development is well established during the development of cardiac
hypertrophy 4, 55. Briefly, the activation of transcription factors such as SRF and GATA4
induce specific gene expression and protein synthesis globally. In this respect, a number of
influential signaling pathways have been identified as important mediators of cardiomyocyte
hypertrophy. These pathways include the angiotensin II-induced NF-κB /NFAT pathway,
the Akt signaling pathway, and the stretch-induced (β3 integrin-mediated) signaling
pathways 4. Interestingly, recent studies have implicated calpain in regulating cardiac
hypertrophy by its specific interaction through each of these signaling pathways.

Blocking calpain activity disrupts cardiac hypertrophy by inhibiting NF-κB activation
Angiotensin II (Ang II), a key component of the rennin-angiotensin-aldosterone system,
induces cardiomyocyte hypertrophy by interacting with the angiotensin II type I receptor, a
G protein coupled receptor. Chronic infusion of Ang II in mice results in the development of
hypertension and cardiac hypertrophy 60. In parallel, increases in calpain activity and
decreases in calpastatin (the endogenous inhibitor of calpain), expression are induced. In
transgenic mice that constitutively express calpastatin, the chronic infusion of Ang II fails to
induce cardiac hypertrophy, although these mice do still develop hypertension. Both Ang II
and calpain 1 signaling activate the NF-κB 61-63 and calcineurin/NFAT signaling
pathways 64, 65. Infusion of Ang II leads to a robust increase in expression of the p65 subunit
of NF-κB in the nuclei of cardiomyocytes (indicating enhanced activity), an effect that is
considerably blunted in calpastatin transgenic mice 60. Surprisingly, Ang II infusion induces
equal amounts of NFAT activation in calpastatin transgenic mice and wild-type mice.
Together, these results suggest that calpain 1 activity mediates Ang II-induced cardiac
hypertrophy via a NFAT-independent, NF-κB-dependent pathway 60.

The mechanism by which Ang II activates NF-κB has been elucidated in recent studies
published by Heidrich, et al., 200866. They have identified that Ang II induces calcium
release after binding to the Ang II receptor via the inositol 1,4,5-triphosphate receptor
(InsP3R) pathway in cardiomyocytes 66. They found that the InsP3R-dependent release of
calcium, which turns on chromogranin B (CGB), leads to NF-κB activation and expression
of brain natriuretic peptide, a protein whose expression is increased in cardiac hypertrophy
and heart failure. It has been postulated that calpains may mediate chromogranin activation
in response to increased calcium in this system67. NF-κB activation may be related to
chromogranin B activation as well. The evidence for this comes from studies which
demonstrate an attenuated NF-κB activity in cardiomyocytes with reduced chromogranin B
expression 66. The proposed relationship of these signaling pathways is summarized in
Figure 1 (highlighted in red). This figure describes the relationship between the increased
Ang II, a hormone increased in most patients developing cardiac hypertrophy 68, which then
activates calpain activity, resulting in enhanced downstream NF-κB activity to induce the
“pro-hypertrophic” genes in cardiomyocytes.
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β-adrenergic stimulation of calpain activity blocks eNOS and Akt signaling
In addition to calpain 1’s role in activating cardiac hypertrophy by activating NF-κB, calpain
activity can also lead to the inhibition of pro-hypertrophic signaling pathways. During the
development of cardiac hypertrophy in humans, β-adrenergic stimulation occurs in parallel
to stimulation by other G protein coupled receptors, like the Ang II receptor 69. β-adrenergic
stimulation has recently been shown to activate calpains and block eNOS activity and Akt
signaling, both of which have been implicated as “pro-hypertrophic” signaling pathways 70.
Experimentally, cardiomyocyte stimulation with the β-adrenergic agonist isoproterenol
increases calpain activity while decreasing the activity of calpastatin 71. Cardiac hypertrophy
induced by chronic isoproterenol administration in ovariectomized female rats leads to
calpain-mediated breakdown of the sarcomere, as evidenced by a decrease in the calpain
substrate sarcomeric proteins dystrophin, utrophin, and spectrin protein expression (see
Figure 1, pathways in blue) 70. In addition, a marked reduction in eNOS activity, a parallel
decrease in HSP90 protein levels, and increase in caveolin 3 proteins levels were seen.
Decreased Akt phosphorylation and increased glycogen synthase kinase 3β phosphorylation
are also seen with chronic β-adrenergic stimulation. Although this study did not go so far as
identifying the link between increased calpain and decreased eNOS and Akt activity, it is
possible that HSP90 may be the commonality between these 2 effects, as described below.

