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Abstract
Blood contains microparticles (MPs) derived from a variety of cell types, including platelets,
monocytes and endothelial cells. In addition, tumors release MPs into the circulation. MPs are
formed from membrane blebs that are released from the cell surface by proteolytic cleavage of the
cytoskeleton. All MPs are procoagulant because they provide a membrane surface for the
assembly of components of the coagulation protease cascade. Importantly, the procoagulant
activity is increased by the presence of anionic phospholipids, particularly phosphatidylserine
(PS), and the procoagulant protein tissue factor (TF), which is the major cellular activator of the
clotting cascade. High levels of platelet-derived PS+ MPs are present in healthy individuals,
whereas the number of TF+,PS+ MPs is undetectable or very low. However, levels of PS+, TF+

MPs are readily detected in a variety of diseases and monocytes appear to be the primary cellular
source. In cancer, PS+, TF+ are derived from tumors and may serve as a useful biomarker to
identify patients at risk for venous thrombosis. This review will summarize our current knowledge
on the role of procoagulant MPs in hemostasis and thrombosis.
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1. Introduction
Microparticles (MPs) are present in the blood of healthy individuals and are increased in
various diseases, including cardiovascular disease, diabetes, sepsis and cancer.1-3 They are
small membrane vesicles derived from activated cells and apoptotic cells and are commonly
referred to as microparticles (MPs). MPs range in size from 100-1000 nm in diameter, but
are typically are 200 nm in size. They mediate cell-cell communication by transferring a
cargo of cell surface receptors, mRNAs, and microRNAs from the cell of origin to target
cells.4 In addition, MPs may bind and fuse with the plasma membrane of the target cell or be
engulfed by the target cell.4 Importantly, MPs have been proposed to play roles in
thrombosis, inflammation and angiogenesis.1-3

Platelet-derived MPs are strongly procoagulant because they contain the anionic
phospholipid PS. An early study by Chargaff and West in 1946 showed that the clotting time
of recalcified normal human plasma was prolonged by the removal of MPs using high speed
centrifugation.5 In 1967, Wolf reported that activation of platelets resulted in the generation
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of “platelet dust” and that these platelet-derived MPs supported thrombin generation in
platelet poor plasma.6

MPs containing both PS and the procoagulant protein TF have the highest level of
procoagulant activity. TF is the primary cellular activator of the clotting cascade.7 Early
studies suggested blood did not contain significant levels of TF and that all TF was
expressed by extravascular cells in healthy individuals where it formed a “hemostatic
envelope” around blood vessels.8 However, in 1999, Giesen and colleagues discovered that
blood of healthy individuals contained very low levels of functional TF (so-called blood-
borne TF). They showed that blood-borne TF contributed to thrombus formation in ex vivo
models.9 TF+ MPs were observed near the surface of platelets in the thrombus.

Despite these provocative studies, whether or not blood of healthy individuals contains
significant levels of functional TF remains highly controversial. Some investigators believe
that there is no functional TF in unstimulated blood of healthy individuals.10 Similarly,
others have failed to detect measureable TF activity in plasma or associated with MPs
isolated from unstimulated whole blood.11 One study found that isolated MPs from healthy
controls generated thrombin is a TF-independent manner.12 However, other groups have
reported very low levels of TF activity in blood in the form of MPs in healthy individuals,
although these levels are close to the detection limit of the assays.13-15. Recently, it was
reported that 95% of TF activity in blood was present on peripheral blood mononuclear cells
and only 5% was present on MPs.16 Importantly, TF+ MPs can be easily isolated from a
small volume of plasma. Another important consideration is that TF+ MPs in blood may be
recruited to sites of vascular injury in vivo. In fact, circulating TF was found to accumulate
in thrombi formed in the saphenous vein of mice but not in hemostatic clots.17 Furthermore,
elegant studies by the Furie group have shown that TF+ MPs are recruited to thrombi formed
in a laser injured mouse cremaster arteriole (see below).18

2. Procoagulant properties of MPs
a. Role of PS

The plasma membrane of normal cells has an asymmetrical distribution of lipids in the inner
and outer membranes. Anionic phospholipids, such as PS, are located almost exclusively in
the inner monolayer. During the formation of MPs there is loss of membrane asymmetry
with ionic phospholipids being transferred to the outer membrane of the MP.19 Importantly,
the presence of PS significantly increases the procoagulant activity of MPs because it
facilitates the assembly of components of the clotting cascade. This is due to an electrostatic
interaction between positively charged γ-carboxyglutamic acid (GLA) domains in the
clotting proteins and PS on the membrane. Clotting proteins that contain a GLA domain
include Factors VII (FVII), IX and X, and prothrombin (Figure 1). PS on the surface of MPs
can be detected using flow cytometry. Activated platelets generate PS+ MPs, although one
study found both PS+ and PS- MPs.20

b. Role of TF
TF is a receptor for FVII/VIIa (Figure 1). The TF:FVIIa complex activates both FX and FIX
to initiate blood coagulation.7 The presence of TF on MPs dramatically increases their
procoagulant activity. TF has a high affinity for FVII/FVIIa and therefore TF+ MPs in blood
will readily bind FVII/FVIIa. The TF:FVIIa complex is regulated by tissue factor pathway
inhibitor (TFPI).21 This Kunitz-type inhibitor is primarily synthesized by endothelial cells
and circulates in blood to prevent inappropriate activation of the coagulation cascade.21 It
inhibits the TF:FVIIa complex in a FXa-dependent manner. Therefore, it is likely that some
of the TF:FVIIa complexes present on MPs in blood will be inhibited by TFPI.
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Posttranslational modifications of TF, such as glycosylation, may also affect TF
activity.22-24 This means that TF+ MPs from different cellular sources may have different
procoagulant activities. In addition, the TF:FVIIa complex can be found in low (also called
encrypted) and high activity states, which is thought to be due to differences in the
conformation of TF, reviewed previously.25 The different states were discovered because
disruption of TF+ cells increased TF activity without a change in TF antigen.26 This increase
in TF activity was associated with an increase in PS, which led some investigators to
propose that PS may induce a conformational change in TF that increases it specific
activity.25 Other mechanisms of TF activation have been proposed and it is possible that
there are different mechanisms that regulate TF:FVIIa activity on MPs derived from
different cell types.27

Some investigators have proposed that MPs in blood contain TF in a low activity state to
prevent inadvertent activation of the coagulation cascade. By analogy with cells, this could
be due to the fact that levels of PS on the MPs are below the optimal level for full TF
activity. If this notion is correct freezing the MPs would increase PS levels on the outer
membrane and also increase TF activity. However, TF activity of MPs isolated from plasma
of patients undergoing total knee arthroplasty was not increased by ionomycin treatment or
freezing to increase PS exposure.16 Another group also found no difference in TF activity of
fresh MPs versus frozen MPs isolated from healthy individuals and cancer patients.15 In
addition, freezing MPs did not increase the level of PS (F. Dignat-George, pers. com.). We
prepared monocyte-derived MPs from human whole blood stimulated with bacterial
lipopolysaccharide (LPS) as a model system. Consistent with other studies, frozen MPs had
the same TF activity as fresh MPs (Lee et al. submitted). These results indicated that the TF
is fully active on washed MPs and that PS levels are not limiting.

