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Background

Non-experimental studies are increasingly used to investigate the safety and effectiveness of

medical products as they are used in routine care. One of the primary challenges of such

studies is confounding, systematic differences in prognosis between patients exposed to an

intervention of interest and the selected comparator group. In the presence of uncontrolled

confounding, any observed difference in outcome risk between the groups cannot be

attributed solely to a causal effect of the exposure on the outcome.

Confounding in studies of medical products can arise from a variety of different socio-

medical processes.1 The most common form of confounding arises from good medical

practice, physicians prescribing medications and performing procedures on patients who are

most likely to benefit from them. This leads to a bias known as “confounding by indication,”

which can cause medical interventions appear to cause events that they prevent.2, 3

Conversely, patients who are perceived by a physician to be near the end of life may be less

likely to receive preventive medications leading to confounding by frailty or comorbidity.4-6

Additional sources of confounding bias can result from patient health-related behaviors. For

example, patients who initiate a preventive medication may be more likely than other

patients to engage in other healthy, prevention-oriented behaviors leading to bias known as

the healthy user/adherer effect.7-9

Many statistical approaches can be used to remove the confounding effects of such factors if

they are captured in the data. The most common statistical approaches for confounding

control are based on multivariable regression models of the outcome. To yield unbiased
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estimates of treatment effects, these approaches require that the researcher correctly model

the effect of the treatment and covariates on the outcome. However, correct specification of

an outcome model can be challenging, particularly in studies involving many confounders,

rare outcomes, or strong treatment effect heterogeneity that must be correctly modeled.10

Propensity score (PS) models are an approach for estimating treatment effects that do not

rely on modeling the outcome.11 Rather, PS methods rely on a model of the treatment given

confounders. In many cases, these models may be easier to specify.

In this paper we outline the steps involved in the implementation of a PS analysis, including

a description of the various ways that a PS can be used. We focus on the practical

application of these methods in the area of non-experimental studies of medical

interventions. Using a large insurance claims database, we illustrate the discussed concepts

using a substantive example involving the comparison of angiotensin converting enzyme

inhibitors (ACEi) and angiotensin receptor blockers (ARBs) on the risk of angioedema, a

well-established adverse event of ACEi initiation.12-15

The Propensity Score

A PS is defined as the conditional probability of treatment or exposure given all

confounders.11 Rosenbaum and Rubin formalized PS methods and showed that all

confounding can be controlled through the use of the PS.11 They demonstrated that among

patients with the same PS, treatment is unrelated to confounders. Therefore, the treated and

untreated tend to have the same distribution of measured confounders, something that we

would also achieve using randomization. Robins extended the application of PSs through the

development of inverse probability of treatment weighted (IPTW) estimation16 and other

weighting approaches have been proposed.17

Given a propensity score, treatment effects are usually estimated by matching, weighting,

stratification, or adjustment for the PS in a multivariable regression model. In the presence

of treatment effect heterogeneity, these different approaches may result in different

estimates of the treatment effect.18 In PS matching each treated subject is matched to one or

more control subjects depending on the matching algorithm used. The effect estimate

obtained from PS matching is generalizable only to populations similar to the matched

patients. In many applications, one is matching a small group of treated patients to a larger

population of untreated patients. When all treated patients can be matched, this results in the

average treatment effect in the treated (ATT). In some cases we cannot find untreated

matches for each treated patient and therefore the estimate is not completely generalizable to

the entire treated population (the ATT). In some situations, PS methods based on matching

can result in a substantial reduction in sample size. See Guo and Fraser for an overview of

different approaches to matching.19

PSs can also be used to generate weights that can be used to control confounding. This

approach, unlike matching, does not result in a reduction of the original sample size. The

purpose of PS weighting is to reweight the individuals within the original treated and control

samples to create a so-called “pseudo-population” in which there is no longer an association

between the confounders and treatment. Two types of weighting are commonly used:
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inverse probability treatment weighting (IPTW) and standardized mortality ratio weighting

