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INTRODUCTION
Biomarkers, broadly defined, are markers of a biological process or state1. Biomarkers are
often used in research studies, but they may also be useful for clinicians and patients if they
provide information about current status or future risk of disease. It is not always clear,
however, when a novel biomarker provides enough useful information to justify measuring
it in the context of clinical care.

Evaluating the clinical utility of a novel biomarker requires a phased approach2. Early-phase
studies must prove that the biomarker is associated statistically with the clinical state of
interest and adds information about presence or risk of disease above and beyond established
markers. Mid-phase studies describe how often this incremental information might alter
physician prescribing decisions. Early- and mid-phase studies are useful because they help
investigators compare biomarker performance in terms that are “generic”, in the sense that
they do not depend on the specifics of the disease state being studied. These generic
biomarker performance measures have been reviewed previously2-16 and are described in
Table 1 along with relevant published examples17-32.

Measuring biomarker performance in generic terms, however, is not sufficient for
demonstrating clinical utility6. The decision to use a biomarker in clinical practice should be
based on an expectation that it will have a positive net health impact; and measuring health
impact, by definition, requires use of measurements that consider the specific disease state
being studied and its consequences. The goal of this review is to describe the methods by
which evidence about the health impact of measuring a biomarker may be generated (late-
phase evidence2) using examples relevant to cardiovascular disease, and with a focus on the
use of randomized clinical trials and modeling for estimating health impact.

MECHANISMS AND MEASURES OF HEALTH IMPACT
Mechanisms by which biomarker measurement can impact health

There are three fundamental mechanisms by which measuring a biomarker in the context of
clinical care may improve health (Figure 1): biomarker measurements may 1) help the
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patient understand his or her disease or risk of disease and thereby directly improve quality
of life and/or mental health; 2) motivate the patient to make behavioral changes that improve
health, such as eating a healthier diet, exercising more, or improving adherence to beneficial
treatments prescribed by a clinician; or 3) help a clinician make a better clinical decision
(e.g., about use of some treatment) that leads to improved health of the patient. Of these
mechanisms, 1 and 2 are highly dependent on characteristics of the individual, and the
improved quality of life or mental health attained via mechanism 1 may be fleeting and
difficult to measure. Mechanism 3 is the most commonly cited reason for measuring a
biomarker, and the one most under clinician control. Also, note that biomarker
measurements can lead to adverse health outcomes through these same mechanisms (e.g., a
depressed mood from bad news, worsening health-related behaviors from good news, or a
worse clinical decision triggered by erroneous or misinterpreted biomarker results). Before
ordering a biomarker measurement for a patient, the clinician should have a clear
expectation that improved health, on average, will result from the biomarker measurement
through one or more of these mechanisms.

Measuring health impact of a biomarker strategy
Deriving a credible and reproducible measurement of health impact requires embedding
biomarker measurement into a clinical strategy that employs one or more of the mechanisms
above. This “biomarker strategy” can then be compared with alternate strategies in which
the biomarker is not measured. The comparison should be made in terms of impact on health
outcomes (Table 2). For example, a strategy that uses B-type natriuretic protein (BNP)
results to adjust diuretic intensity in congestive heart failure (CHF) outpatients might be
evaluated based on measurements of dyspnea and quality of life, CHF hospitalizations and/
or mortality rate34.

It is sometimes necessary to evaluate and compare scenarios that result in different types of
health outcomes, such as when making policy decisions about how to allocate resources in a
health system or when estimating the net health effects of a treatment with both beneficial
and adverse effects (e.g., coumadin prevents strokes but causes gastrointestinal bleeding).
For this purpose, health-related measurements specific to different conditions may be
converted into a common metric such as quality-adjusted life-years (QALYs). This measure
of health impact takes into account both quantity and quality of life by integrating years of
life with “utility” (general quality of life on a 0-100% scale) in each year. QALYs can be
estimated in any clinical scenario, and this allows direct comparisons of health impact across
different health conditions from a utilitarian perspective35, 36.

