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Abstract
Esophageal squamous cell carcinoma continues to 
heavily burden clinicians worldwide. Researchers have 
discovered the genomic landscape of esophageal 
squamous cell carcinoma, which holds promise for an 
era of personalized oncology care. One of the most 
pressing problems facing this issue is to improve the 
understanding of the newly available genomic data, 
and identify the driver-gene mutations, pathways, and 
networks. The emergence of a legion of novel targeted 
agents has generated much hope and hype regarding 
more potent treatment regimens, but the accuracy of 
drug selection is still arguable. Other problems, such 
as cancer heterogeneity, drug resistance, exceptional 
responders, and side effects, have to be surmounted. 
Evolving topics in personalized oncology, such as 
interpretation of genomics data, issues in targeted 
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therapy, research approaches for targeted therapy, and 
future perspectives, will be discussed in this editorial.
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Core tip: Esophageal squamous cell carcinoma re
presents a heavy burden on clinicians worldwide. 
Recently, researchers have discovered the genomic 
landscape of this cancer, which holds promise for an 
era of personalized oncology care. Evolving topics 
in personalized oncology, such as interpretation of 
genomics data, critical issues in targeted therapy, 
research approaches, and future perspectives, are 
discussed in this editorial.
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INTRODUCTION
Esophageal cancer is the eighth most common cause 
of cancer-related death worldwide[1]. Esophageal 
squamous cell carcinoma (ESCC) remains the pre
dominant histology. Surgery is still the mainstay of 
treatment throughout the world, and an up to 50% 
five-year survival rate and < 5% surgical mortality 
rate can be achieved in select Asian centers[2]. Not
withstanding, multimodal treatment may achieve 
a better outcome, as overall survival improves mo
destly[3]. Most patients with localized disease will 
develop metastatic disease, with a minimal effects 
from combination chemotherapy[4]. After disease 
progression on first-line chemotherapy, there is no 
standard second-line treatment[5]. The unsatisfactory 
outcome in ESCC is mainly due to late diagnosis, the 
aggressiveness of this cancer, and lack of effective 
treatment strategies[6].

Recently, tremendous progress has been made in 
cancer genomics and epigenomics with the advent of 
high-throughput techniques, such as next-generation 
sequencing. Three groups have reported the genetic 
landscape of human ESCC with whole genome 
sequencing and whole exome sequencing[7-9]. Genomic 
alterations include: (1) single nucleotide variants of 
many genes with a relatively significant frequency (≥ 
5%), such as p53, KMT2D, Notch1/2/3, FAT1/3, Syne1, 
EP300, Rb1, Nfe2l2, Cdkn2a, Ajuba, Crebbp, Kdm6A, 

Fbxw7, MLL2/3, Pik3ca, Pten, Arid2, Pbrm1, etc; (2) 
copy number alterations of many genes with a relatively 
significant frequency (≥ 5%), such as CCND1, FGFs, 
CDKN2A, CDKN2B, Pik3ca, Dvl3, LRP5/6, KRas/MRas, 
EGFR, Akt1, Bcl2l1, Notch1/2/3, E2F1, SFRP4, SOS1/2, 
Birc5, Yap1, Sox2, Myc, IL7R, etc; and (3) alterations 
in multiple signaling pathways, such as cell cycle 
regulation, apoptosis regulation, DNA damage control, 
histone modifications, as well as RTK-Ras-MAPK-PI3K-
Akt, Hippo, Notch, Wnt, and Nfe2l2/Keap1 pathways. 
The overall mutation pattern appears similar to that 
of head and neck squamous cell carcinoma[10,11], but 
different from that of esophageal adenocarcinoma[12,13] 
and lung squamous cell carcinoma[14]. 

