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Abstract

Background—C-reactive protein (CRP) is a biomarker of inflammation. Genome-wide

association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated

with CRP concentrations and inflammation-related traits such as cardiovascular disease, type 2

diabetes, and obesity. We aimed to replicate previous CRP-SNP associations, assess whether these

associations generalize to additional race/ethnicity groups, and evaluate inflammation-related

SNPs for a potentially pleiotropic association with CRP.

Methods and Results—We selected and analyzed 16 CRP-associated and 250 inflammation-

related GWAS SNPs among 40,473 African American, American Indian, Asian/Pacific Islander,

European American, and Hispanic participants from 7 studies collaborating in the Population

Architecture using Genomics and Epidemiology (PAGE) study. Fixed-effect meta-analyses

combined study-specific race/ethnicity-stratified linear regression estimates to evaluate the

association between each SNP and high-sensitivity CRP. Overall, 18 SNPs in 8 loci were

significantly associated with CRP (Bonferroni-corrected p<3.1×10−3 for replication, p<2.0×10−4

for pleiotropy): Seven of these were specific to European Americans, while 9 additionally

generalized to African Americans (1), Hispanics (5), or both (3); 1 SNP was seen only in African

Americans and Hispanics. Two SNPs in the CELSR2/PSRC1/SORT1 locus showed a potentially

novel association with CRP: rs599839 (p=2.0×10−6) and rs646776 (p=3.1×10−5).

Conclusions—We replicated 16 SNP-CRP associations, 10 of which generalized to African

Americans and/or Hispanics. We also identified potentially novel pleiotropic associations with

CRP for two SNPs previously associated with coronary artery disease and LDL cholesterol. These

findings demonstrate the benefit of evaluating genotype-phenotype associations in multiple race/

ethnicity groups, and of looking for pleiotropic relationships among SNPs previously associated

with related phenotypes.

Keywords

genetic epidemiology; inflammation; C-reactive protein; race and ethnicity; single nucleotide
polymorphism; pleiotropy

Introduction

C-reactive protein (CRP) is an acute-phase reactant protein produced by the liver.

Circulating levels rise sharply following inflammatory stimulation from infection or injury,

then fall rapidly following stimulus resolution. In situations of chronic underlying disease,
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however, CRP remains slightly raised over time, serving as a biomarker to characterize

systemic inflammation1, 2. Elevated CRP levels have been associated with a large number of

outcomes and traits, such as cardiovascular events1, 2, atherosclerosis3, stroke4, type 2

diabetes (T2D)5, fitness level and body composition6, and cancer7, 8. As such, serum CRP is

an important biomarker for the presence or development of disease among apparently

healthy individuals1, 2.

Heritability estimates for CRP are between 25 and 56%9–11. Genome-wide association

studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in 21 loci

associated with CRP concentrations12–14. Environmental factors associated with increased

CRP levels include female sex9, 15, hormone replacement therapy (HRT) use16, smoking2,

and obesity1, 2, while factors associated with decreased CRP levels include exercise17 and

the use of aspirin, NSAIDs, and statins1.

CRP levels have previously been shown to vary according to race/ethnicity, and tend to be

higher in populations with high rates of diabetes and obesity. Compared to those of

European ancestry, those of African15, 18 and American Indian19 ancestry tend to have

elevated CRP levels and those of Asian ancestry tend to have lower CRP levels20, 21. Many

initial genetic studies of CRP were performed primarily on populations of European descent,

and studies examining CRP-associated variants in other race/ethnicity populations have had

moderate success in generalizing some, but not all, of these loci18, 22–24. Generalization and

fine-mapping of loci in non-European ancestry populations is thus an important step in

further elucidating genetic contributions to CRP concentrations in multiple race/ethnicity

groups.

Many of the genetic variants associated with serum CRP levels demonstrate pleiotropic

effects, and have also been associated with various other outcomes related to inflammation.