3. Measurement of the levels of MPs using functional assays
There are many ways to measure MPs. Flow cytometry can be used to determine the cellular
origin of the different MPs, although there are concerns about the detection limit of this
approach.28 Electron microscopy, atomic force microscopy, and dynamic light scattering all
can be used to determine the size of MPs but do not provide information on the biological
properties of the MPs.29 Measurement of TF antigen levels on MPs have been recently
reviewed.30-31 We will focus on functional assays that measure the procoagulant activity of
isolated MPs. Advantages of functional assays include their high sensitivity, simplicity and
the use of well-defined reagents. For instance, we found that pancreatic cancer patients had
higher levels of MP TF activity than healthy controls whereas a TF antigen assay failed to
detect a difference.14 However, functional assays do not provide any information on the
cellular source of the MPs or their physical properties. Ideally, a combination of methods
should be used to characterize MPs.

a. PS-dependent MP assays
As mentioned above, the presence of PS on the surface of MPs allows assembly of the
different coagulation protease complexes on the MPs. One commercial assay, called the
Zymuphen MP Activity assay (Hyphen BioMed), quantifies the level of PS in the MP
population.32 Briefly, PS+ MPs are captured on an ELISA plate coated with annexin V-
streptavidin and incubated with FV, FX and prothrombin to from the prothrombinase
complex that cleaves prothrombin to thrombin. A chromogenic substrate for thrombin is
added to assess the levels of thrombin. The values are expresses as PS equivalents. Another
assay, called procoagulant phospholipid (Proag PPL) (Stago), measures the procoagulant
activity of MPs added to phospholipid-free porcine plasma.33 Equal volumes of test plasma
and phospholipid-free plasma are mixed before the addition of FXa and the clotting time is
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measured. The level of phospholipid in the sample in the form of MPs is calculated using a
standard curve prepared with synthetic phospholipids.

b. TF-dependent MP assays
Two strategies have been employed to measure TF activity of MPs isolated from plasma by
capture or centrifugation. Aras and colleagues used a monoclonal antibody (1B10) to
capture MPs from a variety of cell types, including monocytes.13 The level of TF activity of
captured MPs is measured by adding FVIIa and FX in the presence or absence of an anti-TF
antibody. Another study captures TF+ MPs using a biotinylated anti-TF antibody and then
measures their TF activity by adding FVIIa and FX.34 A commercial assay called the
Zymuphen MP TF assay (Hyphen BioMed) is available and captures PS+ MPs in the same
way as the Zymuphen MP activity assay. However, there is no data in the literature using
this assay.

Tesselaar and colleagues used centrifugation to isolate MPs from healthy individuals and
cancer patients and measure their TF activity.15 MPs are incubated with FVII, FX and a
chromogenic substrate for FXa for 90 minutes. Synthetic phospholipids are also added to the
assay to provide an excess of phospholipid. Importantly, assays are performed in the
presence or absence of an anti-human TF antibody to distinguish TF-dependent and TF-
independent FXa generation. Levels of MP TF activity in healthy individuals was very low
(132 fM Xa min-1). In a subsequent paper, a lower level of MP TF activity was reported (4.1
fM Xa min-1) because some of the MPs were removed by an additional centrifugation
step.35 In parallel to the Osanto group, we developed a functional MP TF activity assay.14

MPs were pelleted from platelet poor plasma by centrifugation at 20,200 g for 15 minutes
and washed two times before with FVIIa and FX for 2 hours. Finally, a chromogenic
substrate for FXa was added for 15 minutes. We also performed the assay in the presence of
either a control antibody or an anti-TF antibody to measure TF-dependent and TF-
independent FXa activity. We found low levels of MP TF activity (0.21 pg/mL) in healthy
individuals. We also found that plasma preparation significantly affected the levels of MP
TF activity. MP TF activity of platelet free plasma was 64% lower than the activity of MPs
prepared from platelet poor plasma (Lee et al submitted). An important difference in the two
MP TF activity assays is that we do not added exogenous phosphoplipid. In fact, we found
that addition of exogenous synthetic phospholipids increases total FXa generation in a TF-
independent manner (Manly D. and Mackman, unpublished data). These results indicate that
pre-analytical variables, such as plasma preparation, have a major impact on the level of TF
activity of the MPs. In addition, the specific activity of the recombinant TF used to prepared
standard curves can vary significantly making it difficult to compare levels of MP TF
activity in different studies.

4. Cellular sources of procoagulant MPs in blood
a. PS+ MPs

The cellular source of MPs is defined primarily on the basis of their cell surface antigens.
CD41 is used to identify MP derived from platelets (Figure 2). Several studies indicate that
platelets are the major source of PS+ MPs in blood and represent 70-90% of all circulating
MPs.12, 36-38 As noted above activated platelets release PS+ MPs.6 The conclusion that
CD41+ MPs are all derived from platelets was recently challenged because cultured
megakaryocytes were found to also shed CD41+ MPs.39 In fact, one study analyzed the
origin of CD41+ MPs in blood using markers specific for platelets or megakaryocytes and
concluded that the majority of these MPs are derived from megakaryocytes.39 At present the
source of the increased numbers of CD41+ MPs in different diseases is not known.
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b. TF+ MPs
i. Monocytes—One study concluded that unstimulated monocytes do not express TF.10

However, two other studies found TF expression in subset of unstimulated leukocytes and
monocytes from healthy individuals.9 Furthermore, LPS stimulation of monocytes increases
TF expression and the release of TF+ MPs.8, 10, 40-41 One study found that MPs from
monocytic THP-1 cells expressed CD15 that mediated binding to P-selectin on activated
platelets.42 Another study reported that THP-1 cell-derived MPs were enriched in TF and P-
selectin glycoprotein 1 (PSGL-1) (Figure 2), which would allow docking onto activated
platelets and endothelial cells by binding to P-selectin.43 Interestingly, a recent study found
that MPs derived from LPS stimulated monocytes expressed low levels of TFPI.44