The interaction of HSP90 with eNOS and Akt enhances their activity72, 73. Experimentally,
calpain 2 degrades HSP90 in culture 74, 75. Evidence for the link between calpain and
decreased Akt and eNOS activity comes from experiments performed in endothelial cells.
Calpain inhibition in pulmonary artery endothelial cells leads to increased eNOS activity
and nitric oxide production72, likely through the HSP90-mediated enhancement of eNOS
activity 76, 77. Similar to the effects on eNOS, the HSP90/Akt complex formation is critical
to Akt activity/phosphorylation 76. Calpain also inhibits Akt activity in diaphragmatic
muscle by reducing HSP90 expression and decreasing Akt activity, an effect that coincides
with reduced HSP90/Akt complex formation 73. Finally, isoproterenol administration in rats
decreases HSP90 and eNOS activity in the heart at the same time Akt signaling is
inhibited 70. Since both Akt-GATA4 and PKC activation are crucial to the development of
cardiac hypertrophy experimentally 55, calpain’s destabilization of HSP90 may be one
mechanism which inhibits pro-hypertrophic signaling pathways in cardiomyocytes. The
proposed mechanisms by which isoproterenol activates calpain to inhibit downstream eNOS
and Akt signaling through its disruption of HSP90 is proposed in Figure 1 (highlighted in
blue).

β3 integrins induce calpain activity to enhance cell survival and induce cardiac
hypertrophy

In the previous sections, we’ve discussed how Ang II stimulates calpain activity to enhance
pro-hypertrophic signaling pathways via NF-κB and how β-adrenergic stimulation induces
calpain activity to decrease eNOS/Akt stimulation, possibly inhibiting hypertrophic
signaling. In addition to these roles for calpain activity in the development of cardiac
hypertrophy, recent studies have reported that β3 integrin-dependent calpain 1 activation
inhibits apoptosis in cardiomyocytes which in turn leads to the development of cardiac
hypertrophy. A major mechanism by which mechanical forces activate cardiac hypertrophy
is through integrins 78. Integrins are a class of receptors that extend through the plasma
membrane and connect the intracellular sarcomere to the extracellular matrix 79. These
receptors are located at specific sites in the plasma membrane: the intercalated discs and
costameres. These receptors detect mechanical stress and act as initiators of downstream
signaling through a number of signaling pathways including focal adhesion kinase 79.
Recent studies have implicated integrin signaling in calpain activation and the development
of cardiac hypertrophy. β3 integrin -/- mice subjected to trans-aortic constriction for four
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weeks to induce pressure overload cardiac hypertrophy exhibit both an increase in
cardiomyocyte cell death (by TUNEL assay) and a decrease in ventricular mass compared to
wild type control mice 78. Pressure overload in β3 integrin -/- mice also leads to an
enrichment of calpain 1 in cardiac muscle 80, whereas pretreatment with calpeptin, a specific
inhibitor of calpain, before pressure overload induction in β3 integrin -/- mice attenuates the
enhanced cell death as determined by TUNEL staining 80. Although the role of calpain1 in
β3 integrin-mediated cardiac hypertrophy has not been definitively determined, it is possible
that it serves a regulatory function to balance the processes of cell survival and cell death80.
In cultured cardiomyocytes, β3 integrin stimulation induces both calpain activity and NF-κB
(independent of calpain activation NF-κB). This in turn leads to NF-κB-mediated
enhancement of expression of the pro-survival factor cIAP 78. The absence of these pro-
survival signals (and therefore the unabated pro-apoptotic influence of calpain activation) in
the β3 integrin -/- mice may account for the enhanced cardiomyocyte apoptosis seen during
pressure overload hypertrophy in these mice. Although much of this pathway still needs to
be elucidated, these studies demonstrate a link between the mechanically-induced β3
integrins, calpain 1 activity, and the maintenance of cell survival, possibly involving the pro-
hypertrophic cIAP and NF-κB signaling as summarized in Figure 1 (highlighted in green).