SNP rs1205 in the gene encoding CRP (CRP), for example, has been associated not only

with CRP12, 22, but also with heart rate variability25 and colon cancer7. Given the multiple

phenotypes associated with CRP, we hypothesize that genetic variants associated with

inflammation-related phenotypes, such as cardiovascular disease, T2D, or obesity, might

also be associated with CRP. Identifying additional pleiotropic associations could aid in

elucidating shared biological pathways and relationships.

We seek to replicate previously reported associations between SNPs and serum CRP, as well

as generalize these associations to four additional race/ethnicity groups: African Americans,

Hispanics, Asian/Pacific Islanders, and American Indians. We also evaluate several SNPs

previously associated with inflammation-related phenotypes for an association with CRP,

both overall and stratified by race/ethnicity groups. The size and diversity of our study

population provides an opportunity to replicate previous findings, generalize existing

associations to additional race/ethnicity groups, and discover novel pleiotropic associations

with this inflammatory biomarker.
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Methods

Study description

Data for this analysis were generated as part of the Population Architecture using Genomics

and Epidemiology study (PAGE), previously described in detail26. Briefly, PAGE is a

consortium of large, well-characterized population-based studies, investigating the

epidemiologic architecture of genetic variants associated with complex diseases across

various race/ethnicity groups.

Study populations

We included 40,473 participants: 7,228 from Epidemiologic Architecture for Genes Linked

to Environment (EAGLE), based on data from three National Health and Nutrition

Examination Surveys (NHANES); 1,593 from the Multiethnic Cohort Study (MEC); 9,901

from the Women’s Health Initiative (WHI); and 21,751 from Causal Variants Across the

Life Course (CALiCo), itself a consortium of five cohort studies. Participants from CALiCo

included: 11,303 from Atherosclerosis Risk in Communities (ARIC); 3,249 from Coronary

Artery Risk Development in Young Adults (CARDIA); 4,070 from the Cardiovascular

Health Study (CHS); and 3,129 from the Strong Heart Study (SHS).

Studies included one or more of five race/ethnicity groups, totaling 24,958 European

American, 8,471 African American, 2,935 Hispanic, 980 Asian/Pacific Islander, and 3,129

American Indian participants. Several of these studies have previously been utilized to

evaluate genetic associations with CRP, including participants in ARIC13, CHS13, 27, 28, and

CARDIA29. Within EAGLE, we included NHANES 1999–2002 data and excluded

NHANES III data (due to non-high-sensitivity CRP measurements). Each study was

approved by a local institutional review board, and all participants gave informed consent.

Measurements

Baseline high-sensitivity C-reactive protein (hsCRP) measurements were available in each

study as part of previous investigations, with assay method and instrument used to measure

CRP varying by study (Supplemental Table 1). Because the distribution of CRP is skewed,

the values were natural-log transformed for analyses. Demographic and other epidemiologic

information was obtained according to the enrollment protocols of each study (Table 1,

Supplemental Table 2).

SNP Selection and Genotyping

In 2008, PAGE investigators identified 266 SNPs previously associated with various

phenotypes of interest, focusing on variants related to cardiovascular disease traits, lipids,

body mass index (BMI), and T2D. These included: 16 SNPs associated with CRP/

inflammation, 21 with cardiovascular disease or myocardial infarction, 26 with BMI/obesity,

51 with T2D or glucose levels, 82 with HDL/LDL/total cholesterol, 29 with triglycerides, 9

with stroke, and 33 with other related phenotypes (Supplemental Table 3; previous trait

association refers to the first reported association at the time of SNP selection). Genotyping

methods for PAGE have been previously described26. For each SNP, quality control
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thresholds included SNP and sample call rates >90%, concordance of blinded replicates

>98%, and no clear evidence of Hardy-Weinberg disequilibrium (p>0.001).