(SMRW).17

Inverse probability treatment weights are defined as the inverse of the estimated PS for

treated patients and the inverse of one minus the estimated PS for control patients. Patients

who receive an unexpected treatment are weighted up to account for the many patients like

them who did receive treatment. Patients who receive a typical treatment are weighted down

since they are essentially overrepresented in the data. These weights create a pseudo-

population where the weighted treatment and control groups are representative of the patient

characteristics in the overall population. Therefore, IPTW results in estimates that are

generalizable to the entire population from which the observed sample was taken. The

treatment effect obtained after applying IPTW is referred to as the population average

treatment effect (ATE).18, 20

Precision of estimated effects from an IPTW analysis can be improved by stabilizing the

weights. This is done by multiplying the previously defined weights by the marginal

probability of receiving treatment for those treated, and the marginal probability of not

receiving treatment for those not treated.21 Stabilized weights do not increase or decrease

bias, but can increase precision in the estimated treatment effects by reducing the variance of

the weights.16, 21, 22

For SMR weighting, treated patients are given a weight of one while weights for control

patients are defined as the ratio of the estimated PS to one minus the estimated PS.18, 20

SMR weighting reweights the control patients to be representative of the treated population.

SMR weighting results in an estimate of ATT.20 Unlike PS matching, which also often

estimates the ATT, no treated individuals are excluded from this analysis. Both IPTW and

SMRW require the use of a robust variance estimator, similar to the variance estimator used

in the generalized estimating equation methodology. This approach results in confidence

intervals that are conservative, i.e., have a slightly greater than nominal coverage.

Researchers also commonly estimate treatment effects by conducting an analysis stratified

across the PS. Often the strata are taken to be quintiles or deciles of the PS. Treatment

effects are estimated within these strata and a summary effect is generated by taking the

weighted average of the stratum-specific estimates using weights that are proportional to the

number of outcomes in each stratum, optimizing statistical efficiency of estimation.

Assuming uniform treatment effects, this approach results in an estimate of the average

treatment effect in the population. In the presence of heterogeneous treatment effects,

however, this approach may no longer result in an estimate of the average treatment effect.

Finally, it is possible to combine PS and regression methods in various ways. For example,

researchers often include the PS in a regression model along with other covariates or use

regression adjustment in cohorts that have already been matched on the PS. These

approaches are not unreasonable and may help to remove some residual confounding.

However, they may not result in estimates of a parameter of interest, such as ATE or ATT

(although these could be obtained from the fitted model using marginalization). One

principled approach to combining regression and PS weighting is through the use of the
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augmented inverse probability of treatment weighted (AIPTW) estimator.23, 24 This

estimator depends on both a PS and multivariable outcome model and results in an estimate

of the ATE. The estimator is often more efficient than an IPTW estimator. The AIPTW

estimator also posses an appealing “doubly robust” property, meaning that to be consistent

(asymptotically unbiased), it needs only one of the two models to be correctly specified.25

Estimating the Propensity Score

In practice, the true probability of treatment is unknown and therefore must be estimated

from the available data. The ability of estimated PSs to control for measured confounding is

contingent on both correctly selecting variables for the PS model and specifying the

functional form of the relation between selected covariates and treatment.11, 26, 27 Logistic

regression is the most widely used method to estimate PSs.28 Models that are more flexible

than logistic regression are increasingly used for PS estimation and have been found to

perform well in specific settings.29-31

Once a model has been chosen, the analyst must select which variables to include in the

model. Ideally, this process is guided by subject-matter knowledge. In practice, however,

treatment assignment is usually determined by a complex interaction of patient, physician,

and healthcare system factors that are often incompletely understood.

Various model building and variable selection strategies have been proposed to help

researchers select variables for inclusion in a PS. Variable selection strategies range from

simply selecting covariates a priori based on expert and substantive knowledge to

approaches that are more empirical, or data-driven where very large PS models are

constructed that control for large numbers of covariates.32-34

The choice of variables that one includes in a PS model can influence both the validity and

efficiency of effect estimates. Simulation studies have demonstrated that the best predictive

models of exposure do not necessarily result in optimal propensity score models.26 For

example, the inclusion of variables in a PS model that affect the outcome but not treatment

are beneficial as they decrease the variance of the estimated treatment effect.26 Conversely,

including variables that affect only treatment can be harmful.26 These variables can increase

the variability of effect estimates and, in the presence of unmeasured confounding, can

increase bias.1, 35, 36 Studies of variable selection for PS suggest that optimal PS models, in

terms of bias and precision, include all variables that affect the outcome of interest,

regardless of whether they are important determinants of treatment.26 Ideally, this should be

determined from subject-matter knowledge, for example, as coded in causal graphs.37