Importantly, plasma from patients with meningococcal sepsis contained MPs that expressed
TF and the monocyte marker CD14 (Figure 2).45 More recently, Aras and colleagues
reported a transient increase in MPs that express both TF+ and CD14+ in a human
endotoxemia model.13 Monocyte-derived TF+ MPs are also elevated in sickle cell disease.46

These studies indicate that monocytes are likely to be the major source of TF+ MPs in health
and disease.

ii. Neutrophils—Neutrophils have also been reported to express TF in response to
complement C5a.47-49 However, a recent study found that monocyte-derived TF+ MPs can
readily bind to neutrophils, which may explain some of the reports of neutrophil TF
expression.50 We found that deletion of TF in myeloid cells reduced fetal loss in a mouse
model of antiphospholipid antibody syndrome49, but it was not possible to distinguish
between a role for TF expression by neutrophils versus monocytes.

iii. Endothelial cells—Cultured endothelial cells express TF in response to a variety of
agonists, including cytokines and LPS.51 However, there is limited evidence that endothelial
cells express TF in vivo. Studies with animal models of endotoxemia and sepsis have
reported TF expression in endothelial cells in the splenic vasculature and at branch points in
the aorta.52-53 As stated above, it is possible that part or all of this TF staining is due to the
binding of monocyte-derived TF+ MPs that are known to be present in septic animals.
Indeed, TF staining of endothelial cells was restricted to granular structures that also
contained the leukocyte marker PSGL-1.53 Moreover, we found that a selective deletion of
the TF gene in endothelial cells did not reduce the activation of coagulation in a mouse
endotoxemia model.54 However, in sickle cell mice TF expression was observed on
endothelial cells of the pulmonary veins.55 In addition, endothelial cell-derived MPs were
observed in sickle cells patients in crisis and expressed both TF and CD144 (Figure 2).46

Interestingly, the TF activity of MPs derived from activated endothelial cells was markedly
increased by inhibition of TFPI whereas there was only a modest change using MPs from
stimulated monocytes, suggesting that these TF+ MPs from different cellular sources have
different TF activity.56-57 These studies indicate that endothelial cells may release TF+ MPs
in certain diseases.

iv. Platelets—Platelets have been reported to express TF.58-61 However, other
investigators failed to detect any TF in resting or activated platelets.10, 62-63 There are
several explanations for these conflicting results. Some of the studies did not use inhibitory
anti-TF antibodies to demonstrate that the procoagulant activity of the platelets is indeed due
to TF. This is important because high concentrations of FVIIa can activate FX in a TF-
independent manner.64 In addition, the presence of TF on platelets may be due, in part, to
the binding of monocyte-derived TF+ MPs to activated platelets. In the study by Zillman and
colleagues, treatment of whole blood with collagen increased platelet TF expression.61

However, this study did not exclude the possibility that that collagen activation of the
platelets exposed P-selectin on the cell surface and allowed binding of monocyte-derived
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TF+ MPs in the whole blood. It is more difficult to explain the reports of TF pre-mRNA and
mRNA expression in platelets and do-novo synthesis of TF protein by platelets, although
monocyte contamination of the platelet preparations is always a concern.59-60 In conclusion,
platelets may express very low levels of TF but it seems unlikely that they provide a major
contribution to the pool of TF+ MPs present in healthy individual and patients.

5. Clearance of MPs
MPs have a relatively short half-life in the circulation. One study examined the role of the
PS binding protein lactadherin in the clearance of platelet-derived PS+ MPs.65 They found
that the number of CD42+ MPs was significantly higher in lactadherin-deficient mice
compared with wild-type (WT) littermates. In addition, splenectomized WT mice had more
circulating CD42+ MPs than control mice suggesting that the spleen was involved in the
clearance of these MPs. Another study found elevated levels of PS+ MPs in lactadherin-
deficient mice.66 Clearance of tumor-derived human TF+ MPs was also examined in control
and splenectomized mice.67 In control mice peak levels of TF+ MPs were observed at 30
minutes and none were detected at 120 minutes, whereas in the splenectomized mice
significant levels of TF+ MPs were observed at 120 minutes. Furthermore, human TF
antigen was detected in the spleen. These results support the conclusion that the spleen is the
major site for the clearance of PS+ MPs with or without TF.

6. Role of MPs in hemostasis
a. PS + MPs

Platelets mediate primary hemostasis. One of the key events in platelet activation is the
exposure of PS on the cell surface. By analogy, PS+ MPs derived from platelets can be
viewed as a smaller version of activated platelet and express receptors for both collagen and
von Willebrand factor (Figure 3). Therefore, it has been proposed that these MPs may play a
role in hemostasis (Figure 3).68 However, it is very difficult to separate the roles of platelets
and platelet-derived MPs in hemostasis because one cannot selectively remove the MPs.
This is also true for megakaryocyte-derived MPs.39 Patients with Castaman's defect and
Scott syndrome have a bleeding tendency that appears to be due to a defect in the ability of
activated platelets to translocate PS to the surface of the cells.69-70 Platelets from these
patients also have a defect in the generation of PS+ MP in vitro, which has been used by
some to argue that platelet MPs are important for hemostasis. However, further studies are
needed before it can be concluded that platelet-derived MPs are required for hemostasis.

b. TF+ MPs
After vessel injury extravascular TF comes into contact with blood and the clotting cascade
is activated to form a hemostatic plug. Mice lacking either TF or FVII do not survive
indicating that the TF:FVIIa complex is essential for hemostasis.71 The clotting cascade can
be divided into two phases: initiation and propagation.72 This is analogous to a stick of
dynamite where the fuse represents the initiation phase and the dynamite represents the
propagation phase. The TF:FVIIa complex of the extrinsic pathway in the major trigger of
the clotting cascade and generates small amounts of thrombin. In contrast, the intrinsic
pathway (FXI, IX, VIIIa) is required for the burst of thrombin generation. These two phases
can be easily separated in vitro but clotting in vivo is more complex due to flow.

So how do we fit TF+ MPs into this scheme of the clotting system and hemostasis? The low
level of TF expression in a subset of unstimulated monocytes together with circulating TF+

MP may play a role in hemostasis by maintaining the idling of the clotting cascade (a low
level activation that is dependent on the TF:FVIIa complex).73 In addition, it has also been
proposed that TF+ MP play a role in clot growth. It has been proposed that after injury
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vessel wall TF will trigger clotting but will then be covered by platelets and the clot, thus
blocking it from further participation in clotting.74 Circulating TF+ MP may provide an
alternative source of TF that would be recruited to the growing thrombus that could re-
initiate clotting and thus contribute to its growth.