Due to funding constraints, each PAGE study chose a custom subset of SNPs to genotype

depending on the phenotypes they had available. As such, the number of SNPs available

varied in each study, with 30 SNPs genotyped in ARIC, 7 in CARDIA, 113 in CHS, 196 in

EAGLE, 103 in MEC, 19 in SHS, and 94 in WHI (Table 2, Supplemental Table 3). While

this meant that not all SNPs were genotyped in every study, an effort was made to ensure

overlap (56% of SNPs were genotyped in more than one study). Since race/ethnicity group

availability differed by study, this also meant that not all SNPs were available for analyses

in each race/ethnicity group. Nearly all SNPs were available for the European American

(n=265), African American (n=266), and Hispanic groups (n=261), while fewer SNPs were

available for the Asian/Pacific Islander (n=150) and American Indian groups (n=19). These

overlap issues reduced the overall sample size available for any given SNP- and race/

ethnicity-specific association, though numbers were still large for most analyses (Table 2,

Supplemental Table 4). To avoid small sample size issues in the analysis, for each SNP only

study-specific race/ethnicity-specific results with at least 100 genotyped subjects were

included in meta-analyses. This restriction meant the exclusion of the WHI American Indian

results (≤86 participants for each SNP), which reduced the overall number of SNPs available

for analysis in the American Indian group from 96 to 19.

Statistical analysis

Each study fit linear regression models to test the association between natural log-

transformed CRP and each SNP, coded additively (0/1/2 copies of the coded allele).

Separate models were fit for five race/ethnicity groups: European American, African

American, Hispanic, Asian/Pacific Islander, and American Indian. MEC performed analyses

separately for Hawaiian and Japanese ancestry participants. Race/ethnicity-specific models

were adjusted for age, sex, center, and/or principal components, as appropriate for each

study. Sampling weights were used in the WHI regression analyses to account for sample

selection criteria. Additional models were stratified by sex.

Inverse-variance-weighted fixed effect meta-analyses were used to estimate both overall and

race/ethnicity stratified associations for each SNP. Because studies differed in SNPs

genotyped and participant race/ethnicity, the overall number of observations available for

each SNP-specific meta-analysis varied. Overall combined-race/ethnicity meta-analysis

numbers were large for most SNPs (mean number of observations 12,361, range 802–

36,299). In the race/ethnicity-stratified meta-analyses, the average number of observations

across available SNPs was 7,722 for European Americans, 2,367 for African Americans,

1,766 for Hispanics, 617 for Asian/Pacific Islanders, and 3,129 for American Indians (Table

2, Supplemental Table 4). Additional meta-analyses were stratified by sex. For each SNP,

heterogeneity between studies and within race/ethnicity groups was tested using Q and I2

statistics. Meta-regression was used to evaluate the heterogeneity between race/ethnicity

groups and sexes. Meta-analyses were performed using Stata version 1230. We used a

conservative Bonferroni-corrected p-value to adjust for multiple comparisons, accounting

for the maximum number of tested SNPs to determine the statistical significance threshold
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(0.05/16=3.1×10−3 for replication and 0.05/250=2.0×10−4 for pleiotropy discovery). Since

not all SNPs were available in each race/ethnicity group, this correction may have been

overly stringent for some groups.

Results

European American and African American were the largest race/ethnicity groups in our

analysis (Table 1, Supplemental Table 2). Median CRP concentration varied by study and

race/ethnicity: the lowest levels were observed in MEC and Asian/Pacific Islanders, and the

highest levels were observed in WHI and American Indians. American Indian participants

were on average younger than participants in other groups. Overall there were more women

than men (65.8%) due to the focus on women in WHI. Mean BMI values varied by race/

ethnicity, with the highest values in the African American and American Indian groups and

the lowest values in the Asian/Pacific Islander group. Extensive efforts were made to

harmonize variables across PAGE studies, though some study heterogeneity may remain.