In the common setting of rare outcomes but common treatments, it is possible to build much

larger models of treatment than of the outcome. This allows one to control for many more

covariates in a PS analysis. This has led to researchers to use algorithms that result in very

large PS models, including the so-called high-dimensional propensity score algorithm.33, 34

These methods have performed well in several empirical examples; however, theoretically,

in some situations they could result in a more biased estimate than more parsimonious

propensity score models.
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Regardless of the particular approach that is adopted, one helpful feature of PS methods is

the ability to explicitly evaluate the performance of an estimated PS model by assessing the

balance of covariates after matching or weighting on the estimated PSs. Residual imbalances

in the covariates indicate a possible problem with PS model specification. This process

allows the researcher to evaluate and modify the PS model before attempting to estimate the

treatment effect. Various strategies for PS variable and model selection based on the

evaluation of covariate balance have been proposed.29

Once the PS model is fit and the estimated propensity scores are generated, it is common to

plot the frequency distribution (or estimated density function) of the PS within each

treatment group. These plots allow the researcher to identify regions of the PS distributions

with little or no overlap where treatment effects cannot be reliably estimated. It is reasonable

to consider removing patients from these regions from the analysis, an approach referred to

as PS trimming. Matching will automatically remove most of the patients from this region

since they cannot be matched, and IPT and SMR weighted methods will reduce their

influence by giving them small weights.

IPTW methods can be particularly sensitive to the influence of patients who receive

unexpected treatments. Because IPTW estimates the average treatment effect in the

population, it must up-weight individuals in the population who are given an apparently

unusual treatment.38 If treatment effects differ in these patients or there is an unmeasured

reason for the unexpected treatment which affects the risk for the outcome,43 IPTW

estimates can be unlike estimates from other approaches. This has been observed in several

empirical examples.20, 39

In situations where a small number of patients influence analysis results because of their

large weights, one should carefully investigate potential causes of this issue and rule out

problems such as data errors. It may be reasonable to consider removal of these patients

from the analysis through PS trimming. However, this changes the target population for

inference, and the benefits of estimating causal effects on a well-defined population are lost.

If the cause of the large weights is unmeasured confounding, however, trimming may

decrease bias.43 In this case, the disadvantage of losing the causal interpretation would be

moot since generalizability is no longer relevant in the setting of a biased estimator.

It is worth noting that both PS methods and multivariable outcome models can identify

treatment effects in patients in the non-overlapping regions of the PS by model

extrapolation, i.e., assuming that the effect of treatment in the patients who are always

treated or never treated is similar to the treatment effect in other patients. This assumption is

often unknowingly made and can lead to misleading results. Therefore, an advantage of PS

methods is the ability to identify patients whose treatment effects cannot be reliably

estimated.

Exploring Effect Modification by the Propensity Score

Differences between the various approaches to using the PS occur when there is substantial

treatment effect heterogeneity.18 If the treatment effect varies with the PS, different PS

methods will give different results.22,39 It can be informative to report estimated effects by
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strata of the PS distribution. For example, in a study of thrombolytic therapy for ischemic

stroke, the IPTW approach suggested thrombolytic therapy was associated with a large risk

of in-hospital mortality.20 However, based on PS matching the authors found little evidence

of a substantially increased mortality attributable to the treatment.

By examining treatment effects across PS strata, the authors discovered that treatment in

patients with a very low probability of receiving treatment was associated with a greatly

increased risk of mortality. This suggested the possibility that these patients may have

possessed an unmeasured contraindication for treatment. If so, the treatment effect estimate

generated by IPTW generalized to many patients who should not have received thrombolytic

therapy and therefore may not be of great clinical interest. Note that the ATT estimate based

on PS matching or SMRW reduces the potential for estimating the treatment effect in

patients with contraindications. Examining treatment effects across strata of the PS is an

effective way of identifying treatment effect heterogeneity. However, further analysis would

be required to identify the true source of the heterogeneity.

Propensity Score Methods for Multi-Categorical Treatments

In the setting of a treatment that has multiple levels, the PS becomes a vector, i.e., the

predicted probability of each treatment category. These can be estimated using a model for a

categorical outcome, such as multinomial logistic regression. IPTW methods can be used

directly in this setting. As in the case of a dichotomous treatment, each patient receives a

weight equal to the inverse of the probability that they would receive their actual treatment.