MEAUSURING HEALTH IMPACT OF BIOMARKER STRATEGIES WITH A
RANDOMIZED TRIAL
Rationale and fundamental design of biomarker strategy trials

A well-designed randomized controlled trial is the best study design for directly measuring
the health impact of a biomarker strategy. Observational studies, in which the decision to
measure the biomarker is not under the control of the study investigator, can also provide
useful information about health outcomes. However, participants for the whom the test is
recommended and who accept and adhere to this recommendation are often systematically
different than those who do not. As such, observational comparisons of health impact
between such participants are inherently subject to “confounding”, and isolating the putative
effects of the intervention from the effects of other factors can be very difficult. Special
study designs (e.g., within-person/population time-series37) and advanced analytic methods
(e.g., instrumental variable analysis38, propensity scores, inverse probability weighting, and
marginal structural models39) for addressing these problems are available; but in practice,
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we are usually left with some uncertainty about the degree to which results from an
observational analysis may be subject to bias. In contrast, random assignment of the
biomarker strategy in a randomized controlled trial assures comparability of groups (on
average), and the true unconfounded effect of the strategy can be estimated by a simple
between-groups comparison of health outcomes.

In order to estimate the effectiveness of measuring a biomarker, the trial must be designed
such that some participants are randomized to a strategy in which a biomarker is measured
and provided to the clinician and/or participant and others are randomized to a strategy in
which it is not (Figure 2). Clinical trial designs involving biomarkers that do not use this
approach cannot directly estimate health impact. The JUPITER trial, for example, featured
measurement of C-reactive protein (CRP) in all trial participants, with a high CRP level
(>2.0 mg/L) required for entry into the trial40; participants were then randomized to
rosuvastatin versus placebo, and clinical event rates (MI, stroke and all-cause mortality)
were lower in the rosuvastatin arm. JUPITER, therefore, provided evidence of the impact of
statin therapy in persons with high CRP, but it did not provide an estimate of the impact of
measuring CRP41.

Designing the intervention and control strategies
The intervention strategy for a trial should specify not only how and when the biomarker
will be measured, but the way in which the measurement will be used. For example,
knowing the coronary calcium score might improve the efficacy of a CHD risk factor
counseling intervention (Figure 1, mechanisms 1 and 2). One trial testing this hypothesis
found that knowledge of the coronary calcium score (vs. no such knowledge) during risk
factor counseling did not result in a difference in participant mental health or CHD risk
factor control42.

If improved clinical decision-making is the goal (Figure 1, mechanism 3), then one must
identify clinical decisions that might plausibly change with measurement of the biomarker.
Smoking cessation counseling (almost always indicated in smokers) and revascularization
(almost never indicated in asymptomatic patients) are two examples of decisions that
probably should not change based on measurement of a biomarker of CHD risk such as the
coronary calcium score. On the other hand, pharmacological primary prevention strategies
such as aspirin and statins have potential for adverse effects and costs, and guidelines
currently recommend their use only when cardiovascular risk is above some threshold43, 44.
This leaves room for improvement in decision-making with measurement of a biomarker
like coronary calcium that can improve risk prediction beyond what may be possible with
standard risk factors alone (i.e., Framingham risk score). Persons with a higher coronary
calcium score might benefit more from aspirin and/or statin use, whereas these medications
might be more likely to cause net harm than net benefit in persons with a low or zero score.

Once the key clinical decisions are identified, algorithms for using the biomarker to make
those clinical decisions should be specified as clearly as possible in both intervention and
control groups. Adherence to the specifics of the biomarker strategy will never be perfect,
and some leeway for individualizing clinical decisions is often required to allow for clinical
judgment and to enhance overall adherence with the intervention. However, clearly
specifying the clinical strategy will enhance interpretability of the study results and facilitate
effective translation into practice after the study is published. Note that an important
strength of randomized controlled trials is the ability to measure the degree to which
clinicians do or do not adhere to the specifics of a biomarker strategy, and to take into
account non-adherence when estimating health impact (assuming the results are analyzed
according to the “intention-to-treat” principle45).
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Defining the study sample and planning for subgroup analyses
Measurement of a biomarker may reclassify patients into higher or lower risk groups with
different treatment indications; but the consequences of upwards and downwards
reclassification may be quite different. This expected heterogeneity of effect has important
implications for how the study should be designed and analyzed.