In the race/ethnicity-combined analyses, we identified 18 SNPs in 8 loci associated with

CRP: 10 of 16 CRP-associated SNPs replicated and 8 of 250 inflammation-related SNPs

demonstrated a pleiotropic association with CRP (Table 3). These included: 5 SNPs in the

CRP locus; 4 in APOE/APOC1/TOMM40; 2 each in GCKR, HNF4A, and CELSR2/PSRC1/

SORT1; and 1 each in HNF1A, IL6R, and LEPR. Several of these SNPs were correlated with

each other, with the amount of correlation varying by race/ethnicity (Supplemental Table 5).

Of the 18 SNPs (in 8 loci) reaching statistical significance, 15 SNPs (in 7 loci) had

previously been associated with CRP, while rs599839 (near PSRC1) and rs646776 (near

CELSR2) have not. The SNP rs6857 (in PVRL2) has not itself been previously associated

with CRP, though it is in close proximity to the known APOE/APOC1/TOMM40 locus.

Since many of these SNPs have previously been associated with other phenotypic traits, the

observed associations with CRP suggest that many of these SNPs may have potentially

pleiotropic effects.

In race/ethnicity-stratified analyses, 16 SNPs reached statistical significance in European

Americans, along with 5 SNPs in African Americans and 9 SNPs in Hispanics. No SNPs

reached statistical significance among the Asian/Pacific Islander or American Indian groups,

though not all SNPs were evaluated and power was reduced in these smaller groups.

Notably, for the 18 SNPs that were significant in the race/ethnicity-combined analysis, only

9 were available in the Asian/Pacific Islander group and none were available in the

American Indian group. Most SNPs showed no evidence of heterogeneity, either within or

between race/ethnicity groups. For two SNPs showing some evidence of heterogeneity

between race/ethnicity groups (rs2075650 and rs4420638, Figure 1), sensitivity analyses

using random-effects meta-analyses provided similar results (Supplemental Figure 1).

For generalizability, 7 SNPs were associated only in European Americans, while 10 SNPs in

5 loci demonstrated statistically significant associations with CRP in more than one race/

ethnicity group: 3 SNPs in the APOE/APOC1/TOMM40 locus, 4 SNPs in CRP, and 1 each

in HNF1A, IL6R, and LEPR (Table 3). For the three SNPs where a statistically significant

effect was seen in European Americans, African Americans, and Hispanics, two showed
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similar effect size estimates across race/ethnicity groups: SNP rs2228145 in IL6R (β=−0.10,

−0.13, −0.18, respectively; p-heterogeneity=0.16), and SNP rs429358 in APOE (β=−0.24,

−0.23, −0.36, respectively; p-heterogeneity=0.23). Two SNPs also followed this trend in

European Americans and Hispanics: SNP rs2075650 in TOMM40 (β=−0.22 and −0.21,

respectively; p-heterogeneity=0.76), and SNP rs6857 in PVRL2 (β=−0.23 and −0.28,

respectively; p-heterogeneity=0.50). Two SNPs in CRP showed a potential exception to this

trend, where a larger effect was seen for African Americans than for European Americans

(rs1800947, β=−0.61 vs. −0.30; p-heterogeneity=0.02) or than for European Americans and

Hispanics (rs1205, β=−0.27 vs. −0.17 and −0.22, respectively; p-heterogeneity=0.02). In

general, however, race/ethnicity-specific effect estimates for a given SNP were in the same

direction and of similar magnitude across race/ethnicity groups regardless of the statistical

significance of the association. We did observe several exceptions to this trend, where the

effect estimate for one group was null or in the opposite direction compared to all other

groups, though these exceptions could be due to chance.