Stratification and matching on a multivariate PS are possible, but not preferred in this setting

since the PS is no longer single dimensional.

EXAMPLE: Angioedema risk among new users of angiotensin converting

enzyme inhibitors versus angiotensin receptor blockers

We identified a cohort of new users of ACE inhibitors or ARBs in a large, US employer-

based insurance claims database—the MarketScan Commercial Claims and Encounters and

Medicare Supplementary and Coordination of Benefit (Truven Healthcare, Inc.). The

database contains patient billing information for in- and outpatient procedures and

diagnoses, pharmacy medication dispensing, and enrollment information for enrolled

employees, spouses, dependents, and retirees.

New ACEi or ARB use was defined as a pharmacy dispensing of an ACEi or ARB to

individuals who had been free of anti-hypertensive use (beta blockers, calcium channel

blockers, alpha blockers, thiazide diuretics, ACEi or ARB medications) for 6 months. To

restrict to ACEi or ARB monotherapy, we also excluded individuals who initiated another

antihypertensive within one day of the index ACEi or ARB prescription. Patients were

followed for one year after initiation. The outcome was an occurrence of angioedema,

defined as an International Classification of Diseases, Ninth Revision, Clinical Modification

code of 995.1 associated with an in- or out-patient encounter. Patients with angioedema

occurring during the washout period were excluded. This is a setting that may be particularly

well suited to PS methods since angioedema is a relatively rare outcome and the database
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provides a very large collection of candidate covariates that one may wish to include in a

model as potential confounders.10 Furthermore, the risk of angioedema is known to vary

across race and may be heterogeneous across other subgroups.40 The PS approach allows us

to estimate a population treatment effect without the need to explicitly specify these

interactions.

Estimating the Probability of ACEi versus ARB use

For the example considered in this paper, we identified covariates a priori based on the

literature, substantive knowledge, and the availability of covariates within the data.

Covariates were defined from diagnoses and procedures occurring during the 6-month

baseline period. Considered covariates included: markers of cardiovascular risk and CVD

management; recent acute events; other cardiovascular medication use and co-administration

(diuretics, statins and other anti-cholesterol drugs, and anti-coagulants); and patient

characteristics. A list of these covariates along with a description of their distributions

stratified by exposure status is shown in Table 1.

Using logistic regression, we estimated the PSs by modeling the main effects of the

covariates listed in Table 1. To assess the comparability of the covariate distributions

between the ACEi and ARB groups, we plotted the distributions of the estimated PSs

stratified by exposure status (Figure 1). Treated (ACEi initiators) and control (ARB

initiators) patients with similar PS values will, on average, have similar covariate

distributions. Therefore, the overlapping region of the PS distributions identifies the subset

of the observed population where the patient populations are comparable.

Propensity Score Implementation and Causal Effect Estimation

In each of the example analyses in this paper, we compared rates of angioedema in ACEi

versus ARB users with Cox proportional hazard models in which the outcome was censored

by plan disenrollment or administratively by one year after the index date. We present

hazard ratios (HR) and 95% confidence intervals (CI).

We matched ACE inhibitor initiators to ARB initiators 1-to-1, without replacement, using a

varying-width caliper matching algorithm (five to one digit matching). Because there were

many more ACEi users and substantial overlap in the PS distributions between ACEi and

ARB users, almost all of the ARB users could be matched but many ACEi users were

discarded. From the matched set of observations, the treatment effect was then estimated

using an unadjusted Cox proportional hazards model.

We next estimated the treatment effect using PS weighting, including IPTW and SMR

weighted approaches. For IPTW, stabilized weights were used to reduce variance of the

estimated treatment effect. The estimated weights were incorporated into a Cox regression

model that only included the treatment variable.

Finally, we conducted an analysis that was stratified across deciles of the PS. We plotted the

strata-specific estimates in an effort to identity the existence of systematic trends in the

strength and direction of the estimated effects as a function of the estimated PS (Figure 2). A
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stratified summary estimate was calculated using unadjusted Cox regression with an

indicator variable for each PS strata.