Consider the example of a trial designed to estimate the health impact of measuring
coronary calcium in persons at “intermediate risk” for coronary disease (e.g., 10-year CHD
risk 6-19%30), who are more likely than persons at high or low risk to be “reclassified”
across a treatment threshold once the coronary calcium score is taken into consideration46.
Both intervention and control strategies could follow ATPIII guidelines for prescribing
cholesterol-lowering medications43, but the control strategy would use the “pre-test” CHD
risk (calculated based on the Framingham risk score without knowledge of coronary
calcium) to guide treatment decisions, while the intervention strategy might use “post-test”
10-year CHD risk (using coronary calcium to refine the Framingham risk score).

Even in this relatively focused scenario, the study sample is a mixture of persons who would
otherwise get statins (e.g., pre-test 10-year risk>10% and LDL>130 mg/dl, “Subgroup A”)
and persons who would not (e.g., pre-test 10-year risk<20% and LDL<130 mg/dl,
“Subgroup B”; other specific subgroups also possible). In Subgroup A, biomarker
measurement can only lead to a change in treatment (and potential benefit) if reclassification
is downwards and the participant no longer qualifies for statin use; in Subgroup B, only
upwards reclassification leads to a change in treatment (statin initiation). We would expect
the mechanism and size of any benefit from biomarker measurement to be very different in
Subgroup A (avoidance of statin adverse effects) than in Subgroup B (benefits of statin-
mediated CHD risk reduction). The overall result of the trial, therefore, will be a poor
estimate of the effect within either subgroup, representing as it does a mix of results from
the two subgroups weighted by subgroup prevalence within the sample.

Three potential remedies for this problem should be considered. First, the investigators
could narrow the inclusion criteria such that only one potential mechanism is represented. In
the example above, investigators might focus on persons with 2 or more risk factors, pre-test
10-year risk = 6-9%, and LDL = 130-159 mg/dl, who would not qualify for statin treatment
per ATPIII guidelines unless the coronary calcium score increased post-test CHD risk over
10%. Second, the investigators could plan for subgroup analyses, powering the study
appropriately so that effect sizes can be estimated with reasonable precision for each
important subgroup; this essentially amounts to designing and conducting a series of parallel
trials. Third, the investigators might note this limitation and proceed with a mixed sample; in
this case, care should be taken to select a sample that is representative of the target
population in terms of the prevalence of Subgroup A vs. Subgroup B, etc. In this case, the
overall study result will represent a mix of different mechanisms in different subgroups, but
at least it will be the right mix to get an average effect estimate for the population; this
average effect may be useful for policymakers considering broad average impact of a policy
even if it is not very useful for clinicians making individual patient decisions (i.e., the
individual patient is in one subgroup and not spread across multiple subgroups, so the
average effect would not apply).

Sample size considerations and the “unreclassified fraction”
Biomarker trials usually must be larger than treatment trials because the putative beneficial
effects of changing treatments for persons who are reclassified to a higher or lower risk
category is diluted by the expected null effect in persons who are not reclassified (the
“unreclassified fraction”). This point may be illustrated by extending the example detailed
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above. If we focus on Subgroup B in our coronary calcium measurement trial, we might
guess that reclassification upwards would occur in 16% of persons30, leaving an
unreclassified fraction of 84%. Assuming that the reclassified persons are the only ones who
would benefit, and that 5-year risk in reclassified persons might be reduced by 40% with a
high-potency statin (from 14.8%30 to 8.9%), the average risk in the intervention group
would be reduced from 5.5% to 4.6% (assumes weighted averages of rates measured in
MESA reclassification study30). Detecting this size of risk reduction with 80% power and 2-
sided alpha=0.05 would require randomizing ~19,000 persons, half of whom would receive
a coronary calcium scan, and following participants for an average of 5 years. In contrast, a
5-year trial of high potency statin therapy where everyone is treated would require a total
sample size of only ~3000 to detect a risk reduction of 40% overall (5.5% to 3.3%).