We also evaluated whether any of these associations differed by sex (Table 4, Supplemental

Table 6). Most of the SNPs which were statistically significant overall remained so in sex-

stratified analyses. Two SNPs in GCKR, rs1260326 and rs780094, demonstrated a

statistically significant difference in effect between males and females (p-

heterogeneity=1.5×10−8), with a stronger effect seen in females than males. Several other

SNPs were also suggestive for a potential difference in effect by sex: rs1417938 in CRP (p-

heterogeneity=0.03), rs4420638 and rs429358 in APOE/APOC1/TOMM40 (p-

heterogeneity=0.03), and rs2650000 in HNF1A (p-heterogeneity=0.01). For these SNPs, the

direction of the effect was generally similar in both sexes, while effect estimates were

slightly larger and p-values were smaller among the females than the males, as expected

given the larger sample size. For the two SNPs in GCKR, the p- values were actually slightly

smaller in the female-stratified results than in the overall combined results, despite almost

half the sample size.

Discussion

Our multi-ethnic meta-analysis observed 18 SNPs in 8 loci statistically significantly

associated with serum CRP concentrations. Ten of these SNPs in 5 loci demonstrated

statistically significant associations with CRP in multiple ancestral groups, most of which

have not been previously reported in non-European American populations. Among the 18

significant SNPs, 2 SNPs (rs599839 and rs646776, CEU r2=0.9) in 1 locus (CELSR2/

PSRC1/SORT1) had not previously been associated with CRP. Three themes emerged from

our results: 1) the general consistency of effect at a particular SNP across race/ethnicity

groups; 2) variation in association for different SNPs in the same locus can be useful for

fine-mapping regions of interest; 3) and the demonstration of pleiotropic effects for specific

SNPs.

Generalization

First, for the 10 SNPs which demonstrated a statistically significant association in multiple

race/ethnicity groups, the direction and magnitude of the effect was fairly consistent. Several

Kocarnik et al. Page 7

Circ Cardiovasc Genet. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



SNPs showed a similar statistically significant effect in European Americans, African

Americans, and Hispanics (rs2228145 in IL6R and rs429358 in APOE) or European

Americans and Hispanics (rs2075650 in TOMM40 and rs6857 in PVRL2). This trend of

similar direction and magnitude across race/ethnicity groups generally held for most SNPs,

even where the race/ethnicity-specific associations did not reach statistical significance

across all groups (such as rs7310409 in HNF1A and rs599839 in PSRC1). When combined

with previous findings, these results suggest a shared genetic influence between race/

ethnicity groups at these SNPs.

However, there were several notable exceptions where large differences were seen between

race/ethnicity groups. Two SNPs in CRP, for example, showed larger effect sizes in African

Americans than in European Americans (rs1800947, rs1205) or Hispanics (rs1205). In other

SNPs, an effect was observed in one or two groups but not the others (rs2075650 and

rs4420638 in TOMM40, p-heterogeneity<1.6×10−9). Such differences could be indicative of

population differences in linkage disequilibrium (LD), since tagging variants in European-

ancestry populations may not be representative in other groups18, 31. Taken together, this

may suggest that the functional SNP is likely to be within the LD block shared by those

race/ethnicity groups with similar effect estimates for that tagSNP, while for the “outlying”

race/ethnicity group the tagSNP may not be well correlated with the functional SNP.

Alternatively, differences in generalizability could also be due to a reduced ability to detect

an association in some race/ethnicity groups in our study due to smaller sample sizes,

differences in allele frequency, smaller effect sizes, or lower correlation with functional

variants.

Fine-mapping

A related second theme is that differences in SNP generalizability may be informative of the

genetic architecture of loci with multiple SNPs associated with CRP. Previous studies have

shown that both average CRP levels and SNP-CRP associations can vary by race/ethnicity

group18, 23. Additionally, while some polymorphisms have demonstrated an association

across race/ethnicity groups (rs120522), others appear specific to particular groups

(rs309305818, 22). In our study, some SNPs within the CRP and APOE/APOC1/TOMM40

loci generalized while others did not, providing evidence of potential differences in genetic

effect among race/ethnicity groups. Since LD structure also varies by ancestry, we can

utilize this information to identify smaller regions that are more likely to be functionally

relevant.