For comparison, we also estimated the unadjusted treatment effect using the crude outcome

model and the multivariable-adjusted treatment effect by controlling for all covariates

explicitly in an outcome model. These two outcome models do not implement any PS

analysis and are, therefore, not of primary interest but serve for comparison with the

performance of the PS methods. All analyses were conducted in SAS. Example code that

can be used to conduct these analyses is provided in the appendix.

Results

We identified 947,004 patients initiating ACEi and 289,167 patients initiating ARBs. Table

1 shows the relative similarities between ACEi and ARB groups prior to PS adjustment.

Comparability of a large proportion of the observed sample is also demonstrated by a large

amount of overlap in the estimated PS distributions (Figure 1).

Despite the similarities in the characteristics between ACEi and ARB groups, adjusting for

the covariates in Table 1 through PS matching and weighting improved balance of the

observed characteristics. For example, prior to PS adjustment, diabetes was strongly

associated with receiving an ACEi vs. an ARB. Among patients with diabetes, 31% received

an ACEi and 22% received an ARB. After PS weighting or matching, the proportion with

diabetes is approximately equal between the two groups with 22% of patients having

diabetes among the ACEi and ARB groups after PS matching, 29% after IPTW, and 31%

after SMR weighting (Table 1).

As discussed, different methods of PS implementation result in estimates that generalize to

different populations. The characteristics of these different populations are evident in the

difference in the means and frequencies of patient characteristics reported in Table 1. Using

the example of diabetes, PS matching changes the proportion of patients with diabetes in the

ACEi group to match that in the ARB group (Table 1). This pattern is expected because

most ARB users could be matched to an ACEI user. SMR weighting adapted the proportion

of individuals with diabetes in the ARB group to reflect of the proportion in the unadjusted

treatment (ACEi) population. IPTW resulted in a proportion that reflects the proportion of

patients with diabetes in the overall population. Similar patterns are found for all covariates

(Table 1).

Results of the estimated treatment effects are presented in Table 2. The unadjusted effect

estimate resulted in an estimated hazard ratio of 1.77 (95% CI: 1.57-2.00). After adjustment

for potential confounding factors, PS matching, IPTW, and SMR weighting all resulted in

elevated hazard ratios compared to the unadjusted estimate, as shown in Table 2 (matching:

HR=1.91 (95% CI: 1.67-2.19); IPTW: HR=1.87 (95% CI: 1.64-2.13); SMR weighting:

HR=1.86 (95% CI: 1.62-2.14)). The similarity among the estimates obtained from the

different methods of PS implementation suggests that there is an absence of strong treatment

effect heterogeneity. In other words, the risk of angioedema associated with ACEi use

appears to be constant over various sub-groups.
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To further explore the impact of potential effect heterogeneity, we calculated treatment

effect estimates within each of the 10 PS strata. The estimates are graphically depicted in

Figure 2. The estimated hazard ratios appear to fluctuate randomly around their mean

suggesting that no strong systematic treatment effect heterogeneity exists across values of

the PS (Figure 2).

Conclusions

Propensity score methods have become widely used tools for confounding control in non-

experimental studies of medical products and procedures. Regardless of the approach that

one adopts to control for confounding in non-experimental research, it is important that the

researcher understand the underlying assumptions inherent in the chosen statistical method,

as well as the interpretation of the results and the population(s) to which they are

generalizable. We have described the assumptions necessary for valid PS analysis, the

different treatment effects obtained by the various PS methods, and the populations to which

these treatment effects are generalizable.

The validity of PS and multivariable outcome models require the strong assumption that all

confounders are accurately measured and the exposure or outcome model is properly

specified. However, PS methods provide several advantages over multivariable outcome

models. First they allow the researcher to identify patients who are never treated or

untreated. These patients provide no information about treatment effects without making

model assumptions that, if incorrect, could bias estimates of treatment effectiveness. Second,

PS models require that analysts correctly model the effect of covariates on treatment, rather

than the effect of covariates and treatment on the outcome. It may be difficult to correctly

specify multivariable outcomes, particularly when treatment effects are heterogeneous

across patient subgroups. In the setting of strong treatment effect heterogeneity, PS methods

allow the researcher to estimate average effects of treatments in different populations

without needing to explicitly specifying the interactions in the model. Finally, in the usual

setting of a common exposure and a rare outcome, researchers can construct much larger

models of the PS. This is advantageous in studies utilizing healthcare databases that provide

a large number of weak confounders.34

As we have described, in the presence of treatment effect heterogeneity, different

approaches to using the PS result in estimates of different treatment effects (contrasts).