Other challenges and limitations of randomized trials for evaluating utility of a biomarker
Because of the inherent expense and time required to conduct an adequately powered
randomized trial of a biomarker measurement strategy, it is not feasible to conduct
systematic trials of all reasonable test-and-treat strategies in all possible subgroups. Instead,
the investigator must choose what seems like the “best” strategy in an important study
population, and compare it to a “standard” strategy. What may be considered reasonable
choices for things like biomarker measurement technology, treatment choice, reclassification
thresholds, etc for both “best” and “standard” strategies at the time the study was designed
may evolve and no longer seem reasonable several years later. The definition of
“intermediate risk” of CHD, for example, seems to have evolved from 10-19%43 to 6-19%30

(10-year risk) in recent years, based on better data about the relative safety of risk-reducing
treatments and reductions in the price of statins. As statin therapy becomes even less
expensive, risk thresholds for treatment may decline even more substantially47; if this is the
case, withholding statins in a particular subgroup might seem reasonable at the time the trial
was designed, but no longer reasonable upon conclusion of the trial 5-10 years later. Thus,
even if biomarker performance (Table 1) is stable over time, the clinical utility of measuring
that biomarker may change dramatically.

Clinical trials cannot usually assess long-term effects (> 5-10 years) of a test or subsequent
treatment because long-term trials are usually not feasible. Trial participants may lose
motivation, long-term funding is difficult to secure, and trial results delayed very far into the
future are at even higher risk of becoming irrelevant. This limitation makes estimation of the
true long-term average health benefits of a biomarker measurement strategy difficult to
capture. For example, a potential carcinogenic effect of radiation from a coronary artery
calcium scan48 would not be reflected in a short-term randomized trial.

Masking treatment assignment in a biomarker utility trial is not usually possible because the
mechanisms of biomarker benefit depend on the patient and/or clinician knowing the result
of the biomarker test. In an unmasked trial, “co-interventions” applied differentially by
study group are more likely to occur. If such co-interventions also have an effect on the
outcome, these effects mix into and bias the overall estimate of the effects of the biomarker
measurement. Outcome ascertainment may also be subject to bias; for example, a physician
may refer a patient with chest pain more quickly for evaluation if they have not been
screened for coronary calcium. Using an independent endpoint committee masked to
treatment assignment to adjudicate study outcomes (e.g., by reviewing medical records)
helps reduce outcome ascertainment bias, but may not completely eliminate this problem.

Because of these inherent challenges to conducting biomarker trials, not many have been
published. Some prominent examples have tested use of BNP for CHF diagnosis49 or
management34, 50, ultrasound screening for aortic aneurysm51, and pulmonary artery
catheters for guiding hemodynamic management in intensive care patients52, 53.
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MODELING HEALTH IMPACT AND EFFICIENCY OF BIOMARKER
STRATEGIES
Overview and general framework for modeling biomarker utility

Decision analysis modeling is used to simulate the downstream consequences of a clinical
decision54 and can be used to estimate the health impact of biomarker strategies. Decision
analysis is often used to simulate both health outcomes and economic outcomes. When the
primary outcome of a decision analytic model is health impact, we might call this
“comparative effectiveness modeling”; when the primary outcome is cost-effectiveness, this
type of modeling is called cost-effectiveness modeling (or “cost-utility modeling” if the
outcome is specifically formulated as cost/QALY), and can be used to describe the
efficiency of biomarker strategies.