There are arguments for and against this notion. Those investigators against the idea argue
that levels of TF+ MP in healthy individuals are too low to contribute to thrombin generation
in the presence of an intact intrinsic pathway. Support for this view was provided by in vitro
experiments using whole blood showing that resupply of TF to an ongoing TF-initiated
clotting reaction did not enhance thrombin generation.75 Similarly, we found that the
presence of TF+ MP in plasma shortened the lag time but did not change the total thrombin
generation in a calibrated automated thrombogram assay, consistent with a role in initiation
but not propagation.76 Those in favor of the idea that TF+ MPs contribute to clot growth
argue that flow is required to deliver the TF+ MP to the clot. One study showed that
increasing the shear rate of the blood to 650 s-1 produced the maximal amount of TF-
dependent FXa generation in ex-vivo thrombi.77 Furthermore, leukocyte-derived TF+ MPs
have been shown to contribute to thrombus growth in an injured mouse cremaster arteriole
(see below).78-79 One study found that increasing the number of circulating MPs, some of
which expressed TF, restored hemostasis in a mouse model of hemophilia A.80

An added complexity to analyzing the role of TF+ MPs in hemostasis is that larger vessels
contain more TF in the vessel wall than smaller vessels. In larger vessels it has been
estimated that there is a ratio of 1000:1 in vessel wall TF to circulating TF+ MPs in healthy
individuals and mice.10, 81 This suggests that circulating TF+ MPs are more likely to
contribute to hemostasis in small vessels than larger vessels, and also organs that express
low levels of TF, such as the liver and skeletal muscle.71 However, at present it is unclear if
the low levels of circulating TF+ MPs in healthy individuals are required for hemostasis
(Figure 3). A recent study proposed that TF+ MPs present in plasma may contribute to
hemostasis of superficial wounds.82

7. Role of platelet-derived MPs in thrombosis
There are few studies that have investigated the role of platelet-derived MPs in thrombosis,
although these are elevated in a number of diseases. Heparin-induced thrombocytopenia
(HIT) is associated with heparin therapy and is associated with decreased platelet counts but
paradoxically with thrombosis. One study found that incubation of platelets with heparin and
immunoglobulin induced the generation of MPs, which led to the notion that these MPs may
trigger thrombosis.83 However, a more recent study showed a role for monocytes in
thrombosis in HIT.84 Moreover, we found that a heparin-PF4 antibody complex induced
monocyte TF expression and the release of TF+ MPs.85 These data suggest that monocyte-
derived TF+ MPs rather than platelet-derived MPs may initiate thrombosis in HIT.

8. TF+ MPs and activation of coagulation in mice and in animal models of
thrombosis

Previous studies have shown that the vessel wall is the major source of TF that contributes
to thrombosis in a mouse model of carotid artery injury.81, 86-87 However, it should be noted
that these experiments were performed on healthy mice that have very low levels of
circulating TF+ MPs. In fact, Reinhardt and colleagues found that mice injected with human
monocyte-derived TF+ MPs had increased fibrin accumulation in a carotid artery ligation
model.88 This result indicates that TF+ MPs can contribute to thrombosis in this model.
However, larger numbers of MPs were used that likely far exceed the levels of circulating
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MPs observed in disease states. In this review, we will focus on studies of that analyze TF+

MPs in models of activation of coagulation and thrombosis.

a. Role of hematopoietic cell-derived TF+ MPs in a mouse model of microvascular
thrombosis induced by laser injury

The laser injury model of arteriole thrombosis is the best system to examine the role of MPs
in thrombus formation because there is minimal injury to the vessel wall.89 This model
utilizes a focused laser beam to damage the endothelium and induce thrombosis. It utilizes
the microcirculation of living mice and analyzes the thrombus formation by confocal
microscopy. Arterioles of the cremaster muscle are typically used in this model.

Falati and colleagues observed the rapid accumulation of TF and fibrin upstream of the
thrombus, consistent with recruitment of circulating TF+ MPs to the thrombus.90 However,
the highest concentrations of TF were found at the thrombus-vessel wall interface,
suggesting that vessel wall TF also contributed to thrombus formation. In a subsequent
study, they demonstrated accumulation of ex vivo generated TF+ MPs in the developing
thrombus.18 Next, they used PSGL-1 and P-selectin null mice to demonstrate that the
recruitment of MP was largely dependent upon the interaction of MP PSGL-1 with platelet
P-selectin (Figure 4). Gross and colleagues examined the kinetics of TF incorporation into
the thrombus.79 Accumulation of TF+ MPs occurred rapidly in a developing thrombus and
peaked 60 seconds after the initiation of injury. By comparison, the appearance of TF+

leukocytes first appeared 3 minutes after the initiation of injury, which demonstrates that
MPs accumulate before monocytes.

To examine the cellular source of TF that contributed to thrombosis in the laser injury
model, we utilized low TF mice that only express 1% levels of human TF compared to WT
control mice.78 Low TF mice were found to develop small platelet-rich thrombi with
reduced levels of both TF and fibrin in the laser injury model. We performed a reciprocal
bone marrow transplantation to determine the role of hematopoietic cell-derived TF+ MPs in
thrombus formation.78 Low TF mice containing bone marrow from WT donors had larger
thrombi with increased levels of fibrin than thrombi of low TF mice. Conversely, WT mice
containing low TF bone marrow had smaller thrombi with less fibrin that thrombi in WT
mice. These data indicated that both hematopoietic cell-derived TF+ MPs and vessel wall TF
both contributed to thrombus formation in this model (Figure 4) Experiments are currently
being performed using mice with a deficiency of TF in myeloid cells, endothelial cells or
smooth muscle cells (SMCs) to more precisely determine the cellular sources of TF that
contributes to thrombus formation in this model. Clearly, the interaction between PSGL-1
and P-selectin likely plays a key role in the recruitment of monocyte-derived TF+ MPs to the
site of thrombosis in different diseases.

b. TF+ MPs and animal models of venous thrombosis
The role of leukocytes and TF+ MPs in venous thrombosis has been analyzed in several
animal models. For example, Himber and colleagues used a model in which a collagen-
coated thread is inserted in the jugular vein of rabbits and found TF-dependent fibrin
accumulation and thrombus propagation.91 TF+ leukocytes accumulated in the thrombus and
it was assumed that TF+ MPs also contributed to fibrin formation in this model.

