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Abstract

Modulating epigenetic mechanisms in malarial parasites is an emerging avenue for the discovery

of novel antimalarial drugs. Previously we demonstrated the potent in vitro and in vivo

antimalarial activity of BIX01294 (1), a known human G9a inhibitor, together with its dose-

dependent effects on histone methylation in the malarial parasite. This work describes our initial

medicinal chemistry efforts to optimize the diaminoquinazoline chemotype for antimalarial

activity. A variety of analogues were designed by substituting the 2 and 4 positions of the

quinazoline core and these molecules were tested against Plasmodium falciparum (3D7 strain).

Several analogues with IC50 values as low as 18.5 nM and with low mammalian cell toxicity

(HepG2) were identified. Certain pharmacophoric features required for the antimalarial activity

were found to be analogous to the previously published SAR of these analogues for G9a

inhibition, thereby suggesting potential similarities between the malarial and the human HKMT
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targets of this chemotype. Physiochemical, in vitro activity, and in vitro metabolism studies were

also performed for a select set of potent analogues to evaluate their potential as anti-malarial leads.
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Introduction

Malaria is caused by protozoan parasites belonging to the Plasmodium genus (P. falciparum,

P. vivax, P. ovale, P. malariae, P. knowlesi) and transferred between human hosts by female

Anopheles mosquitos. Malaria is prevalent in third world countries and is a major cause of

morbidity and mortality, especially in young children and pregnant woman. There were an

estimated 207 million cases of malaria, with an estimated 627,000 deaths in 2012.[1] Ninety

percent of malaria related deaths occurred in the sub-Saharan African population and 77%

occurred in children under the age of five years old. The emergence of multi-drug resistant

strains of Plasmodium, against which most of the clinically available antimalarial drugs are

ineffective, strongly advocates continued efforts in the discovery of novel anti-malarial

drugs. [2] Indeed, currently, only artemisnin-based combination therapies (ACTs)[3] offer the

most effective way to treat a wide variety of malaria strains, however, reduced sensitivity to

artemisinin drugs has now been reported in some areas.[4] Hence, there is need to discover

novel targets and more effective drugs which work via a unique mechanism of action in

order to control this devastating disease.

Bioinformatic analysis has predicted that, in general terms, the basic transcription machinery

in Plasmodium is conserved.[5] There is, however, a dearth of knowledge regarding

recognizable specific transcription factors in the parasite genome, except for the recent

discovery of a family of apicomplexan AP2 transcription factors.[6] In this context,

chromatin-mediated epigenetic control has emerged as an important transcriptional

mechanism in the complex life cycle of Plasmodium.[7] DNA methylation and

posttranslational modification (PTM) of histone tails are two of the most commonly studied

chromatin modifications that affect epigenetic transcriptional control, and are conserved

throughout many diverse species. While there is only one report identifying the DNA

methylation in P. falciparum,[8] chromatin remodelling through PTM of histones is widely

observed.[9] Indeed, it is thought that epigenetic control at the histone PTM level plays a

significant role in the transcriptional control of genes encoding proteins implicated in

various processes including immune evasion and RBC invasion.[10] Histone lysine

acetylation and methylation in particular are found to be predominant in P. falciparum.

Consequently, the enzymes responsible for these PTMs provide an important opportunity for

the discovery of novel antimalarial drugs. In fact, inhibitors of human histone

acetyltransferases (HATs) (for example, curcumin or anacardic acid)[11] and the histone

deacetylases (HDACs) (for example, nicotinamide, apicidin, or hydroxamic acid

derivatives)[12] have been shown to possess antimalarial activity validating acetylation as a

useful and novel malarial target.
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Recently, we reported the in vitro and in vivo antimalarial activity of BIX01294 (1, Table

1) [13] and a structurally related analogue, in the first effort to validate Plasmodium histone

lysine methyltransferases (HKMTs) as promising new drug targets.[14] 1 is a known

inhibitor of the human HKMTs G9a (EHMT2) and GLP (EHMT1), and was originally

discovered by high throughput screening. Analogues based on the diaminoquinazoline

scaffold of 1 have been tested against the HKMTs G9a/GLP[15] and structure-activity

relationships (SAR) are well understood for G9a/GLP inhibition.[15a-c] In light of the species

homology of these important epigenetic targets, we felt this scaffold may be a useful entry

into P. falciparum HKMT (PfHKMT) inhibitors. Both, 1 and its analogue TM2-115 (76,