Decision analysis modeling is much less expensive and time consuming than conducting a
clinical trial. Unlike randomized trials where one “best” strategy must be chosen a priori for
testing, modeling studies can be used to compare systematically the effectiveness and
efficiency of all reasonable strategies in all relevant subgroups. Modeling also allows the
investigator to synthesize all available data on test characteristics, treatment efficacy and
other relevant parameters including data on costs and long-term effects from testing and
treatment, and identify crucial areas of uncertainty in existing data where more primary data
collection is required.

Decision analysis modeling is designed to capture and weigh the tradeoffs inherent in any
decision. The modeling approach described below and in Figure 3 provides a general
framework for capturing the essential tradeoffs inherent in the decision of whether or not to
measure a biomarker. We will focus here on use of biomarkers for making better clinical
decisions (Figure 1, mechanism 3). In Online Supplemental Materials, we illustrate how a
published decision analysis that evaluates cost-effectiveness of C-reactive protein as a
screening tool for guiding statin therapy would fit into this framework (see Supplemental
Figure 1, showing how Figure 3 can be adapted for this specific analysis), and provide a
brief critique touching on the methodologic points discussed below.

Defining scenarios
Each scenario in a decision analysis should be defined narrowly, such that a single treatment
strategy would be clinically reasonable in the absence of the biomarker result. Making the
scenario narrow allows the resulting estimate to represent a relatively homogeneous effect
that is easy to translate into practice. Because the marginal cost of modeling additional
scenarios is relatively low (a key benefit of modeling compared with clinical studies),
multiple scenarios can be considered; results can then be presented separately for each
scenario, or integrated carefully across some population of interest if an average effect is
desired for policymaking. For example, The CHD Policy Model, an established decision
analytic model, automatically runs in parallel thousands of scenarios that, when combined,
produce estimates that are representative of the US population age 35-8555.

Simulating the full range of possible strategies
Just as a receiver-operator characteristic (ROC) curve is always bounded by two extremes
(sensitivity 100%/specificity 0% and sensitivity 0%/specificity 100%), it is useful to model
the two logically extreme strategies when modeling biomarker utility: “Treat none” and
“Treat all”. While one of these strategies may seem unrealistic in any given scenario, both
strategies are clinically feasible to pursue without incurring the cost/harm of the biomarker
test, “Test-and-Treat” strategies must compete against both extremes, and sometimes either
extreme may be rationally preferred depending on society's willingness to pay. Furthermore,
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comparing these extremes to each other provides an estimate of treatment effectiveness and
efficiency within the biomarker model, and a means of validating the model against prior
analyses.

Dividing into “sub-scenarios” with differing levels of the biomarker
We assume that any given scenario (even if narrowly defined) consists of a mix of persons
with differing levels of the biomarker of interest (“sub-scenarios”). Although only the Test-
and-Treat strategies (S2 and S3 in Figure 3) will use the biomarker measurement, the sub-
scenarios based on the biomarker distribution (along with potentially differing post-test risk
estimates and treatment effects) should be modeled identically in all strategies. This ensures
that all intervention simulations for that scenario (i.e, S1-S4) are equivalent in all aspects
except for key tradeoffs related to testing and treatment (Figure 3). In different scenarios,
however, biomarker distribution can be very different (e.g., coronary calcium is more
common in older men than in younger women), and should be modeled as such in order to
simulate realistic reclassification rates.

Figure 3 illustrates a 3-category approach to modeling the distribution of the biomarker
based on critical test thresholds (T1 and T2). How many categories and what specific
thresholds are modeled depends on the particulars of the test and clinical setting. For
example, the investigator might use natural thresholds when the test result is naturally
categorized (e.g., “low, high, or intermediate probability” scans for ventilation/perfusion
scanning for pulmonary embolism17), thresholds used in prior studies (e.g., coronary
calcium thresholds of 0, 100, and 300, as used in a key article22), or biomarker levels that
would lead to a “post-test” risk, in the given scenario, that is over some established
treatment threshold (e.g., post-test 10-year CHD risk > 20% for statin treatment43).