In addition to these descriptive data, smoking was 
not found to be related with signature mutations[7], but 
the lack of alcohol consumption was associated with a 
cluster of gene mutations[9]. Viral integration was not 
found in the genomes of 88 subjects[9]. Trinucleotide 
signature analysis suggested DNA cytidine deami
nase (APOBEC3B)-induced deamination was mainly 
responsible for mutations[8,15]. Moreover, mutations 
of single genes or gene clusters were associated with 
patient survival, for example, EP300 mutation[7,9]. 
Certain genes, for example, XPO1, were explored as a 
therapeutic target[8].

These landmark studies provided the research 
community with an enormous amount of information 
to better understand the molecular mechanisms of 
ESCC. This editorial is aimed to gain insights from 
such studies, and propose personalized and targeted 
therapy as a research direction in the future. 

INTERPRETATION OF GENOMICS DATA
Driver genes and mutations
Currently available bioinformatics tools have been 
designed to prioritize gene mutations at the nucleotide, 
gene, pathway, and network levels. The number 
of nonsynonymous somatic mutations per ESCC 
averaged > 80. If a solid tumor ordinarily requires 
5-8 hits (not necessarily 5-8 mutations) as suggested 
by classical epidemiologic studies, most of these 
mutations should be “passengers” instead of “drivers”, 
which can offer selective growth advantage to the 
tumor cell[16]. Therefore, it is critical to identify which 
gene mutations are cancer drivers.

As driver mutations may occur at high or low 
frequencies[17], it may not be safe to prioritize driver 
mutations according to their frequencies. However, 
as a clinically relevant parameter, a high frequency 
of a mutation does support its potential significance 
in carcinogenesis. In addition to mutated drivers, 
Epi-drivers are a class of driver genes that are not 
frequently mutated but aberrantly expressed in tumors 
through epigenetic alterations in DNA methylation 
or chromatin modification. Although epigenetics in 
ESCC has been studied for many years[18,19], it is still 
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not clear how to differentiate epigenetic alterations 
that bring forth a selective growth advantage from 
those that do not[16]. According to Vogelstein et al[16]’s 
20/20 rule, only 125 mutated-driver genes of human 
cancers have been discovered to date, and the number 
is nearing saturation. Tamborero et al[20] reported 
a list of 291 high-confidence cancer-driver genes 
and 144 candidate genes from 12 different types of 
cancer. Several databases have become available. For 
example, Network of Cancer Genes (NCG 4.0) contains 
537 experimentally supported genes and 1463 
candidate genes inferred using statistical methods[21]. 
The Candidate Cancer Gene Database contains cancer-
driver genes from forward genetic screens in mice[22]. 
Considering tissue specificity of ESCC, there is a need 
to compile a cancer-driver gene list to support future 
research on ESCC therapy. However, it should be 
pointed out that cancer-driver genes may contain both 
driver mutations and passenger mutations in cancer. 
For example, APC mutations truncating the N-terminal 
amino acids are driver mutations, while those affecting 
other regions are passenger mutations. Even for 
the same driver gene (e.g., K-Ras), different driver 
mutations (e.g., mutations at codons 12, 13, and 61) 
have different impacts on carcinogenesis and clinical 
behaviors[23-25]. Because of these complexities, efforts 
need to be made in order to identify personalized 
driver genes in cancer[26].

Pathways and network
Increasing evidence suggests that dysregulation 
of cellular signaling pathways, rather than indivi
dual mutations, contributes to the pathogenesis of 
ESCC[27-29]. Driver genes usually do not work in isolation, 
but often function together to alter cellular processes[30]. 
There is a growing consensus that pathways rather than 
single genes are the primary target of mutations[31]. It 
is interesting that mutations in various components of a 
single pathway tend to be mutually exclusive[32]. Once 
driver genes or driver mutations are identified, the next 
step is to focus on driver pathways with genes grouped 
together according to the biochemical pathways that 
they play functional roles in. Pathway activity may 
be further validated by the downstream readouts, 
e.g., mRNA and protein expression, morphology, and 
function. Incorporation of immunohistochemistry data, 
or even proteomics data, may help in evaluation of the 
pathway activity[33,34].