The most commonly utilized model of venous thrombosis is the inferior vena cava (IVC)
ligation model (reviewed previously).92 This model is not the best model for studying the
role of circulating TF+ MPs in thrombosis because delivery of MPs to the site of injury is
impeded by the ligation and there is injury to the vessel wall. Ramacciotti and colleagues
examined MPs in a mouse IVC ligation model.93 They found that thrombus weight
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correlated negatively with leukocyte-derived MPs, suggesting that these MPs were
consumed by the thrombus. Moreover, injection of MPs into mice after IVC ligation
increased the thrombus weight at the earlier time-points. Zhou and colleagues used a rat
model of IVC ligation and found a rapid accumulation of TF+ leukocytes within the
thrombus in conjunction with P-selectin expression in endothelial granules.94 They further
demonstrated focal areas of denuded endothelium. Biro and colleagues demonstrated that
MPs, obtained from human pericardial blood following cardiac surgery, increased thrombus
formation in a rat model of IVC ligation in a TF-dependent manner.95 Similar to the laser
injury model, mice deficient in either PSGL-1 or P-selectin have smaller thrombi in the IVC
ligation model.96 We found that low TF mice had smaller thrombi compared with control
mice in the IVC ligation model.81 However, chimeric bone marrow transplantation
demonstrated that hematopoietic cell-derived TF did not play a role in thrombosis. This
result indicates that there are roles of PSGL-1 and P-selectin beyond mediating the docking
of TF+ MPs to the growing thrombus.

Other models have been developed that are more suitable for the analysis of TF+ MPs in
venous thrombosis because they maintain blood flow across the injury site that would permit
delivery of circulating MPs to the thrombus.97-98 The role of hematopoietic cell-derived TF+

MPs in these models is being evaluated.

c. TF+ MPs and activation of coagulation in a mouse model of endotoxemia
Recently, our group demonstrated that MP TF activity was increased in a mouse model of
endotoxemia.99 Further, we observed a linear correlation between MP TF activity and levels
of thrombin-antithrombin (TAT) complex, a marker of the activation of coagulation. These
results suggest that TF+ MPs may contribute to the activation of coagulation in this model.
However, further studies are needed to ascertain the different cellular sources of TF+ MPs
and their role in the activation of coagulation.

9. Role of TF+ MPs in the activation of coagulation in tumor-bearing mice
and venous thromboembolism cancer patients

Venous thromboembolism (VTE) is a term used to describe both deep-vein thrombosis and
pulmonary embolism. Venous thrombi occur as a result of changes in blood flow, activation
of the endothelium, and/or changes in the blood itself. This is known as Virchow's triad.100

The association between cancer and thrombosis has been known since the mid-19th century.
Malignant tumors were found to release procoagulant plasma membrane vesicles (know
referred to as MPs) both in vitro and in vivo.101 Subsequent studies showed that the
procoagulant activity of the MPs derived from tumors cells was due to TF.67, 102-103

Importantly, circulating tumor cell-derived TF+ MPs may trigger the formation of venous
thrombi in the absence of vessel injury (Figure 4).

a. Tumor-derived TF+ MPs and activation of coagulation in mice
Mouse studies have been used to analyze tumor-derived TF+ MPs and the activation of
coagulation. For example, Yu and colleagues found that human TF antigen was released into
the blood from human colorectal tumors or epithelial carcinoma cells grown subcutaneously
in mice.104-105 Further, the level of circulating TF was proportional to the size of the tumor
and tumors expressing higher levels of TF resulted in higher levels of circulating TF.104

Davila and colleagues also detected an increase in circulating tumor-derived TF+ MP
procoagulant activity proportional to tumor size in a pancreatic cancer orthotopic mouse
model.67 Recently, we found that the elevated levels of TAT in mice with pancreatic tumors
were reduced by inhibition of TF with a monoclonal anti-mouse TF antibody (Wang and
Mackman, unpublished data). Thomas and colleagues utilized a model of ferric chloride-
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induced injury of mesenteric arterioles and demonstrated a decreased time to occlusion in
tumor-bearing mice and it WT mice receiving tumor cell-derived MPs.106 They also found
that pancreatic tumors expressing enhanced green fluorescent protein released labeled MPs
that became incorporated into thrombi. Interestingly, the tumor cell-derived MPs expressed
PSGL-1 and bound to the thrombus in a P-selectin dependent manner. However, this study
did not establish a role for tumor cell-derived TF+ MPs in thrombus formation. These results
indicate that tumors produce procoagulant TF+ MPs, which enter the bloodstream via the
leaky vasculature of the tumor and likely trigger venous thrombosis (Figure 4). Further
experiments with different tumor lines are needed to analyze how tumor-derived TF+ MPs
initiate thrombosis in mouse tumor models.

b. Clinical studies on TF+ MPs and cancer patients
We will focus on studies that measured levels of TF+ MPs using flow cytometry, impedance
or activity assays because measurement of plasma TF antigen and plasma TF activity is
associated with technical problems.30, 107 Recent clinical studies have demonstrated an
increase in TF+ MPs in cancer patients (Table). For example, Hron and colleagues showed
that patients with advanced colorectal cancer had a 2-fold increase in circulating TF+ MPs
compared to healthy controls.38 Zwicker and colleagues found an association between TF+

MPs and cancer-associated VTE.108 Another study reported that cancer patients with VTE
had higher levels of TF+ MPs compared to cancer patients without VTE, both of which were
elevated over healthy controls.109 Finally, a patient with severe Trousseau's syndrome had
extremely high levels of TF antigen in the plasma associated primarily with MPs.110

Together these results indicate that increased levels of MP TF antigen can be predictive of
VTE in cancer patients.

Similar to the TF antigen studies, several groups have demonstrated an increase in MP TF
activity in cancer patients with VTE in retrospective studies (Table). For example, Tesselaar
and colleagues found increased levels of MP TF activity in patients with disseminated breast
and pancreatic cancer compared with healthy controls.15 In a subsequent study, they found
higher levels of MP TF activity in unselected cancer patients presenting with acute VTE
compared with patients without VTE.111 Surprisingly, the majority of cancer patients
presenting with acute VTE during chemotherapy had low levels of MP TF activity,
suggesting that chemotherapy did not increase circulating MP TF activity. However, it may
be necessary to collect multiple blood samples after chemotherapy to detect a transient
increase in MP TF activity. Another study reported that patients with early stage prostate
cancer had significantly higher levels of MP TF activity compared with healthy controls.112

Recently, we observed that cancer patients with VTE had significantly higher MP TF
activity than cancer patients without VTE.113 Similarly, we demonstrated that MP TF
activity was elevated in patients with pancreatic or biliary cancers and significantly
correlated with VTE.114

We analyzed MP TF activity and plasma TF antigen levels prospectively in 11 advanced or
metastatic pancreatic cancer patients that had repeat blood draws over a 20 week period.14

Nine of 11 patients had no significant change in MP TF activity over time but had elevated
levels of MP TF activity compared with controls. However, 1 patient started with a low level
of MP TF activity level that increased in each of the subsequent blood draws and was at the
highest level prior to a VTE event. Another patient started with an elevated level of MP TF
activity and increased over time before a VTE. We also observed similar changes in TF
antigen levels in the plasma in the two patients using an in-house ELISA assay. Similarly,
Zwicker and colleagues found a 7-fold increased risk of thrombosis in VTE-free cancer
patients with elevated levels of TF+ MPs versus cancer patients negative for TF+ MPs in a 2
year follow up.108 Interestingly, we found that cancer patient with elevated levels of MP TF
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activity but not PS+ MPs had a higher risk of VTE (van Doormaal et al. unpublished data).
These data suggest that elevated levels of MP TF activity may be predictive of VTE.