Modeling the post-test risk of events and effects of treatment
The only way a biomarker may be useful for clinical decision-making is if the expected
benefits of some treatment are different for different levels of the biomarker, and this must
be modeled explicitly for different sub-scenarios. The expected benefit of treatment will be
larger for persons with biomarker results indicating a higher risk of disease (assuming
relative risk reduction from the treatment is constant), and in persons where a biomarker
result indicates higher treatment effectiveness (i.e, larger relative risk reduction). Modeling
the expected benefits of treatment, therefore, requires 1) estimating post-test disease risk,
and 2) applying treatment effectiveness (relative risk reduction) for each sub-scenario.

Modification of post-test risk comprises a key mechanism by which biomarker measurement
may provide clinical utility; but calculation of post-test risk in different sub-scenarios is not
straightforward. For example, note that a coronary calcium score of 50 may lead to a
downward revision of risk in one patient (if it was lower than expected, as in the case of a 70
year-old man) and an upward revision of risk in another (if it was higher than expected, as in
the case of a 55 year-old woman)56. Methods are available for estimating post-test risk while
maintaining the average event rate by integrating evidence about biomarker distribution
(“expectation”) with the relative risk estimates associated with different levels of a
biomarker56. Alternately, direct estimates of risk from follow-up studies may be available
for persons who are reclassified upwards or downwards by measurement of a
biomarker29, 30. Either way, post-test risk estimates should be handled carefully and
realistically, and should be based on data-driven biomarker performance estimates from
studies that use “real-world” biomarker measurements that take into account measurement
variability (from biological variability and measurement error).
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Treatment effectiveness, in terms of relative risk reduction, is usually assumed to be
constant across different persons, but this may not always be the case. The relative risk
reduction for statin therapy, for example, may be larger for persons with a high C-reactive
protein level than persons with a lower level32. Similarly, the risk of adverse effects from
statins may vary depending on genetic factors23. Sub-scenario-specific treatment
effectiveness is then applied to sub-scenario-specific disease risk to simulate outcome rates
for each sub-scenario (Figure 3).

Modeling outcomes and estimating incremental differences between strategies
Clinical and economic outcomes are then modeled using these sub-scenario-specific risk
estimates using standard decision analysis techniques. Simple event probabilities can be
used to ramify all possible combinations of relevant events, each represented by a “terminal
node”. For example, a single terminal node might represent the unlucky occurrence of both
the outcome of interest and an adverse effect from treatment: “statin-induced myopathy +
non-fatal MI”. For each terminal node, the overall probability of occurring is calculated,
along with an overall estimate of “utility” (in QALYs or another measure of health impact,
see Table 2) and costs (if relevant). For long-term scenarios, a standard approach is to use a
Markov modeling process, which simulates cycles during which persons may transition
between different clinical states (e.g., healthy, status/post myocardial infarction, dead, etc),
with QALYs or other outcomes accruing during each cycle at different rates for patients in
different states57. Either way, outcomes (utility +/- costs) are then summed across all
possible terminal nodes or Markov cycles/states for each strategy, weighting by their
probability of occurrence, to obtain an estimate of the average expected outcomes associated
with any given strategy (Figure 3). For presentation purposes, different strategies are then
compared by calculating the difference in average clinical utility between strategies
(incremental effectiveness). For cost-effectiveness analysis, the incremental cost is also
estimated, and the ratio of incremental cost to incremental effectiveness (incremental cost-
effectiveness ratio, usually in $/QALY) is presented. Excellent, practical advice on
designing and implementing decision analysis is available and directly applicable to
biomarker modeling35, 54, 57-60.