One major challenge in analyzing genomics data 
of ESCC is the lack of information of esophagus-
specific pathways. Pathway databases, e.g., KEGG, are 
fairly incomplete and lack tissue and cell specificities. 
Applying such pathway information in analyzing ESCC 
data may generate misleading outcomes. For example, 
using ChIP-seq analyses, Sox2-regulated genes in 
ESCC cells are different from those in embryonic 
stem cells because in ESCC, Sox2 tends to interact 
with p63 as opposed to Oct4 in embryonic stem 

cells[35]. Identifying bona fide target genes and using 
expression profiles of these genes to infer pathway 
activity in ESCC will be critical in the future[36]. 

Few bioinformatics methods involve a procedure for 
taking account of pathway interactions, i.e., pathways 
that are mutated in the same sample, and that are 
mutated together across a large subset of samples[8]. 
Similar to expression-based stratification, network-
based stratification of tumor mutations can identify 
cancer subtypes to guide treatment and prognosis[37]. 
Categorizing ESCC into multiple subtypes according 
to its molecular alterations may be a practical step 
leading to final personalization of ESCC therapy. In 
fact, subtyping has been shown to be a successful 
approach in managing other cancers[38].

Drug selection
Selecting drugs according to genomics data has led to 
promising results in early studies on personalized and 
targeted therapy[39]. To date, most clinically approved 
targeted drugs are directed against kinases. Some 
of these have been utilized against ESCC (Table 1). 
Gefitinib, an epidermal growth factor receptor inhibitor, 
has been tested as a second-line treatment for eso
phageal cancer. In unselected patients it does not 
improve overall survival, but has palliative benefits in a 
subgroup of difficult-to-treat patients with a short-life 
expectancy[40]. Unfortunately, only a few cancer drivers 
have enzymatic activities that are targetable in this 
fashion, and whether a target is druggable becomes 
a research question[41]. Once a drug target is verified, 
drugs or experimental compounds may be developed. 
Several databases are available for search, including the 
Therapeutic Target Database[42] and DrugBank 4.0[43]. 

If the target is not druggable, its regulatory proteins 
or functional pathway may be targeted. For example, 
cyclin D1 amplification is commonly seen in human 
ESCC. As cyclin D1 mainly functions through CDK 
activation, CDK4 and CDK6 can be targeted instead 
of cyclin D1[44]. TP53, which encodes p53, is the most 
commonly mutated gene in human ESCC. Instead 
of targeting TP53, many strategies have been tested 
to restore the functions of p53 by delivering wildtype 
TP53, targeting the MDM2-p53 interaction, restoring 
the functions of mutant p53, targeting p53 family 
proteins, or eliminating the mutation in p53[45,46]. 

In addition to selecting drugs for targeted therapy, 
analysis of drug-metabolism genes in germ-line DNA can 
also optimize dosing and identify drug toxicity risk[47,48]. 
With the help of a database, such as Pharmacogenetics 
and Pharmacogenomics Knowledge Base, genetic 
variations can be associated with drug response[49]. 

ISSUES IN TARGETED THERAPY
Cancer heterogeneity
Various combinations of drivers and pathways result 
in intratumoral, intermetastatic, intrametastatic, or 
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Intermetastatic and intrametastatic heterogeneity 
may not be a great concern. Despite many years of 
research, we have failed to identify a group of so-called 
metastasis genes. Metastasis is probably stochastic 
depending on the environment in the metastatic 
site[52]. Therefore, if we can understand genetic and 
epigenetic alterations in the primary tumor well, all 
cancer cells left at the primary site or metastatic 
sites would be expected to behave in the same way. 
Nevertheless, the prevalence of different patterns 
of tumor heterogeneity needs to be more robustly 
assessed in large patient cohorts, and new patterns 
will probably be identified as the wealth of genomic 
data of ESCC is analyzed[53]. 