Table 4) were found to inhibit the parasite growth at all stages of the intraerythrocytic life

cycle and exhibit a rapid kill effect, positioning this compound class excellently with respect

to state of the art experimental antimalarial drugs. Inhibitors 1 and 76 also reduced the

overall levels of histone H3K4Me3 of the parasite in dose dependent manner, suggesting the

effects observed were related to the proposed PfHKMT target.[13] Recently, it has also been

shown that these promising inhibitors can “reawaken” quiescent hepatic hypnozoites,

suggesting a potential new means to treat recurrent malaria caused by P. vivax infection.[16]

In light of these highly promising effects, we set out to explore the initial SAR of

diaminoquinazoline analogues for in vitro antimalarial activity (3D7 strain of P. falciparum)

and antiproliferative selectivity between Plasmodium and mammalian cell lines.

Chemistry

The first series of compounds were synthesized in two steps starting from the corresponding

2,4-dichloroquinazoline scaffold (Scheme 1). Nucleophilic substitution using the desired

amine nucleophile gave access to a 4-substituted quinazoline derivative, that was further

heated with a secondary amine under microwave irradiation to afford the target 2,4-

diaminoquinazolines, with (Table 1) or without (Table 3) dimethoxy groups at position 6

and 7. Analogues with a N-Me group instead of the corresponding N-H group at position-4

were synthesized by first Boc protecting the amino group of 1-benzylpiperidin-4-amine (56)

followed by the reduction of carbamate 57 to a secondary amine 58 (Scheme 2). The amine

58 was then installed at position-4 of the 2,4-dichloro-6,7-dimethoxyquinazoline and

converted to the final target compounds 60-63 as described above (Table 2).

Compounds with an oxygen atom at position-4 were synthesized using 1-benzylpiperidin-4-

ol and 2,4-dichloro-6,7-dimethoxyquinazoline in the first step (Scheme 3). This resulted in

the isolation of a 4-substituted quinazoline (64) which, upon heating with the corresponding

amine substrates, yielded target compounds 65 and 66 (Table 2). Compound 72 with a

sulphur atom at position-4 was synthesized from Boc-protected piperidinol (67), which was

converted to the desired thiol 68 in three steps (Scheme 4). Analogously, 68 was used to

displace chloride at position-4 of 2,4-dichloro-6,7-dimethoxyquinazoline, followed by an

acid mediated deprotection of tert-butyloxycarbonate group to yield 70. The ring nitrogen of

70 was then benzylated using reductive amination to afford 71. Final substitution of this

compound with N-methyl homopiperazine yielded target compound 72 (Table 2). The

analogues bearing 7-O-substituted quinazolines described in Table 4 were synthesized using

the previously described synthetic route.[15b]
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Results and Discussion

In general, our analogue design strategy was cognizant of the interactions of such

compounds with G9a/GLP[15a, 15d, 15e, 17], in the absence of PfHKMT structural

information. The emerging antimalarial SAR discussed below was therefore compared to

known G9a/GLP SAR in order to highlight potential on-target effects against PfHKMTs.

The overall important observations from this initial SAR study are summarised in Figure 1.

Initially, the amino substituent at position-2 of our analogues was varied, while fixing a 1-

benzyl-4-piperidylamine sidechain at position-4 (Table 1). Decreasing the size of the seven-

membered 1-methyl-1,4-diazepine ring of 1 to a comparable six-membered ring slightly

improved the antiproliferative Pf3D7 activity of the compound (2). In fact, a variety of

secondary amines were tolerated at position-2 (Entries 3-18, Table 1) without a strong

detrimental effect on the potency. Notably, quinazolines substituted with piperidine (3),

azepane (4) and 1-(pyridin-2-yl)piperazine (5) were all found to have Pf3D7 IC50

comparable to 1 (Table 1). This result suggests that position-2 could be used as a handle to

fine-tune the physicochemical properties of these inhibitors during lead optimisation studies.