We identified three SNPs in the APOE/APOC1/TOMM40 locus associated with CRP that

generalized to other race/ethnicity groups. SNPs rs2075650 and rs6857 generalized only to

Hispanics, while rs429358 demonstrated an association in European Americans, African

Americans and Hispanics. Located in the third exon of the APOE gene, rs429358 is one of

two non-synonymous SNPs that define the major ε2, ε3, and ε4 haplotypes of this region32.

Our results align with previous studies finding this haplotype associated with serum CRP in

European Americans33, African Americans34, Hispanics35, 36, and Asian/Pacific Islanders24.

The magnitude and direction of the effect were fairly consistent across race/ethnicity groups,

supporting a jointly consistent association across multiple race/ethnicity groups. Previous
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studies suggest that SNPs at the APOE/APOC1/TOMM40 locus appear to represent a single

signal best represented by rs429358, with other SNPs appearing associated due to

correlation32, 37. Given the consistency of effect seen in rs429358 across race/ethnicity

groups compared to the other SNPs we evaluated in this region, our results appear to support

this view, and extend this SNP finding to African Americans and Hispanics.

We also observed race/ethnicity-specific differences in association with CRP among SNPs

in the CRP locus. Of the five SNPs demonstrated an overall association, four showed

differences in race/ethnicity-specific results. While some of these SNPs may not have

generalized to other groups due to smaller sample size, ancestry-related differences in

genetic contributions to CRP concentrations at this locus are also possible. For example, for

many SNPs in this region the allele frequencies in African Americans were different than

other race/ethnicity groups, as previous studies have also highlighted29. In such a situation,

investigating SNPs in multiple populations can be useful for evaluating which SNPs might

be associated with CRP in multiple populations (rs1205), and which may be race/ethnicity-

specific (rs4131568). Other SNPs may have a larger effect in one race/ethnicity group than

another (rs1800947). If confirmed, this type of information could potentially be important

for ensuring that genetic information is appropriately interpreted and targeted where there

are differences in effect by race/ethnicity.

Pleiotropy

The third theme is that our results show evidence for potentially pleiotropic effects. As

previously stated, most of the SNPs evaluated in this study have previously been associated

with other inflammation-related phenotypes, such as HDL and LDL cholesterol,

triglycerides, and coronary artery disease. Studies have also demonstrated associations

between some of these SNPs and phenotypes as diverse as colon and rectal cancer (rs12057),

cervical cancer survival (rs141793838), and fasting glucose concentration (rs78009439),

though only this last trait reached genome-wide significance. Our results support several of

these SNPs also being associated with serum CRP concentrations, suggesting that several of

these SNPs and loci appear to have pleiotropic effects. This knowledge could be useful for

exploring potentially shared disease etiology or mechanisms between phenotypes associated

with a given pleiotropic SNP or locus.

We identified a potentially novel pleiotropic association between two correlated SNPs (CEU

r2=0.9) in the CELSR2/PSRC1/SORT1 locus and serum CRP levels, as these SNPs have

previously been associated with several other inflammation-related phenotypes but not CRP.

SNP rs599839 has been associated with LDL cholesterol40–45, coronary artery

disease41–43, 46, myocardial infarction47, triglyceride metabolism41, and coronary heart

disease45, while SNP rs646776 has been associated with LDL cholesterol40 and progranulin

levels48. Variations at rs646776 have also been strongly associated with transcript

concentrations of the CELSR2, PSRC1, and SORT1 genes40. Several studies have also found

a significant association between variation in rs599839 and sortilin mRNA expression in the

liver40, 43, 49. Sortilin, the gene product of SORT1, acts as a multiligand receptor and

influences the uptake of LDL particles into cells, with studies suggesting that the G allele of

rs599839 offers a protective effect against coronary artery disease mediated through LDL
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cholesterol lowering43. Our finding that SNPs in this region are also associated with CRP

may provide additional insights on the inflammation pathway, and how these SNPs might

impact multiple outcomes. Our potentially novel finding in this region also demonstrates the

value of evaluating SNPs previously associated with related phenotypes for additional

pleiotropic relationships.