Drug resistance
If carcinogenesis is regarded as an evolutionary process 
with successive new mutations driven by natural 
selection, chemotherapy, radiotherapy, and target 
therapy may all provide a potent source of artificial 
selection to alter clonal dynamics. Consequently, the 
antitumor therapy may lead to resistance[54]. Indeed, 
targeted therapy is associated with a high rate of 
resistance at the very beginning when vemurafenib, a 
BRAFV600E inhibitor, was clinically used for melanoma. 
Combination of a BRAFV600E inhibitor (dabrafenib) and a 
MEK inhibitor (trametinib) resulted in better response, 
yet did not prevent resistance from occurring. Dis
tinct mechanisms include mutations in the target, 
reactivation of the targeted pathway, hyperactivation 
of alternative pathways, and cross-talk with the 
microenvironment[55]. Resistant cells may undergo a 
process called phenotype switching under the selection 
of targeted therapy[56]. Understanding these mecha
nisms has led to additional efforts in finding new 
therapies targeting the same target, the same pathway, 
or alternative pathways[57-59].

Three strategies are feasible measures in the 
handling of drug resistance. Before treatment, both 
bioinformatics and experimental modeling can provide 
information concerning heterogeneity[60-62]. There 
is a need to develop clinically useful measures of 
heterogeneity[63]. Secondly, during treatment, limited 
success can be achieved with a single agent. The 
combination strategy may be the best way to refrain 
from the inevitable development of resistance to 
single drug-targeted therapies[31]. Thirdly, longitudinal 
tumor sampling will be essential to decipher the 
impact of tumor heterogeneity on cancer evolution, 
and developing minimally invasive methods to profile 
heterogeneous tumor genomes will play a major part 
in following clonal dynamics in real time[61]. For ESCC, 
repeated biopsy, circulating tumor DNA analysis[64,65], 
and exfoliative cells[66,67] are all valid options for this 
purpose.

Exceptional responders
As opposed to drug resistance, exceptional responders 

interpatient heterogeneities. It may explain why the 
same treatment brings about either a favorable response 
or resistance in different patients, and why a patient that 
responds well initially can develop resistance over time. 
Intratumoral heterogeneity has been validated using 
single-cell RNA-seq of primary glioblastomas[50]. As the 
majority of cancer gene mutations appear in multiple 
regions of the same tumor, single-region sequencing 
may be adequate to identify the majority of cancer gene 
mutations[51]. It can be predicted that most cancer cells 
in the same tumor may share the major alterations. If 
this is proven true in ESCC, it will make treatment more 
predictable. 

Table 1  National clinical trials on targeted therapy of 
esophageal squamous cell carcinoma1

Target Agent NCT number (phase)

EGFR Erlotinib NCT00045526 (Ⅱ), NCT00030498 (Ⅰ), 
NCT00397384 (Ⅰ), NCT00524121 (Ⅱ), 
NCT01013831 (Ⅰ), NCT01561014 (Ⅰ), 

NCT01752205 (Ⅲ)
Gefitinib NCT00093652 (Ⅰ/Ⅱ), NCT00258297 (Ⅱ), 

NCT00258323 (Ⅱ), NCT00268346 (Ⅱ), 
NCT00290719 (Ⅰ)

Icotinib NCT01973725 (Ⅱ)
Lapatinib NCT00239200 (Ⅱ), NCT01666431 (Ⅱ)

Nimotuzumab NCT02272699 (Ⅱ/Ⅲ), NCT01232374 (Ⅱ), 
NCT01336049 (Ⅱ), NCT01402180 (Ⅱ/Ⅲ), 

NCT01486992 (Ⅱ), NCT01688700 (Ⅱ), 
NCT01993784 (Ⅰ/Ⅱ), NCT02011594 (Ⅱ), 

NCT02034968 (Ⅱ), NCT02041819 (Ⅱ)
Panitumumab NCT01077999 (Ⅱ), NCT01262183 (Ⅱ), 

NCT01627379 (Ⅲ)
PF00299804 NCT01608022 (Ⅱ)
Cetuximab NCT02123381 (Ⅱ), NCT00109850 (Ⅱ), 