Calpains broadly consolidate stress signaling to induce cardiac
hypertrophy

During the development of cardiac hypertrophy, calpain activities are enhanced by
numerous stimuli, suggesting that calpain activation may represent a general mechanism by
which the cell responds to external stress, including stress hormones (norepinephrine, AngII)
and stretch (via β-integrins), as discussed above. Another way calpain activity influences
cardiac hypertrophy by responding to external stress is by activation via reactive oxygen
species. NADPH oxidases (NOXs) are membrane-bound enzymes found in the plasma
membrane that function to generate superoxide by transferring electrons from NADPH to
molecular oxygen to produce superoxide, a reactive free radical. Recent studies have shown
that stimulating adult rat ventricular cardiomyocytes via norepinephrine increases NADPH
oxidase (NOX) activity and reactive oxygen species (ROS) generation, leading to enhanced
calpain 1 activation and apoptosis 81. Inhibiting the predominant NOX in cardiomyocytes,
gp91phox-NADPH oxidase, using apocynin or diphenyleneiodonium, or inhibiting ROS
using the antioxidant N-acetyl-cysteine protects cardiomyocytes from apoptosis at the same
time as preventing the activation of calpain 1 81. Similarly, direct inhibition of calpain
prevents cardiomyocyte apoptosis, presumably by blocking the norepinephrine-induced
calpain activation that is mediated by NADPH-oxidase 81. These studies indicate a central
role of calpains that intersect with numerous diverse stress signaling pathways to activate
cardiac hypertrophy (see Figure 1, orange).

The role of calpains in protein degradation in cardiac hypertrophy
Many of the calpain substrate proteins listed in Table 1 play an important role in cardiac
function, raising the obvious question of what would calpain degradation of these proteins
mean for cardiac health? For example, the ability of calpains to degrade focal adhesion
kinase, calcineurin, and caspases is striking given the prominent role these proteins play in
cardiac hypertrophy. Focal adhesion kinase is a broadly expressed tyrosine kinase that
detects biomechanical stress and then signals to induce cardiac hypertrophy79, 82 Subsequent
calpain activation caused by this cardiac hypertrophy, could result in the degradation of
focal adhesion kinase (or calcineurin, another purported calpain substrate) thereby
explaining, in part, the inhibitory effect that calpain activation has on cardiac hypertrophy
development 82, 83. Alternatively, if increased calpain activity enhances the degradation of
caspases in cardiac hypertrophy, protection against cell death and development of cardiac
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hypertrophy might occur, confounding our understanding of how degradation of these
reported calpain substrates might effect cardiac hypertrophy. In addition, many of the
proteins listed in Table 1 (for example calcineurin, caspases, and G protein α subunit) were
identified as calpain degradative targets in the brain 8485, 86. Therefore, with the notable
exception of calpain-mediated degradation of caspases, dystrophin, utrophin, spectrin and
the L-type Ca2+ channels48-50 discussed in previous sections, the role of calpain degradation
of known structural and signal transduction pathways in the heart has yet to be determined.

Calpastatin in cardiac health and disease
Although this review focuses mainly on the role that calpains play in the regulation of
cardiac ventricular hypertrophy, a brief discussion on the role that the endogenous inhibitor
of calpain, calpastatin, plays in physiological and pathological cardiac function is warranted.
The regulation of calpastatin has been reported in experimental myocardial infarction and
cardiac ischemia reperfusion injury (see Table 2)87, 88. In the left ventricular free wall,
calpastatin protein levels are not affected days 1, 3, 7, and 14 after myocardial infarction in
Wistar rats 87. Other studies have identified that ischemia reperfusion injury causes a down-
regulation of calpastatin activity. When hearts from Wistar rats are perfused ex vivo and
challenged with a 20 minute global ischemia, followed by reperfusion for up to 30 minutes,
calpastatin activity was reduced 40-60% when assayed for their ability to inhibit calpain 1
and calpain 2 88. Parallel decreases in protein levels of calpastatin were also identified after
reperfusion (summarized in Table 2) 88.