Similar to the mouse studies, the major source of circulating TF+ MPs in cancer patients is
the tumor. Zwicker and colleagues found a decrease in circulating TF+ MPs shortly after
cancer resection.108 Similarly, Haubold and colleagues observed a decrease in MP TF
activity after prostatectomy.112 Finally, levels of MP activity measured using the Zymuphen
assay were decreased post resection in cancer patients with glioblastoma.115

Several studies have demonstrated an association between levels of TF+ MPs and mortality.
Tesselaar and colleagues reported that high levels of MP TF activity were associated with a
decrease in overall survival in patients with disseminated breast and pancreatic cancer.15 In
addition, cancer patients with VTE presenting with the highest MP TF activity had a lower
survival versus patients with low MP TF activity.111 Finally, we found a median survival
time of only 98.5 days in a high MP TF activity group compared to 231 days for a low MP
TF activity group in a cohort of 117 pancreatic and biliary cancer patients.114

Taken together, these studies strongly suggest that TF+ MPs and MP TF activity may have
prognostic value in identifying cancer patients with increased of VTE. It should be noted
that pancreatic cancer patients have higher levels of circulating TF+ MPs than patients with
other types of cancer, suggesting that TF+ MPs may not be a useful biomarker for
thrombosis risk in all types of cancer. Indeed, cancer type was one factor that was used in a
risk assessment score to predict thrombosis in cancer patients.116 Interestingly, a new
clinical trial (Microparticle Thromboprophylaxis with Enoxaparin in Cancer or MicroTEC;
http://clinicaltrials.gov) will evaluate the benefits of prophylaxis with low molecular weight
heparin in cancer patients with high levels of TF+ MPs in the prevention of cancer-induced
thrombosis.117

10. Analysis of TF+ MPs in hyperlipidemic mice and in patients with
cardiovascular disease

Plaque disruption and subsequent arterial thrombosis is a major complication of
atherosclerosis (termed atherothrombosis). This results in acute vascular syndromes, such as
myocardial infarction and stroke.118 Large amounts of TF are present in atherosclerotic
plaques.119 Further, TF expression increases with the progression of atherosclerotic plaques
and higher TF activity is observed in plaques with thrombi.120 Importantly, much of this TF
is speculated to be in the form of TF+ MPs.2 The following sections will review studies on
TF+ MPs in animal models of arterial thrombosis and in human atherothrombosis.

a. Role of hematopoietic cell-derived TF+ MPs in the activation of coagulation in
hyperlipidemic mice

Hyperlipidemia results in the formation of oxidized low density lipoproteins (oxLDLs).
Indeed, patients with high levels of oxLDL autoantibodies have elevated levels of TF+ MPs
derived from monocytes.121 We found that oxLDL induces TF expression in monocytic
cells and the release of TF+ MPs. (Owens and Mackman, unpublished data). Furthermore,
hyperlipidemic mice have elevated levels of MP TF activity and TAT.122 Hyperlipidemic
mice containing bone marrow from low TF mice had decreased levels of MP TF activity,
indicating that hematopoietic cells were the source of the TF+ MPs. These results suggest
that a TF+ MPs may enhance arterial thrombosis, for instance after rupture of an
atherosclerotic plaque. Indeed, previous studies have shown that hyperlipidemic mice had
shorter occlusion times in the carotid artery model when compared with control
mice.81, 123-124 However, it is difficult to determine the contribution of elevated levels of
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TF+ MPs in models of arterial thrombosis due to the large amounts of TF in the vessel wall.
Interestingly, we have found that hyperlipidemic mice have increased levels of fibrin
accumulation compared to controls in a laser injury model of cremaster arterioles (Owens et
al, unpublished data). Further experiments are required to show that this increase in fibrin is
dependent on the elevated levels of TF+ MPs in the hyperlipidemic mice.

b. Clinical studies
Leroyer and colleagues demonstrated that atherosclerotic plaques had 200-fold higher
concentrations of leukocyte, erythrocyte, SMC, and endothelial cell-derived MPs compared
with the blood of the patients, which mainly consisted of platelet MPs.125 Importantly, more
than 50% of the MPs isolated from the plaques were TF+ MPs. Another study found that
97% of the total MP procoagulant activity extracted from atherosclerotic plaques was due to
TF.126 Moreover, the MPs isolated from the plaques were highly thrombogenic compared to
the MPs isolated from the blood of the same patients. In a subsequent proteomics analysis of
atherosclerotic plaque MPs, Mayr and colleagues demonstrated 90% of the plaque-derived
MPs were CD14+ indicating monocyte/macrophage origin.127 Finally, Bonderman and
colleagues demonstrated increased TF activity associated with MPs when analyzing the
scrapings from ex vivo endarterectomy samples.128 It is speculated that during plaque
rupture, these TF+ MPs initiate thrombosis.

Soejima and colleagues were the first to describe increased levels of plasma TF antigen
patients with unstable angina.129 Further, Mallat and colleagues found an increase in
circulating procoagulant MPs in patients presenting with acute coronary syndrome (unstable
angina and myocardial infarction) versus those with stable angina and non-coronary patients
(Table).130 Moreover, Morel and associates demonstrated an increase in procoagulant
monocyte and endothelial cell-derived MPs in patients undergoing angioplasty.131 Steppich
and colleagues examined patients with acute myocardial infarction (AMI) randomized to
either intravenous thrombolysis or coronary stenting.132 The numbers of TF+ MPs were
similar in both groups of patients, although the thrombolysis group had a decrease in the
number of TF+ MPs that co-stained for TFPI. Huisse and colleagues prospectively enrolled
123 patients with AMI and demonstrated that MP TF activity was increased in the patients
with persistent occlusion versus healthy controls.133 In a follow-up study, they found that
patients who failed to achieve thrombolysis had significantly elevated MP TF activity.134

These results suggest the failure to resolve thrombi may be due to resupply of TF+ MPs
from the circulation to the thrombus. Morel and colleagues demonstrated an increase in MP
TF activity in blood collected at the site of thrombus and at the site of thrombus post
angioplasty, both of which were significantly increase over levels collected in the femoral
blood.131

These results indicate that levels of TF+ MPs, most likely derived from activated monocytes
and macrophages, are elevated in patients with cardiovascular disease. However, it is
unclear if levels of TF+ MPs will have a value in predicting future thrombotic events
because the major source of TF in these cases is the plaque itself. Nevertheless, further
studies are needed to determine if acute coronary syndrome patients with elevated levels of
TF+ MPs have a worse prognosis.