Interestingly, such SAR is in accordance with the G9a/GLP activity of the

diaminoquinazoline analogues, which tolerates variety of substituents at position-2.[15a-c]

We then sought to vary the substituent at position-4, while fixing key amino substituents at

position-2 (Table 1). Substitution of the benzyl group of 4-piperidylamine with a methyl

group, led to a reduction in activity by more than 7-fold in the case of 19 vs 1 and 16-fold in

the case of 20 vs 2. Interestingly however, this effect was not observed when a comparable

change was performed in the case of 21 (vs 5), 22 (vs 3) and 23-26. It is plausible therefore

that the reduction in activity of 19 and 20 may be due to a physiochemical issue; the benzyl

group might be imparting favourable physiochemical properties rather than the controlling

on-target potency. This is supported by the fact that clogP values of 19 (2.3) and 20 (1.9) are

quite low compared to other highly active molecules such as 1-5, 25 and 26 (clogP ≥ 3.0).

Indeed, the N-benzyl group of analogues similar to 1 are known to be solvent exposed when

bound to GLP (for example, PDB codes 3FPD, 3MO0 and 3MO2),[15d, 17] and therefore

replacement of the N-benzyl group with an N-methyl group was found not to affect G9a and

GLP inhibitory potency.[15a]

One of the important features of substrate competitive HKMT inhibitors such as 1 is the

presence of basic functionality, which ensures that the inhibitors are positively charged at

physiological pH. This feature is important for long range electrostatic attraction with the

negatively charged substrate binding site of the target HKMTs.[18] For our inhibitory series,

replacement of the basic nitrogen from the cyclic amine at position-2 with a C-H moiety did

not dramatically affect the activity of the compound (Table 1; 1 vs 4 and 2 vs 3), however,

acylation of the ring basic nitrogen present in the substituent at position-4, thereby

decreasing the basicity of this atom, reduced the activity of 27 (vs 3) and 28 (vs 5) by 9-15-

fold. Indeed, removal of this particular basic nitrogen (in the position-4 side-chain) was also

found to be detrimental for G9a inhibition.[15a] In G9a, this basic centre is within 4.2 Å of

the acidic residue Asp1078 (PDB code 3K5K), thus contributing to overall binding, possibly

through a charge-assisted hydrogen bond.[15a] Interestingly, sequence alignment of the
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Pf3D7 SET1 domain (PfSET1) having putative H3K4 methylase activity, with G9a (Fig. S1)

suggests this Asp residue to be conserved between the two HKMT proteins.[19] This

observation is in agreement with our previous report that treatment of Pf3D7 with 1 results

in a dose dependent reduction in H3K4 methylation levels in the parasite.[13]

Varying the nature of amine substituent at position-4 led to other interesting observations.

Changing the precise positioning of the N-Bn moiety (for example, Table 1; 2 vs 29 and 5 vs

30) or reducing the size of the piperidine ring (for example, Table 1; 2 vs 32, and 5 vs 33)

was found to reduce Pf3D7 activity by approximately 4-18-fold. It is possible that such a

change in the spatial positioning of the N-Bn group may therefore lead to decreased on-

target potency. As previously mentioned, installing an acyl group on the basic nitrogen

centre was found to decrease the activity by 6-100-fold (for example, Table 1; 21 vs 38, 24
vs 41 and 25 vs 42), thus reinforcing the earlier observation that a basic centre is essential at

this position. Installing an aniline side-chain at position-4 was also found to reduce the

overall activity by 4-31-fold in most cases (for example, Table 1; 2 vs 44, 5 vs 45 and 26 vs

49). Furthermore, installation of other structurally diverse amines at position-4, was not

successful in improving the potency of our hits. For instance, isopropylamine had a negative

effect on the Pf antiproliferative activity, reducing potency by 7-17-fold (1 vs 50 and 2 vs

51), which is in agreement with the observed SAR for G9a.[15a] The potency of other

analogues with various amine substituent at position-4, such as 52 and 53, was also reduced

by more than 7-fold compared to 1. Interestingly, with 1-methylpiperidin-4-amine at

position-4, analogues containing simple secondary amines at position-2, such as

diethylamine (54) and dimethylamine (55), were found to retain potent activity against

Pf3D7.