Strengths of this study stem from the inclusion of well-characterized study populations with

diverse race/ethnicity groups. We had large sample sizes overall, with large numbers for

European Americans, African American, and Hispanics. While we had fewer Asian/Pacific

Islander and American Indian participants, we were still able to evaluate several SNPs in

these groups. While several SNPs in our study demonstrate potential pleiotropic associations

with both CRP and inflammation-related traits, we are unable to evaluate whether these

effects are truly independent, or if the association with one trait explains the other. Further

work is needed to explore these complex relationships.

One limiting factor was that not all participants were genotyped for all SNPs, since SNP

panels and race/ethnicity representation varied between participating studies. This reduced

the overall sample size available for any given SNP- and race/ethnicity-specific association,

though numbers were still large for most analyses, particularly in the European American,

African American, and Hispanic groups. Unfortunately, for many SNPs the combination of

smaller numbers or unavailable genotype information reduced or eliminated our ability to

determine whether CRP associations generalized to the Asian/Pacific Islander or American

Indian groups. Race/ethnicity differences in coded allele frequency may have also reduced

our ability to detect an association in various groups. For some SNPs, these differences in

allele frequency may at least partly explain why an association with CRP in one group did

not generalize to another. For these reasons, a lack of generalization in our study should not

be interpreted as proof that these SNPs are not associated with CRP in other groups,

particularly for the Asian/Pacific Islander or American Indian groups where our ability to

detect an association was reduced.

Another potential limiting factor is that we are unable to assess fully whether these

potentially pleiotropic associations with CRP are due to correlation with the inflammation-

related traits they have previously been associated with. However, previous studies of SNPs

in the CRP gene have suggested that their associations with cardiovascular events are only

slightly attenuated after adjustment for plasma CRP concentration28. Additionally, a

sensitivity analysis in WHI for five of the SNPs in this study showed little effect when

adjusting for previously associated traits (coronary heart disease, LDL cholesterol, and

triglyceride levels). Together, this suggests that these pleiotropic associations may not be

due to statistical correlation between CRP and the other inflammation-related traits,

although this cannot be ruled out for all SNPs. Further exploration of the relationships

between these traits is warranted.

While our analysis benefited from an a priori selection of interesting SNPs from previous

GWAS, it is not a comprehensive analysis across all known loci given the rapid progress

made since SNP selection. However, this limitation is lessened by our inclusion of the initial

GWAS findings, which tend to have strong effect sizes, and hence tend to explain a larger
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fraction of the genetic variation than more recent GWAS findings. We applied a Bonferroni-

corrected p-value to determine the statistical significance of a given association. While we

adjusted for either 16 or 250 independent tests, a potential limitation is that we did not adjust

for testing in multiple race/ethnicity groups. However, the Bonferroni adjustment is

conservative in nature, and we tested GWAS findings for CRP or related traits. Many,

though not all, of our findings greatly surpassed our corrected p-value and reached more

stringent genome-wide significance levels (p<5×10−8).

In conclusion, our results support and extend previous observations of associations between

CRP and genetic variation in several loci. We generalized several associations between

SNPs and serum CRP levels previously identified in European Americans to African

Americans or Hispanics, and we also identified a potentially novel CRP locus, previously

associated with coronary artery disease and LDL cholesterol. Our findings demonstrate the

benefit of evaluating genotype-phenotype associations in multiple race/ethnicity groups, and

of looking for pleiotropic relationships among SNPs previously associated with related

phenotypes. Additional follow-up and fine-mapping of these loci may lead to better

characterization of the functional variants in these regions.
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Figure 1.
Forest plots for the association of SNPs rs2075650 (a) and rs4420638 (b) with C-reactive

protein, overall and by race/ethnicity group.
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