11. Other diseases with elevated levels of TF+ MPs
Elevated levels of circulating TF+ MPs are observed in a variety of disease states, including
sepsis, diabetes, and sickle cell disease (Table).34, 37, 46, 131, 135-136 It is speculated that
increased levels of TF+ MPs are likely to contribute to thrombosis. As an example, Shet and
colleagues found an increase in monocyte and endothelial cell-derived TF+ MPs in sickle
cell patients compared with healthy controls. These MPs had functional TF activity that was
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associated with enhanced activation of coagulation in sickle cell patients with steady state
disease or undergoing crisis. One study found that patients presenting with acute VTE in the
absence of malignant cancer did not have elevated levels of TF+ MPs, whereas another study
demonstrated patients with unprovoked VTE had higher TF+ MPs that control
patients.109, 117 Cumulatively, these data demonstrate an increase in TF+ MPs and MP TF
activity in a variety of disease states. It is also suggestive that TF+ MPs may serve as
prognostic indicators for the risk of thrombotic events and potentially survival. Further
prospective trials are needed to demonstrate that TF+ MPs are a valuable biomarker in
diseases associated with thrombosis.

12. Conclusion
There are numerous reports analyzing levels of PS+ and TF+ MPs in health and disease.
However, methods of MP analysis are not optimal and this has led to a lot of variation
between studies. Development of machines that can more accurately quantify levels of PS+

and TF+ MPs in plasma and standardization of functional clotting assays will help to
advance the field. At present, it is unclear if PS+ MPs or TF+ MPs play a role in hemostasis.
In contrast, several studies have shown an association between tumor-derived TF+ MPs and
VTE in cancer patients, suggesting that these TF+ MP trigger venous thrombosis. Therefore,
TF+ MPs may be a useful biomarker to identify cancer patients, and possibly other patients,
that have an increased risk of venous thrombosis. The elevated levels of monocyte-derived
TF+ MPs observed in hyperlipidemia patients may also contribute to arterial thrombosis
after rupture of atherosclerotic plaques. Further studies are needed to examine if and how
different forms of MPs play a role in hemostasis and thrombosis.
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AMI acute myocardial infarction
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FVII factor VII

FX factor X

GLA γ-carboxyglutamic acid

HIT heparin-induced thrombocytopenia

IVC inferior vena cava

LPS lipopolysaccharide

MP microparticle

oxLDL oxidized low density lipoprotein

PS phosphatidylserine

PSGL-1 P-selectin glycoprotein ligand 1

PT prothrombin

SMC smooth muscle cells

TAT thrombin-antithrombin

TF tissue factor

TFPI tissue factor pathway inhibitor

VTE venous thromboembolism
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Figure 1. Assembly of coagulation complexes on a PS+ phospholipid membrane
Coagulation complexes (TF:FVIIa; FVIIIa:FIXa; and FVa:FXa) assemble on a membrane
surface. The presence of anionic phospholipids, such as PS (red), facilitate the binding of
FVIIa, FIXa, FXa, and prothrombin (PT) by interaction with the Gla domains within the
proteins. Phospholipids originating from the outer membrane before disruption of membrane
asymmetry are shown in grey.
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Figure 2. Surface markers of MPs released by different vascular cells
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Figure 3. Proposed roles of platelet-derived and monocyte-derived MPs in hemostasis and
thrombosis
PS+ MPs derived from platelets may play a role in hemostasis and may enhance thrombosis
in certain diseases. Conversely, PS+, TF+ MP derived from monocytes may contribute to
thrombosis and have a minor role in hemostasis.

Owens and Mackman Page 24

Circ Res. Author manuscript; available in PMC 2012 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Role of TF+ MPs in microvascular and venous thrombosis
A. Microvascular thrombosis in healthy mice. Leukocyte-derived TF+ MPs and vessel wall
TF both appear to contribute to thrombosis induced by laser injury to cremaster arterioles. B.
Cancer associated venous thrombosis. Tumors release TF+ MPs into the circulation where
they are proposed to bind to activated endothelium and trigger venous thrombosis.

Owens and Mackman Page 25

Circ Res. Author manuscript; available in PMC 2012 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Owens and Mackman Page 26