One established piece of SAR of this chemotype against G9a is the need for a free N-H

functionality at position-4. This functionality forms a hydrogen bond with Asp1083 in the

G9a substrate binding pocket, and it is known that masking this functionality with a methyl

group results in a significant drop in G9a potency.[15b] Interestingly, PfSET1 has a Ser

residue in the analogous position which in theory could form a hydrogen bond with the free

N-H moiety of such inhibitors (Fig. S1).[19] Indeed, we found the free N-H functionality at

position-4 was important for the antimalarial activity of this series; replacing it with an N-

CH3 group reduced the Pf3D7 activity by 10-20-fold, (Table 2; 1 vs 60, 3 vs 61, 4 vs 62, and

5 vs 63). It should be stated, however, that this difference is much less than the ~300-fold

drop observed for the activity of the G9a inhibitor UNC0638 upon methylation.15e

Similarly, replacement of N-H with an oxygen or sulphur atom was also found to result in

dramatic 100-fold drop in Pf3D7 activity (Table 2; 1 vs 65, 5 vs 66 and 1 vs 72).

Next, we sought to explore the 6,7-dimethoxy moiety of this scaffold to better understand

the pharmacophoric features of the inhibitors and investigate the potential to add useful

substituents to the 6 and 7 position. Removal of both methoxy groups led to a moderate

(6-16-fold) decrease in Pf3D7 potency (Table 3; 1 vs 73, 3 vs 74 and 5 vs 75), suggesting

that polarity in the 6/7 position has a role in compound activity. To best of our knowledge,

such analogues (lacking the 6 and 7 alkoxy groups) have not been reported in terms of their

G9a activity, however, no important interactions of 6,7-dimethoxy group with the protein
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are obvious in the crystal structure of 1 and other quinazoline analogues in complex with

G9a and/or GLP (PDB codes 3K5K, 3RJW, 3FDP, etc.).[15a, 15e, 17] We subsequently

investigated derivatives further substituted at positions-7 (Table 4). Our initial study

reported a structural isomer of 1, whereby the terminal benzyl group of the position-4

substituent and the methyl group on the position-7 oxygen atom had been swapped, to give a

compound named TM2-115 (76, Table 4).[13] We found this isomer to have comparable

antimalarial activity to 1. Clearly, if the benzyl group is removed altogether, and replaced by

a methyl group (cf 19, Table 1) a loss in potency is observed (vide supra). Currently, we

hypothesise this effect is due to alterations in the overall lipophilicity of the compound

(clogP 1 and 76 = 3.86 vs clogP 19 = 2.30), rather than through specific interactions with the

target.

It is well known that addition of a ‘lysine mimic’, that is a sidechain that occupies the lysine

binding channel of HKMTs, dramatically improves the potency of substrate competitive

HKMT inhibitors.[15a, 20] This is due to the improvement in binding strength of such

molecules since the ‘lysine mimic’ makes additional contacts in the lysine binding channel

of the protein. In the case of G9a, all optimised (i.e. high potency) analogues reported bear a

substituent mimicking a lysine sidechain on the position-7 oxygen atom of the

dialkoxydiaminoquinazoline, for example, 78-91 (Table 4).[15a-c] We therefore sought to

explore this feature in terms of the antimalarial activity of this series. Thus, 1-

methylpiperidin-4-amine and 1-methyl-1,4-diazepine were fixed at position-4 and

position-2, respectively, while different lysine mimics were investigated at position-7.

Almost all such molecules were found to be inactive indicating that, while such lysine

mimics improve G9a/GLP activity, they dramatically decrease the antimalarial activity of

this chemotype. It is worth mentioning that many of the tested molecules in this series had

lower clogP such as, 78, 83, and 87 and/or higher topological polar surface area such as 87-

89 due to the additional polar functionality in the O-7 sidechain. Analogues such as 90 and

91, with less polar lysine mimics did exhibit moderate activity. Hence, the negative effect of

the extended O-7 substituents on the antimalarial activity of this compound class might be

due to their poor permeability as suggested previously.[15c] Alternatively, it is plausible that

the lysine binding channel within the malarial parasite HKMT target is not comparable to

the corresponding channel in G9a. Indeed, a recent computational comparison of various

SET domain containing methyltransferases has revealed that residues in the lysine binding

channel are surprisingly diverse and that a single chemical ‘lysine mimic’ scaffold will

likely not fit optimally, nor satisfy the varied distribution of binding hotspots across a range

of HKMTs.[20]

Whilst, in the absence of structural PfHKMT information or enzymatic PfHKMT activity

data, we have related the Pf3D7 SAR obtained to SAR observed for this compound class

against human G9a/GLP, it will ultimately be important to diverge from human target (and

off target) activity in the development of an optimised anti-malarial lead compound for

progression to clinical candidacy. We therefore assessed representative compounds for

cytotoxicity against the human HepG2 hepatocarcinoma cell line as a measure of parasite

versus human selectivity (see Table 1). Promisingly, our lead compounds 1, 76, 11 and 22
were found to not only be highly potent against Pf3D7, but also highly selective for parasite
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versus host cell killing (Table 5).[21] All four compounds were found to be 110-388-fold

more active on Pf3D7 compared to HepG2 cell viability. Hence, these molecules were

selected for further in vitro activity, physiochemical and in vitro metabolism studies.