NCT00165490 (Ⅱ), NCT00381706 (Ⅱ), 
NCT00397384 (Ⅰ), NCT00397904 (Ⅱ), 
NCT00425425 (Ⅰ/Ⅱ), NCT00445861 

(Ⅰ/Ⅱ), NCT00509561 (Ⅱ/Ⅲ), 
NCT00544362 (Ⅰ/Ⅱ), NCT00655876 (Ⅲ), 

NCT00757549 (0), NCT00815308 (Ⅱ), 
NCT01034189 (Ⅱ), NCT01107639 (Ⅲ)

IGF1R Cixutumumab NCT01142388 (Ⅱ)
PI3K BKM120 NCT01626209 (Ⅰ), NCT01806649 (Ⅱ)

BYL719 NCT01822613 (Ⅰ/Ⅱ)
Rigosertib NCT01807546 (Ⅱ)

HDAC Entinostat NCT00020579 (Ⅰ)
Vorinostat NCT00537121 (Ⅰ), NCT01249443 (Ⅰ)

HER3 LJM716 NCT01598077 (Ⅰ), NCT01822613 (Ⅰ/Ⅱ)
VEGFR Vandetanib NCT00732745 (Ⅰ)

Sorafenib NCT00917462 (Ⅱ)
VEGFA Bevacizumab NCT01212822 (Ⅱ)
PD-L1 MEDI4736 NCT01938612 (Ⅰ)
Bcl-2 mRNA Oblimersen NCT00003103 (Ⅰ/Ⅱ)
CDK9 Alvocidib NCT00006245 (Ⅱ)
CRM1 Selinexor NCT02213133 (Ⅱ)
FGFR AZD4547 NCT01795768 (Ⅱ)
KIF11 Litronesib NCT01059643 (Ⅱ)
TACSTD2 IMMU-132 NCT01631552 (Ⅰ/Ⅱ)

1"Esophageal squamous cell carcinoma" was searched at the website (www.
clinicaltrials.gov). Targeted therapy has been or is being tried in 62/204 
studies. Some of these agents target multiple molecules, for example, 
lapatinib (EGFR and Erbb2), rigosertib (PI3K and PLK), vandetanib 
(VEGFR, EGFR, and RET), and sorafenib (VEGFR, PDGFR and RAF). 
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are patients who have a unique response to treatments 
that are not effective for most other patients. The 
National Cancer Institute has embarked on the Ex
ceptional Responders Initiative to understand the 
molecular underpinnings of exceptional responses to 
treatment in cancer patients. In the past, exceptional 
responders led to clinical breakthroughs in treatments 
of certain types of cancer, and understanding of novel 
molecular mechanisms of carcinogenesis[68]. It is 
foreseeable that careful characterization and follow-up 
of these exceptional responders will be of great value 
in the future practice of personalized and targeted 
therapy of ESCC. 

Side effects
As compared with traditional chemotherapy, targeted 
therapy is better tolerated. However, it does produce 
toxicities based on several major mechanisms, in
cluding on-target, off-target, hypersensitivity-related, 
and metabolite-induced toxicities. Vascular endothelial 
growth factor receptor inhibitors cause hypertension, 
and epidermal growth factor receptor inhibitors cause 
toxicities in tissues where they normally play an 
important functional role in tissue maintenance (e.g., 
skin and gastrointestinal epithelia). Some of these on-
target toxicities may serve as surrogate biomarkers 
for clinical response[69-73]. Considering these potential 
side effects, clinical oncologists should be prepared 
to educate the patients and undertake respective 
preventive and therapeutic measures.