Limitations of modeling and use of sensitivity analyses
The major limitation of modeling is that data are not always available to support the many
assumption parameters required in the construction of the model. Typically, the modeler can
find direct evidence to support estimates for some model parameters, indirect evidence for
others, and must simply guess (using clinical judgment, etc) for the rest. Even when
parameter estimates are based on good scientific evidence, they are associated with some
uncertainty (from sampling error +/- bias).

Any modeling exercise, therefore, must be accompanied by a series of well-designed
sensitivity analyses to see how this uncertainty could affect the results. In the “base case”,
the modeler uses best guess estimates for all assumption parameters and produces a set of
base case results; in sensitivity analyses, one or more of the assumption parameters are
varied in order to evaluate how “sensitive” results are to variation in the parameter(s). By
this method, the modeler can describe which parameter assumptions are important in
estimating the effectiveness or cost-effectiveness of a strategy. For example, in a cost-
effectiveness analysis of statin prescribing strategies, results were relatively insensitive to
reasonable variation in the rate of myopathy and hepatitis, but were sensitive to an average
decrement in quality of life from taking a pill every day47. When results are critically
sensitive to a parameter estimate that is not supported by firm evidence, a good case can be
made for further empirical study. Probabilistic sensitivity analysis, where the model is
iterated many times varying all parameters simultaneously (drawing from a theoretical
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distributions for each variable), can be used to estimate global uncertainty for any model
result61.

The impact of model structure is more difficult to evaluate. While numerical assumption
parameters are easy to vary, the structure of a model is usually fixed, and implications of the
modeler's decisions about how to simulate occurrence of clinical outcomes, for example,
may be hard to assess. With any model, a balance must be struck between realism and
simplicity; a model that is too simple may not capture the relevant effects, but a “black box”
model that is too complex may be difficult to understand and troubleshoot, and may even
obscure the essential tradeoff. Finding the right balance in structuring the model that
captures the essential tradeoffs accurately and then designing an appropriate set of
sensitivity analyses that bring to light the important assumptions are the key to deriving
useful information from decision analysis modeling.

The use of a common, interpretable health impact metric (QALYs) is a strength of
modeling, but it does assume a utilitarian philosophy. This has important implications. Net
QALY impact may be positive if it results in a tiny benefit in many persons even if it results
is substantial harm in a small number of persons. If a disadvantaged population is
disproportionately represented in the harmed minority, for example, disparities in health
may widen even while average population health improves. Similarly, QALY modeling
implies that saving the life of a younger person (who will subsequently accrue more
QALYs) is more valuable than saving the life of an older person. Furthermore, there is no
consensus about the value of a QALY (and therefore no consensus about the threshold $/
QALY below which an intervention is deemed “cost-effective), though presenting the $/
QALY metric does allow the reader to decide for themselves. These and other limitations
must be considered any time that QALYs are used as a measure of health impact36.

SUMMARY
Research that identifies cardiovascular biomarkers and measures their performance is
plentiful, but evidence of biomarker utility in terms of health impact is harder to find.
Evaluating biomarker utility requires accounting for biomarker performance, but also
estimating the downstream health consequences of having the biomarker information. For
example, it is not enough to know what proportion of persons are reclassified by a
biomarker into a different risk category; one must also know whether reclassification leads
to health benefits that outweigh the downsides of biomarker measurement.

In this review, we discuss different options for generating evidence of biomarker
effectiveness in terms of health impact. The randomized controlled trial, when designed
appropriately, is the best means of directly measuring the health impact of a biomarker
strategy. Randomized trials, however, are expensive and time-consuming, do not capture
long-term effects, cannot be completely masked, and require that treatment implications of
biomarker results are well-defined. Decision analysis modeling can also provide clinically
actionable information about the health impact of using a biomarker. In contrast to
randomized clinical trials, they are much easier and cheaper to conduct, can be used for
systematic analysis of all reasonable strategies in all relevant subgroups, and can incorporate
data on long-term effects. The quality of information from a decision analysis, however,
depends on how well a simplified model captures the essential tradeoffs, and how much data
are available to inform key assumptions.