When deciding which particular PS approach to use, one should consider which treatment

effect is of greatest interest and also whether the parameter can be reasonably estimated with

the available data. For example, when comparing treated with untreated, it may be difficult

to estimate ATE because there may be many untreated patients in the population who do not

have an indication for treatment and therefore who would be rarely treated. In such

situations, the ATT may be both more clinically relevant and also more reliably estimated.

In studies comparing two candidate treatments (i.e., comparative effectiveness research),

ATE may be both easily estimated and the most useful to both clinicians and policy makers.

Despite the usefulness of PS methods in non-experimental research, it should be noted that

PS methods alone do not correct for errors introduced in the design or measurement of
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variables. For example, bias can be introduced by immortal person time (i.e., a period of

time in which exposed patients cannot experience the event because of the exposure

definition),41 selection bias,42 control of causal intermediates,43 and measurement error of

the exposure or outcome. Many design issues can be addressed through the use of incident

user designs and active comparators.44 However, even with careful design and appropriate

statistical adjustment, it is unlikely that all biases within healthcare database research can be

completely addressed. Given the complexity of the underlying medical, sociological, and

behavioral processes that determine exposure to medical products and interventions as well

as the limitations of typical healthcare databases, there will often exist substantial

uncertainty about how one should specify PS models to control confounding.1

Because of the inherent challenges in non-experimental research, we suggest that

researchers explore and report the sensitivity of results to changes in the epidemiologic

design and specifications of the statistical models. If the results are robust to such changes,

the study more strongly supports the possibility that the estimates are indeed reflecting true

causal relations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Estimated density of the propensity scores among new users of ACE inhibitors and ARBs.
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Figure 2.
Estimated treatment effects and 95% CIs within deciles of the estimated propensity scores

Brookhart et al. Page 14

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 May 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brookhart et al. Page 15

T
ab

le
 1

C
ov

ar
ia

te
 d

is
tr

ib
ut

io
n 

by
 tr

ea
tm

en
t g

ro
up

s 
in

 th
e 

ov
er

al
l p

op
ul

at
io

n,
 P

S 
m

at
ch

ed
 p

op
ul

at
io

n,
 a

nd
 S

M
R

 a
nd

 in
ve

rs
e-

pr
ob

ab
ili

ty
 o

f 
tr

ea
tm

en
t w

ei
gh

te
d

po
pu

la
tio

ns

O
ve

ra
ll

P
ro

pe
ns

it
y 

Sc
or

e 
M

at
ch

ed
SM

R
W

 W
ei

gh
te

d
IP

T
W

 w
ei

gh
te

d

A
R

B
 N

=2
89

,1
67

A
C

E
i N

=9
47

,0
04

A
R

B
 N

=2
88

,4
01

A
C

E
i N

=2
88

,4
01

A
R

B
 N

=9
50

,2
18

*
A

C
E

i N
=9

47
,0

04
*

A
R

B
 N

=2
89

,9
19

*
A

C
E

i N
=9

46
,9

46
*

P
at

ie
nt

 c
ha

ra
ct

er
is

ti
cs

M
ea

n 
ag

e 
(S

D
)

55
.6

 (
13

.3
)

55
.3

 (
13

.9
)

55
.6

 (
13

.3
)

55
.7

 (
13

.3
)

55
.8

 (
25

.3
)

55
.3

 (
13

.9
)

55
.8

 (
13

.8
)

55
.4

 (
13

.8
)

M
al

e 
(%

)
48

.0
52

.5
48

.0
47

.7
52

.2
52

.5
51

.2
51

.5

M
ed

ic
ar

e 
(%

)
22

.3
22

.5
22

.3
22

.4
24

.0
22

.5
23

.6
22

.5

C
V

D
 m

an
ag

em
en

t 
(%

)

A
ng

io
gr

ap
hy

0.
1

0.
3

0.
1

0.
2

0.
4

0.
3

0.
3

0.
3

C
ar

di
ac

 s
tr

es
s 

te
st

7.
2

6.
1

7.
2

7.
2

6.
1

6.
1

6.
4

6.
4

E
ch

oc
ar

di
og

ra
ph

9.
6

9.
4

9.
6

9.
7

9.
6

9.
4

9.
6

9.
5

M
ea

n 
lip

id
 te

st
s 

(S
D

)
0.