RESEARCH APPROACHES FOR 
TARGETED THERAPY
For genomics-guided research, cell line-based platforms 
have become an indispensable tool[74,75]. Clarification 
of genetic and epigenetic alterations of established 
ESCC cell lines would be great tools for preclinical drug 
development[76,77], in particular, the KYSE series of 
ESCC cell lines that have been sequenced[7-9]. Patient-
derived ESCC cells can be used for selection of potential 
individualized therapy[78,79]. These cells are particularly 
useful in identifying effective drug combinations for 
acquired resistance[57].

Several models have been put into preclinical 
research and even clinical applications. A patient-
derived xenograft model of ESCC is created when 
cancerous tissue from a patient’s primary tumor is 
implanted directly into immunodeficient mice. This 
model provides solutions to the translational challenges 
that researchers and clinicians face in cancer drug 
research and selection[80,81]. Carcinogen-induced 
models, for example, the N-nitrosomethylbenzylamine-
induced model, represent classical models for ESCC 
research. They mimic human ESCC in not only 
etiology and histopathology, but also in molecular 
alterations (e.g., TP53 mutations[82,83]). However, 
exactly how well this model can mimic human ESCC 

at the genomics level has not been well studied. 
Whole exome sequencing has already shown that 
carcinogen-induced and genetically engineered models 
lead to carcinogenesis through different routes. A 
carcinogen-induced model is particularly important 
in understanding the complex mutation spectra seen 
in human cancers[84]. It is encouraging that genomic 
alterations in 4-nitroquinoline 1-oxide-induced mouse 
tongue cancer are well preserved[83].

Genetically engineered mouse models of human 
cancers have proven essential to dissect the molecular 
mechanisms behind carcinogenesis[85] and provide robust 
preclinical platforms for investigating drug efficacy[86] 
and resistance[87-89]. As an example, transgenic 
overexpression of Sox2, an amplified oncogene in 
ESCC[90], drives the complete process of carcinogenesis 
in mice[91]. This model can readily be used for preclinical 
drug development for SOX2-overexpressing ESCC. 
Although it may be difficult to target SOX2 itself, its 
downstream genes or pathways, such as the Akt/mTOR 
pathway, can be targeted[79]. Biochemical outcomes 
may be used for assessment of the efficacy of a 
Sox2-targeting therapy even when it does not reduce 
tumor incidence or size in mice. Genome engineering 
with CRISPR-Cas9 in vivo is an extremely promising 
technique in identifying cancer-driver genes and testing 
drug targets[92]. It may ultimately be used for human 
gene therapy in the future[93]. 

As a hallmark of human cancer and a crucial deter
minant of variable response to treatment[75], genomic 
heterogeneity calls for revision of clinical trial design 
currently in use in order to implement personalized 
therapy[94]. The majority of traditional prospective 
clinical trials are disease or histopathology based. 
Genomics-driven trials, for example, mutation-, 
pathway-, and subtype-based trials, will be more widely 
used in drug development[95]. Two genomics-based 
study designs are currently being utilized to develop 
targeted therapies, and for exploratory and multi-agent 
sequential design[96]. ESCC fits both study designs very 
well because the esophagus can be biopsied before and 
after treatment. 

FUTURE PERSPECTIVES
The biggest challenge in ESCC treatment is the 
translation of genomic discoveries into personalized 
therapies based on strategies sketched from patients’ 
individual profiles[94]. The evasiveness of cancer 
cells has been a frustrating observation of clinical 
oncologists. Vogelstein et al[16] proposed that “there 
is order in cancer,” pointing to the need to tackle 
ESCC as a disease status with its own homeostatic 
mechanisms. From the perspective of ten hallmarks 
of human cancer[97], Hanahan[98] proposed three 
strategically distinct “battlespace-guided plans” for 
cancer treatment: disruption of the enemy’s many 
capabilities, defense against cancer’s armed forces, 
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and integration of the geographies of the battlefields. 
It is clear that combination therapy targeting multiple 
mechanisms would be the only option in the future. 
Using immunotherapy as an example, tremelimumab 
(anti-CTLA4) has been tested as a second-line the
rapy for esophageal cancer. Although the clinical 
response was not impressive, its biologic effect on 
T-cell activation seemed to be associated with clinical 
response[99]. Recent development of immunotherapy 
based on ERBB2IP mutation-specific CD4+ T cells[100] 
and programmed-death ligand 1 (PD-L1) suppression 
is also quite promising. For patients in which pre-
existing immunity is suppressed by PD-L1, blocking 
PD-L1 enhanced anti-cancer immunity (including one 
case of esophageal cancer)[101]. A realistic option in the 
near future can be a combination of target drugs and 
traditional chemoradiotherapy for ESCC. Target drugs 
are expected to kill cancer cells with specific genomic 
alterations, while traditional therapy acts in a much 
broader manner.