We previously showed 1 and 76 to exhibit a fast killing phenotype effective throughout the

intraerythrocytic parasite life cycle.[13] Killing phenotypes are a function of the parasite

molecular target, and as such, we tested compounds 11 and 22 for a similar phenotype in an

effort to demonstrate continued on-target killing as we develop our diaminoquinazoline

series. Treating highly synchronized parasites for three distinct periods of the 12-hour

intraerythrocytic stage and quantifying re-invasion into the next cycle or out-growth two

cycles later reveals both 11 and 22 to possess a similar rapid and erythrocytic stage-

independent killing phenotype (Figure 2) as previously shown for 1 and 76.[13] As measured

by flow cytometry, parasite re-invasion appears greatly reduced (Figure 2b), though Giemsa-

stained blood smears reveal these counted parasites to likely be dead parasites from the

previous cycle (data not shown). Treated and washed parasites allowed to grow in the

absence of compound for an additional two cycles show virtually no parasite survival after a

12-hour treatment with either compound 11 or 22 regardless of the phase of the

intraerythrocytic cycle in which they were treated (Figure 2c).

To further investigate the mechanism of action of 11 and 22 we treated parasites for 12

hours with 5-fold IC50 concentrations 1, 11, 22, and chloroquine and estimated histone

H3K4me3 and H3K9me3 levels by Western blot (Figure 3) in treated parasites relative to

control parasites treated with DMSO vehicle. We previously demonstrated a decrease in

H3K4me3 and H3K9me3 levels upon treatment of parasites with 1.[13] The data reveal

decreased H3K4me3 and H3K9me3 levels in parasites treated with 5-fold IC50

concentrations 1, 11, 22. Parasites treated similarly with chloroquine, an established

antimalarial with a fast killing profile, show a slight decrease in H3K4me3 and a slight

increase in H3K9me3 levels. These data further support the hypothesis that 11 and 22 target

the same molecular mechanism as 1, namely parasite histone methyltransferases. Our

previous report that 1 is equally potent against both chloroquine-sensitive and chloroquine-

resistant parasites[13] additionally support the notion that diaminoquinazolines from this

series and 4-amino quinolines such as chloroquine operate through distinct mechanisms.

The measured distribution coefficient (logD) values for all four compounds were shown to

be pH dependent suggesting changes in ionisation occurring between pH 7.4 and 3. The

observed changes are consistent with compound 1 and 76 being tri-basic and 11 and 22
being di-basic. At pH 6.5, all compounds demonstrated good aqueous solubility (≥ 50

μg/mL) except 22 which possessed only moderate solubility (6.3-12.5 μg/mL). As would be

expected for such basic compounds, the solubility of all compounds improved at pH 2.

Various assays were conducted to determine the in vitro metabolic stability of these

molecules (Table 5). After 4 hour incubation in rat plasma, all four compounds remained

within ±15% of the initial value therefore demonstrating good plasma stability. The

inhibitors exhibited low to intermediate rates of degradation in rat liver microsomes with t1/2

values ranging from 28 to 184 minutes and in vitro intrinsic clearance values (CLint) ranging

from 9-62 μl/min/mg protein. Additionally, no measurable degradation of any of the

compounds in microsomal matrix was observed in the absence of cofactor (control
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incubations, data not shown), suggesting that there was no major non-cofactor dependent

metabolism contributing to the overall rates of metabolism.

These results together with the predicted hepatic extraction ratio (EH, Table 5) suggest that

11, bearing a ring with a methoxy substituent at position-2, is the most metabolically stable

analogue among the four molecules. This is in accordance with a recent study reporting that

a substitution on piperidyl ring at position-2 might prevent CYP450 mediated in vitro

oxidation of this position.[22] The role of position-2 substituent in governing the overall

stability is further corroborated by the fact that 1 and 2 have a metabolically labile N-Me

moiety at this position and are correspondingly less stable. Expectedly, 22 lacking an N-Me

moiety in the aforementioned position, but also lacking substitution on piperidyl ring

exhibits intermediate stability.