59
 (

0.
90

)
0.

61
 (

0.
93

)
0.

59
 (

0.
90

)
0.

59
 (

0.
90

)
0.

61
 (

0.
93

)
0.

61
 (

0.
93

)
0.

59
 (

0.
91

)
0.

60
 (

0.
93

)

A
ng

io
pl

as
ty

0.
1

0.
1

0.
1

0.
1

0.
2

0.
1

0.
1

0.
1

C
or

on
ar

y 
st

en
t p

la
ce

m
en

t
0.

3
0.

7
0.

3
0.

3
0.

7
0.

7
0.

6
0.

6

C
A

B
G

0.
1

0.
2

0.
1

0.
1

0.
3

0.
2

0.
2

0.
1

C
om

or
bi

di
ti

es
 a

nd
 a

cu
te

ev
en

ts
 (

%
)

M
I

0.
2

0.
6

0.
2

0.
2

0.
8

0.
6

0.
7

0.
5

M
I 

in
 p

as
t 3

 w
ee

ks
0.

1
0.

4
0.

1
0.

1
0.

6
0.

4
0.

5
0.

3

Fo
rm

er
 M

I
0.

3
0.

4
0.

3
0.

3
0.

4
0.

4
0.

4
0.

3

U
ns

ta
bl

e 
an

gi
na

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

0.
4

U
ns

ta
bl

e 
an

gi
na

 in
 p

as
t 3

w
ee

ks
0.

2
0.

6
0.

2
0.

3
0.

7
0.

6
0.

6
0.

5

Is
ch

em
ic

 h
ea

rt
 d

is
ea

se
6.

2
6.

7
6.

2
6.

1
7.

2
6.

7
7.

0
6.

6

St
ro

ke
3.

6
3.

9
3.

6
3.

5
4.

1
3.

9
4.

0
3.

9

D
ia

be
te

s
22

.3
31

.2
22

.2
22

.2
31

.3
31

.2
29

.2
29

.1

C
K

D
2.

2
1.

6
2.

2
2.

1
1.

8
1.

6
1.

9
1.

8

E
SR

D
0.

7
0.

5
0.

7
0.

6
0.

5
0.

5
0.

6
0.

5

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 May 23.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brookhart et al. Page 16

O
ve

ra
ll

P
ro

pe
ns

it
y 

Sc
or

e 
M

at
ch

ed
SM

R
W

 W
ei

gh
te

d
IP

T
W

 w
ei

gh
te

d

A
R

B
 N

=2
89

,1
67

A
C

E
i N

=9
47

,0
04

A
R

B
 N

=2
88

,4
01

A
C

E
i N

=2
88

,4
01

A
R

B
 N

=9
50

,2
18

*
A

C
E

i N
=9

47
,0

04
*

A
R

B
 N

=2
89

,9
19

*
A

C
E

i N
=9

46
,9

46
*

H
yp

er
te

ns
io

n
55

.2
44

.3
55

.2
54

.7
44

.4
44

.3
46

.9
46

.9

H
yp

er
lip

id
em

ia
27

.6
26

.7
27

.6
27

.7
26

.3
26

.7
26

.6
26

.9

A
tr

ia
l f

ib
ri

lla
tio

n
1.

6
1.

8
1.

6
1.

6
2.

0
1.

8
1.

9
1.

8

H
ea

rt
 f

ai
lu

re
2.

0
2.

8
2.

0
1.

9
3.

1
2.

8
2.

9
2.