A number of studies have been published detailing the effect of calpastatin overexpression,
both systemically and specifically within the heart 34, 60, 89, 90. Since the methods used and
the parameters evaluated differed between the various studies, it is difficult to get a clear
idea of the effect of overexpression of calpastatin on cardiac function. For example, when
calpastatin is overexpressed in all tissues, the baseline cardiac functions (as determined by
heart rate, heart work, and rate of contraction and relaxation) do not differ from wild type
mice 89. Likewise, no difference was seen between wild type and transgenic animals in
relation to cardiac calpain activity (measured by the accumulation of 145/150-kDa spectrin
BDP) or calpain 1 and calpain 2 expression 60. In unloaded hearts of mice overexpressing
calpastatin cardiomyocyte size also decreases, suggesting that other proteolytic systems may
compensate for calpain activity 54. However, when calpastatin is overexpressed specifically
in the heart, a much different picture is seen. Mice in which cardiac calpastatin is increased
such that myocardial calpain 1 activity is inhibited by 58% exhibit a slowly progressive
dilated cardiomyopathy, illustrated by decreased ventricular ejection performance and
responsiveness to ß-adrenergic stimulation 34. In addition, approximately half of the
transgenic mice evaluated display atrial arrhythmias. Despite the difference in baseline
phenotype of the systemic and cardiac-specific calpastatin mice, there is a common finding
of decreased cardiac pathology in both types of transgenic mice when the mice are
challenged with pathological stimuli. Mice in which calpastatin is systemically
overexpressed, exhibit a decrease in the development of Ang II-induced cardiac hypertrophy
and subsequent cardiac dysfunction when compared to wild type mice 60. Similarly, isolated
rat hearts in which calpastatin is overexpressed (via adenoviral transfection) exhibit a
significant decrease pathology associated with I/R injury, as evidenced by greater left
ventricular functional recovery and a decrease in degraded cardiac troponin I levels (a target
of calpain degradation)90.

Calpain inhibition as a therapeutic tool to treat cardiac hypertrophy
To date, only a handful of studies have been published examining the potential of calpain
inhibition as a therapeutic approach for treatment of ventricular hypertrophy. In a feline
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model of right ventricular pressure overload, the calpain inhibitor calpeptin was
administered intravenously both before and during the development of pressure overload 91.
Control animals exhibited numerous physiological and pathological changes following 24
hours of pressure overload, including an increase in calpain protein expression and activity,
a decrease in calpastatin levels, an increase in caspase-3 activation and an increase in
cellular markers of programmed cell death in cardiomyocytes. In contrast, the animals that
had been treated with calpeptin did not develop any of these changes, strongly suggesting
the involvement of the calpain system in these cellular responses to the pressure overload as
well as demonstrating a promising effect of calpain inhibition in the whole animal.
Likewise, anesthetized, open-chested pigs, treated with the calpain inhibitor MDL-28170
before the induction of right ventricular pressure overload, exhibited a significant degree of
protection from the development of right ventricular wall dysfunction compared to animals
that were not treated with the calpain inhibitor 92. Lastly, rats treated with isoproterenol to
induce ventricular hypertrophy exhibited a mild protection from hypertrophic changes when
dosed with the cysteine protease inhibitor E-64c I hour prior to the treatment with
isoproterenol, suggesting that calpain inhibition is effective in decreasing the effects of β-
adrenergic-mediated cardiac hypertrophy 93. Although these studies hint at the possible
effectiveness of calpain inhibition in the development of ventricular hypertrophy, the safety
and long-term effects of calpain inhibition remains to be determined.

Summary
The studies reviewed here largely demonstrate that inhibiting calpain activity during the
induction of cardiac hypertrophy attenuates or prevents the development of hypertrophy,
suggesting that calpains may be a novel target for treating cardiac hypertrophy. A number of
issues remain to be answered, however, if calpain is to be developed as a therapeutic target.
Most importantly, it needs to be determined if inhibiting calpain has any long-term side
effects in the heart. The pre-clinical studies reported so far do not look at long term
outcomes of animals in which calpain inhibition prevents cardiac hypertrophy. Secondly, it
needs to be determined if inhibiting calpain activity in established pressure overload-induced
cardiac hypertrophy can reverse it enough to reduce the associated progression to heart
failure and/or reduce the associated morbidity and mortality. Lastly, how does calpain
inhibition affect other organ systems in both animals and humans that would undoubtedly be
affected by a systemic anti-calpain approach. These questions are of primary importance
given the array of calpain substrates found in the heart that have obvious relevance to
cardiac health and disease (see Table 1). If calpain inhibition proves to be a viable target for
cardiac therapies, studies have shown that calpains have a number of chemical qualities
which make theoretically good targets for which synthetic inhibitors can be developed from
a medicinal chemistry point of view94.