Technical issues continue to represent large hurdles 
for next-generation sequencing and bioinformatics, 
and they prevent us from gaining full insights into the 
mechanisms of carcinogenesis and metastasis of ESCC. 
Nonetheless, whole genome sequencing correlates 
with incomplete coverage of inherited disease genes, 
low reproducibility of genetic variation with the highest 
potential clinical effects, and uncertainty about clinically 
reportable sequencing findings[102]. Whole exome 
sequencing is particularly prone to errors, as only 61% 
of the mutated genes in ESCC are transcribed[8]. This 

is similar to what has been observed in pancreatic 
cancer: only 63% of the expected 251 driver-gene 
mutations were identified, suggesting a 37% false-
negative rate. Marked discrepancies in the detection 
of missense mutations in identical cell lines (57.38%) 
have been reported due to inadequate sequencing 
of GC-rich areas of the exome[103]. The protein-
coding genes account for only about 1.5% of the total 
genome. Although the vast majority of the alterations 
in noncoding regions are presumably passengers, 
some of these may be drivers, for example, mutations 
in the Tert promoter[104,105]. 

New computational and bioinformatics tools still 
need to be developed and improved due to low 
concordance of multiple variant-calling pipelines[106,107]. 
Directly comparing genome sequence reads may 
improve data quality as compared with initial ali
gnment of reads to a reference genome[108]. 

Apart from the logistic challenges, financial, social 
and ethical challenges are also posed by personalized 
and targeted therapy[39]. In addition to viewing a 
patient’s cancer as a biologic phenomenon waiting 
for medical attention alone, personalized therapy 
emphasizes biopsychosocial care by including 
communication and information giving, psychologic 
and emotional well-being, enhancement of function, 
addressing financial and spiritual concerns, and 
providing symptom control and social support[109]. If 
we look at one specific patient’s ESCC from all these 
perspectives, a tumor board should involve not only 
medical staff but also supporting staff (Figure 1).

Samples
Fresh
Frozen
Paraffin

                      Analyses and bioinformatics 
WGS/WES and RNA seq 	 Established ESCC cell lines
Immunohistochemistry 	 Xenograft animal models
Driver genes and pathways 	 Carcinogen-induced models
Cancer subtype 	   	 Genetically modified models

  Tumor board
Surgical oncologist
Medical oncologist
Radiation oncologist
Radiologist
Pathologist
Bioinformatician
Nurse
Nutritionist
Psychologist
Social worker

 Outcome
Efficacy
Metabolism
Side effects

     Treatment
Surgery
Targeted therapy
Chemoradiotherapy

Clinical
assessment

Nonresponder

Responder

Figure 1  Personalized and targeted therapy for esophageal squamous cell carcinoma. The strategy is based on the concept that a patient’s genetic makeup 
should guide his/her treatment. After a series of molecular analyses on tumor samples, bioinformatics is expected to identify driver genes, pathways, cancer subtype, 
and target drugs. A tumor board will synthesize all information and generate a personalized treatment plan. Nonresponders may be analyzed in a similar manner during 
subsequent surveillance and further treated. ESCC: Esophageal squamous cell carcinoma; WES: Whole exome sequencing; WGS: Whole genome sequencing. 
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