As the age of personalized medicine is ushered in by an ever-increasing capacity to measure
biomarkers relevant to cardiovascular disease, we need a strategy for translating biomarker
discovery into better health for patients. We believe that randomized controlled trials should
be conducted where there is significant uncertainty about short-term net health impact, and
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that decision analysis modeling should play an increasing role in biomarker evaluation6, 62,
both in generating actionable information for clinicians and policymakers and for identifying
key areas of uncertainty where more evidence is required from randomized trials and other
clinical studies.
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Figure 1.
Three mechanisms by which biomarker measurement may improve health outcomes
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Figure 2.
Fundamental design for a randomized trial to evaluate biomarker utility
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Figure 3. Decision analytic framework for modeling clinical utility of a biomarker
The square node represents the “decision node”; in this example, four different strategies are
evaluated (S1-S4). Round nodes are “probability nodes”. In this framework, the round nodes
indicate a split of the patient group into subgroups defined by the underlying distribution of
the biomarker in the patient group. Note that the probabilities of having a high, medium or
low biomarker result are the same for each strategy within this scenario, but may be
different in different scenarios.
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Table 1

Generic Measures of Biomarker Performance

Type of Use Measure Examples (biomarker, outcome)

Diagnostic testing Test characteristics (sensitivity and
specificity3, positive and negative
predictive value4)

PIOPED 199017 (V/Q Scan, pulmonary embolism diagnosis)

Rubinshtein 2007 (MDCT angiogram, acute coronary syndrome diagnosis)

Discrimination (ROC curve, C-statistic)15 Maisel 200218 (BNP, CHF diagnosis)
Brennan 200319 (myeloperoxidase, MI diagnosis)

Likelihood ratio7 Steinhart 200920 (BNP, CHF diagnosis)

Suzuki 200921 (D-Dimer, aortic dissection diagnosis)

Risk prediction Association (relative risk, odds ratio14) Detrano 200822 (coronary calcium, incident CHD)

Link 200823 (SLCO1B1, incident statin-induced myopathy)

Newton-Cheh 200924 (rs10757274 at 9p21, incident sudden death)

Discrimination (ROC curve, C-
statistic)5, 15

Wang 200625 (multiple, incident CHD)

Sabatine 200826 (ST2 AND BNP, incident CVD death/heart failure after
acute MI)

Calibration (Hosmer-Lemeshow chi-
squared and others)8

D'Agostino 200127 (Framingham score, incident CHD)

Blankenberg 201028 (BNP, CRP and Troponin I, incident CVD)

Reclassification (net reclassification
improvement and others)9, 10, 12

Cook 200629 (CRP, incident CHD)

Polonsky 201030 (coronary calcium, incident CHD)

Effect modification Interaction (size and statistical strength)16 Norat 200831 (AGT M235T, blood pressure in high vs. low salt consumers)

Ridker 200132 (CRP, incident CHD in statin vs. non-statin users)*

V/Q Scan – Ventilation/perfusion scan for diagnosis of pulmonary embolism; ROC Curve – Receiver-operator characteristic curve; BNP – B-type
natriuretic peptide, or N-Terminal pro-B-type natriuretic peptide; CRP – C-reactive protein; CHD – Coronary heart disease; CVD – Cardiovascular
disease; CHF – congestive heart failure; MDCT – Multidetector computed tomography scan

*
Note test of interaction presented within the Results text (p=0.06)
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Table 2

Measures of Health Impact

Measure Examples

Incidence or severity of a disease Lower incidence of myocardial infarction

Lower disability score among stroke victims

Fewer hospitalizations for congestive heart failure

Quality of life SF-36 score

Lower anxiety or depression score

Disease-specific quality of life instruments

Utility (on a scale of 0-100%)

Risk of death All-cause or cause-specific mortality

Life-years Average years of life expected

Quality-adjusted life-years Model-based integration of life-years with utility

SF-36 – Short form 3633
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