The recent studies described in this review demonstrate that calpain enzymes are emerging
as unique entities within the protease systems active in the heart in that they appear to be
able to respond to global stresses. As described above, calpains are capable of both
activating and inhibiting signal transduction pathways involved in common hypertrophic
responses to diverse external stimuli, including reactive oxygen species, stretch stimuli
through β-integrins, and broadly through activation by G-protein coupled receptors such as
Ang II and the β-adrenergic receptor (summarized in Figure 1). In addition, calpain
activation mediates both pro- and anti-hypertrophic effects through NF-κB and eNOS/Akt
signaling, respectively, although the contribution of each of these mechanisms in cardiac
hypertrophy is not entirely worked out. Given the complexity of the multiple signal
transduction pathways activated during cardiac hypertrophy, there are likely other pathways
affected by calpain activation that have not been determined.
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Non-standard abbreviations

Akt serine/threonine protein kinase

Ang II angiotensin II

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

eNOS endothelial nitric oxide synthase

GSK3β glycogen synthase kinase 3 beta

InsP3R inositol 1,4,5-triphosphate receptor

NOX NADPH-oxidases

PKA protein kinase A

PKC protein kinase C

NFAT Nuclear factor of activated T cells

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

ROS reactive oxygen species

TAC trans-aortic constriction
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Figure 1. Compiled schema of calpain-related signaling during the development of cardiac
hypertrophy
?=possible intermediates/connections not yet determined; FAK, focal adhesion kinase;
HSP90, heat shock protein 90; GSK3β, glycogen synthase kinase 3 beta; GATA4, GATA
binding protein 4; p65/p50, NF-κB heterodimer; NOX, NADPH oxidase; Ang II,
angiotensin II. *indicates mechanisms identified in non-cardiomyocyte systems.
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Table 1
Examples of calpain substrates relevant to cardiac (patho)physiology

Many calpain substrates have been described in non-muscle systems, with the exception of sarcomere
proteins. Investigation of the role of calpain in muscle initially started with the realization of their role in meat
“tenderization” (sarcomere breakdown), which is an active area of food research (see recent reviews95-97).

Substrate References

Actin 98, 99

Amyloid precursor protein 100-102

Bax 103-105

Calcineurin 84

Caspases 31, 106

Ca2+ ATPase 107-109

Ca2+/Calmodulin-protein kinase 110

c-Fos/c-Jun 111-113

Dystrophin, Utrophin, and Spectrin 70

Estrogen receptor 114, 115

Focal adhesion kinase 85, 86

G protein (α subunit) 116

IκBα 117, 118

Integrin β3 119-121

L-type Ca2+ calcium channel 48-50, 122, 123

p53 124, 125

Phospholipase C (PLC) 126, 127

Protein kinase A (PKA) 128

Protein kinase C (PKC) 129-131

Ryanodine receptors 132

Tau protein 133, 134
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Table 2
Regulation of calpain and calpastatin activity and expression in cardiac disease

Cardiac Disease Calpain Response Calpastatin Response

Myocardial Infarction N.D. LV Free wall: Protein levels unaffected 1, 3, 7,
14 days after MI (Wistar Rats) 87

Ischemia
Ischemia/Reperfusion Injury

I: m-calpain translocates to the membrane
m-calpain not activated with ischemia alone 42

I/R: m-calpain translocates to the membrane m-calpain
activates in reperfusion 42

Global I/R (20 min I/30 Min R): Calpastatin
activity reduced ~40-60% 88

Protein levels reduced after reperfusion 88

Calpastatin protein levels decrease after I/R,
but not after ischemia alone 42

Congestive heart failure MI induced heart failure: Calpain 1 and calpain 2
increased in viable LV muscle and RV muscle at 2 and 8

weeks. Calpain activities also increased 135

NYHA Class II: Increased calpain 1 protein levels.
Calpain 2 levels not affected 54

NYHA Class III and IV: Increased Calpain 1 and
Calpain 2 protein levels 54

Increased calpain 1 and calpain 2 protein expression 53

MI induced heart failure: calpastatin protein
levels and activity not changed at 2 and 8

weeks after MI 135

Atrophy associated with
mechanical unloading

Unloaded (transplanted) heart: Calpain 1 and 2 protein
expression and activity levels increased 54

N.D.
N.D.

N.D. not determined.
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