6

P
re

va
le

nt
 m

ed
ic

at
io

n 
us

e
(%

)

St
at

in
s

25
.7

27
.3

25
.7

25
.9

25
.8

27
.3

25
.8

26
.9

A
nt

i-
pl

at
el

et
s

3.
3

3.
1

3.
2

3.
2

3.
2

3.
1

3.
2

3.
2

Po
ta

ss
iu

m
-s

pa
ri

ng
 d

iu
re

tic
s

0.
9

0.
8

0.
9

0.
9

0.
8

0.
8

0.
8

0.
8

L
oo

p 
di

ur
et

ic
s

5.
2

4.
9

5.
2

5.
1

4.
9

4.
9

5.
0

4.
9

N
ia

ci
n

1.
3

1.
2

1.
3

1.
3

1.
2

1.
2

1.
2

1.
3

Fi
br

at
es

3.
4

3.
5

3.
3

3.
3

3.
3

3.
5

3.
3

3.
4

E
ze

tim
ib

e
4.

2
3.

5
4.

2
4.

2
3.

4
3.

5
3.

6
3.

7

A
nt

i-
co

ag
ul

an
ts

2.
6

2.
7

2.
5

2.
5

2.
7

2.
7

2.
7

2.
7

C
on

cu
rr

en
t 

m
ed

ic
at

io
n

in
it

ia
ti

on
 (

%
)

St
at

in
s

5.
8

11
.4

5.
8

5.
8

11
.5

11
.4

10
.2

10
.1

A
nt

i-
pl

at
el

et
s

0.
5

1.
3

0.
5

0.
6

1.
5

1.
3

1.
3

1.
1

Po
ta

ss
iu

m
-s

pa
ri

ng
 d

iu
re

tic
s

0.
2

0.
3

0.
2

0.
2

0.
4

0.
3

0.
3

0.
3

L
oo

p 
di

ur
et

ic
s

0.
8

1.
6

0.
8

0.
9

1.
9

1.
6

1.
7

1.
5

N
ia

ci
n

0.
3

0.
4

0.
3

0.
3

0.
5

0.
4

0.
4

0.
4

Fi
br

at
es

0.
7

1.
2

0.
7

0.
7

1.
3

1.
2

1.
1

1.
1

E
ze

tim
ib

e
1.

1
1.

1
1.

1
1.

1
1.

3
1.

1
1.

3
1.

1

A
nt

i-
co

ag
ul

an
ts

0.
2

0.
6

0.
2

0.
3

0.
7

0.
6

0.
6

0.
5

* Sy
nt

he
tic

 N
's

 d
er

iv
ed

 f
ro

m
 w

ei
gh

ts

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 May 23.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Brookhart et al. Page 17

T
ab

le
 2

E
st

im
at

ed
 tr

ea
tm

en
t e

ff
ec

ts
 c

om
pa

ri
ng

 n
ew

-u
se

rs
 o

f 
A

C
E

i t
o 

ne
w

-u
se

rs
 o

f 
A

R
B

s 
on

 r
is

k 
of

 a
ng

io
ed

em
a 

af
te

r 
PS

 a
dj

us
tm

en
t.

M
od

el
T

re
at

m
en

t
N

E
ve

nt
s 

(%
)

H
R

95
%

 C
I

A
R

B
s

28
9,

16
7

31
0 

(0
.1

)
--

--

C
ru

de
 (

un
ad

ju
st

ed
)

A
C

E
i

94
7,

00
4

1,
71

3 
(0

.2
)

1.
77

1.
57

, 2
.0

0

M
ul

tiv
ar

ia
bl

e 
A

dj
us

te
d

1.
87

1.
65

, 2
.1

1

A
R

B
s

28
8,

40
1

30
9 

(0
.1

)
--

--

PS
-m

at
ch

ed
A

C
E

i
28

8,
40

1
60

1 
(0

.1
)

1.
91

1.
67

, 2
.1

9

A
R

B
s

95
0,

21
8

93
8 

(0
.1

)
--

--

SM
R

W
A

C
E

i
94

7,
00

4
1,

71
3 

(0
.2

)
1.

86
1.

62
, 2

.1
4

A
R

B
s

28
9,

91
9

29
2 

(0
.1

)
--

--

IP
T

W
A

C
E

i
94

6,
94

6
1,

75
1 

(0
.2

)
1.

87
1.

64
, 2

.1
3

A
R

B
s

28
9,

16
7

31
0 

(0
.1

)
--

--

Su
m

m
ar

y 
St

ra
tif

ie
d

A
C

E
i

94
7,

00
4

1,
71

3 
(0

.2
)

1.
87

1.
66

, 2
.1

2

Circ Cardiovasc Qual Outcomes. Author manuscript; available in PMC 2014 May 23.