Ta
bl

e 
1

C
ir

cu
la

tin
g 

T
F 

in
 C

lin
ic

al
 S

tu
di

es

D
is

ea
se

 S
ta

te
Sp

ec
ifi

c 
C

on
di

to
n

T
F+  

Fl
ow

 C
yt

om
et

ry
M

P 
T

F 
A

ct
iv

ity
M

aj
or

 F
in

di
ng

 o
f S

tu
dy

R
ef

er
en

ce

C
an

ce
r

C
ol

or
ec

ta
l

Y
es

N
o

In
cr

ea
se

d 
TF

+  
M

Ps
 in

 c
an

ce
r v

er
su

s h
ea

lth
y 

co
nt

ro
ls

, c
or

re
la

te
d 

w
ith

 D
-d

im
er

38

C
an

ce
r

Pa
nc

re
at

ic
 a

nd
 B

re
as

t
Y

es
Y

es
In

cr
ea

se
d 

TF
+ M

Ps
 a

nd
 in

cr
ea

se
 in

 M
P 

TF
 a

ct
iv

ity
 in

 c
an

ce
r v

s c
on

tro
ls

In
cr

ea
se

d 
M

P 
TF

 a
ct

iv
ity

 a
ss

oc
ia

te
d 

w
ith

 d
ec

re
as

ed
 su

rv
iv

al
15

C
an

ce
r

M
ul

tip
le

 F
or

m
s

N
o

Y
es

In
cr

es
ed

 M
P 

TF
 a

ct
iv

ity
 in

 m
et

as
ta

tic
 c

an
ce

r p
at

ie
nt

s v
s h

ea
lth

y 
co

nt
ro

ls
13

6

C
an

ce
r

Pa
nc

re
at

ic
N

o
Y

es
In

cr
ea

si
ng

 M
P 

TF
 a

ct
iv

ity
 a

nd
 T

F 
an

tig
en

 p
re

di
ct

iv
e 

of
 V

TE
14

C
an

ce
r

Pr
os

ta
te

Y
es

Y
es

**
M

P 
TF

 a
ct

iv
ity

 is
 in

cr
ea

se
d 

in
 c

an
ce

r v
s c

on
tro

ls
 a

nd
 c

or
re

la
te

d 
w

ith
 D

-d
im

er
11

2

C
an

ce
r

M
ul

tip
le

 M
ye

lo
m

a
N

o
Y

es
M

P 
TF

 a
ct

iv
ity

 is
 in

cr
ea

se
d 

in
 c

an
ce

r v
s c

on
tro

ls
 a

nd
 re

du
ce

d 
w

ith
 c

he
m

ot
he

ra
py

35

C
an

ce
r

M
ul

tip
le

 F
or

m
s

N
o

Y
es

C
an

ce
r p

at
ie

nt
s w

ith
 V

TE
 h

ad
 h

ig
he

r M
P 

TF
 a

ct
iv

ity
 v

s c
on

tro
ls

. I
nc

re
as

ed
 M

P-
TF

 a
ct

iv
ity

re
su

lte
d 

in
 d

ec
re

as
ed

 su
rv

iv
al

 v
s p

at
ie

nt
s w

ith
 lo

w
 M

P 
TF

 a
ct

iv
ity

11
1

C
an

ce
r

M
ul

tip
le

 F
or

m
s

Y
es

*
N

o
In

cr
ea

se
d 

TF
+  

M
Ps

 in
 c

an
ce

r p
at

ie
nt

s v
s c

on
tro

ls
 a

nd
 a

re
 p

re
di

ct
iv

e 
of

 V
TE

10
8

C
an

ce
r

Pa
nc

re
at

ob
ili

ar
y

N
o

Y
es

In
cr

ea
se

d 
M

P 
TF

 a
ct

iv
ity

 in
 c

an
ce

r p
at

ie
nt

s a
nd

 c
or

re
la

te
d 

to
 V

TE
11

4

C
an

ce
r

M
ul

tip
le

 F
or

m
s

N
o

Y
es

In
cr

ea
se

d 
M

P 
TF

 a
ct

iv
ity

 in
 p

at
ie

nt
s w

ith
 c

an
ce

r a
nd

 V
TE

 v
er

su
s c

an
ce

r w
/o

 V
TE

11
3

C
an

ce
r

M
ul

tip
le

 F
or

m
s

Y
es

N
o

In
cr

ea
se

d 
TF

+  
M

Ps
 in

 c
an

ce
r p

at
ie

nt
s w

/ a
nd

 w
/o

 V
TE

 v
er

su
s h

ea
lth

y 
co

nt
ro

ls
.

10
9

A
C

S
M

I
Y

es
Y

es
**

*
D

ec
re

as
ed

 T
FP

I+  
M

Ps
 a

nd
 in

cr
ea

se
d 

M
P 

TF
 a

ct
iv

ity
 a

fte
r t

hr
om

bo
ly

si
s

13
2

A
C

S
M

I
N

o
Y

es
M

P 
TF

 a
ct

iv
ity

 in
cr

ea
se

d 
in

 p
at

ie
nt

s w
ith

 p
er

si
st

en
t o

cc
lu

si
on

 v
s c

on
tro

ls
13

3

A
C

S
M

I
N

o
Y

es
M

P 
TF

 a
ct

iv
ity

 w
as

 in
cr

ea
se

 in
 fa

ile
d 

vs
 su

cc
es

sf
ul

 th
ro

m
bo

ly
si

s i
n 

pa
tie

nt
s

13
4

A
C

S
M

I
N

o
Y

es
**

*
M

P 
TF

 a
ct

iv
ity

 in
cr

ea
se

d 
in

 le
si

on
 b

lo
od

 v
er

su
s p

os
t a

ng
io

pl
as

ty
13

1

D
ia

be
te

s
Ty

pe
 II

 D
ia

be
te

s
Y

es
N

o
2×

 in
cr

ea
se

d 
TF

+  
M

Ps
 in

 p
at

ie
nt

s w
ith

 ty
pe

 II
 d

ia
be

te
s v

er
su

s h
ea

lth
y 

co
nt

ro
ls

37

D
ia

be
te

s
Ty

pe
 II

 D
ia

be
te

s
Y

es
N

o
3×

 in
cr

ea
se

d 
TF

+  
M

Ps
 in

 p
at

ie
nt

s w
ith

 ty
pe

 II
 d

ia
be

te
s v

er
su

s h
ea

lth
y 

co
nt

ro
ls

13
5

Se
ps

is
M

en
in

go
co

cc
al

Y
es

N
o

In
cr

ea
se

d 
TF

+  
M

Ps
 in

 p
at

ie
nt

s w
ith

 m
en

in
go

co
cc

al
 se

ps
is

45

En
do

to
xe

m
ia

LP
S 

ad
m

in
is

tra
tio

n
Y

es
Y

es
In

cr
ea

se
d 

TF
+  

M
Ps

 a
nd

 M
P 

TF
 a

ct
iv

ity
 in

 h
ea

lth
y 

vo
lu

nt
ee

rs
 g

iv
en

 e
nd

ot
ox

in
13

Si
ck

le
 C

el
l

Si
ck

le
 C

el
l D

is
ea

se
Y

es
Y

es
**

In
cr

ea
se

d 
TF

+  
M

Ps
 a

nd
 M

P 
TF

 a
ct

iv
ity

 in
 si

ck
le

 c
el

l p
at

ie
nt

s v
er

su
s c

on
tro

ls
46

A
bb

re
vi

at
io

ns
: A

C
S 

(a
cu

te
 c

or
on

ar
y 

sy
nd

ro
m

e)
, M

I (
m

yo
ca

rd
ia

l i
nf

ar
ct

io
n)

, T
F 

(ti
ss

ue
 fa

ct
or

), 
M

P 
(m

ic
ro

pa
rti

cl
es

), 
V

TE
 (v

en
ou

s t
hr

om
bo

em
bo

lis
m

), 
TF

PI
 (t

is
su

e 
fa

ct
or

 p
at

hw
ay

 in
hi

bi
to

r)
.

* M
ic

ro
pa

rti
cl

es
 a

ss
es

se
s b

y 
flo

w
 im

pe
de

nc
e.

**
M

P 
TF

 a
ct

iv
ity

 a
ss

es
se

d 
by

 1
-s

ta
ge

 c
lo

tti
ng

 re
ac

tio
n 

w
ith

 in
cl

us
io

n 
of

 a
nt

i-T
F 

an
tib

od
y.

**
* A

ss
ay

 is
 c

on
si

de
re

d 
co

nt
ro

ve
rs

ia
l a

nd
 m

ay
 n

ot
 b

e 
in

di
ca

tiv
e 

of
 sp

ec
ifi

c 
M

P 
TF

 a
ct

iv
ity

.

Circ Res. Author manuscript; available in PMC 2012 May 13.