Conclusions

In summary we have designed and synthesized analogues of a reported human HKMT G9a

and GLP inhibitor (1), which we previously reported to have potent antimalarial activity.

The aim of this study was to better define SAR with respect to the antimalarial activity of

this chemotype. Many of the analogues prepared were found to possess potent antimalarial

activity against P. falciparum, in the nanomolar range and exhibited selectivity over human

HepG2 cells. Initial SAR analysis has indicated that most of the structural requirements for

malarial activity were common to human G9a activity, as may be expected for on-target

activity against a homologous PfHKMT enzyme. For example, a basic centre within the

cyclic amine at position-4 was found to be crucial for compound potency, suggesting the

inhibitor-protein interaction (with Asp1078 for G9a) may be conserved upon moving from a

human to a P. falciparum HKMT. Similarly, an available N-H moiety at position-4 was also

found to be a key feature, as is the case for G9a inhibitors belonging to this chemotype. A

variety of diverse secondary amine sidechains could be installed at position-2 without

dramatically affecting the Pf3D7 activity, which again is in agreement with G9a SAR.

Conversely however, the presence of a ‘lysine mimic’ side-chain at position-7, central for

highly potent G9a inhibition, was found to abolish the antimalarial activity of this series.

While partially explained by the reduced clogP, and thereby permeability of such analogues

in our cell based assay, it is plausible that the presumed target PfHKMT lysine binding

channel possesses a dissimilar ‘hotspot’ profile to G9a/GLP.[20] Finally, further in vitro

activity, physiochemical and in vitro metabolism studies of lead molecules emerging from

this series were carried out. All leads exhibited the same killing phenotype and were found

to decrease the H3K4me3 and H3K9me3 levels in treated parasites, supporting the

hypothesis of diaminoquinazolines targeting one or more parasite HKMT. A substituent at

position-2 was found to be important for the overall in vitro metabolic stability of the

compounds in this series. Overall, this study will aid in the further optimisation of this

compound class as future antimalarial drug candidates.
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Experimental Procedures

In vitro P. falciparum growth and proliferation assays

Compounds were tested against drug sensitive P. falciparum 3D7 strain parasites using a

three-day SYBR Green I based assay.[23] Parasites were cultured at 2% hematocrit with an

initial parasitemia of 0.5-0.8% in RPMI 1640 containing 0.5% albumax. Compounds were

initially screened at 2 μM in duplicate wells in a 96-well format. Subsequent IC50 values for

active compounds were determined with 2:1 dilutions of test compounds.

In vitro cytotoxicity assays

Host cell cytotoxicity was determined in a 96-well format with a starting HepG2 cell density

of 10000 cells/well grown in DMEM. Cells were incubated with 1:1 dilutions of test

compounds for three days and resulting cell viability was quantified using Promega

CellTiterBlue.

In vitro stage-dependent antimalarial activity

Stage-specific compound treatment effects were elucidated using highly synchronized

parasites in 48-well plates with a starting parasitemia of 0.75% and a hematocrit of 2%.

Parasites were treated for 12 hours with 10x IC50 concentrations of compounds 11 or 22
during three distinct periods of the intraerythrocytic life cycle. After treatment, parasites

were washed with warm RPMI 1640 medium and placed back into culture without test

compound for analysis of re-invasion after completion of the cell cycle in which treatment

occurred.

Washed parasites after treatment were also diluted 1:16 and allowed to grow without

compound for an additional two cell cycles (4 days). Parasitemia after re-invasion or after 4-

day growth was quantified on infected cells fixed in 0.25% glutaraldehyde and stained with

2x SYBR Green I (Invitrogen) in PBS.

Parasite histone methlyation analysis

P. falciparum3D7 strain parasites were treated for 12 hours with 1, 11, 22 or chloroquine

(CQ), infected blood was collected, treated with 0.15% saponin in PBS to lyse and remove

red blood cells, then free parasites were lysed by bath sonication in 2% SDS and subjected

to Western blot analysis. Blots were probed with specific primary antibodies for histone H3

core (Abcam ab1792, 1:5000), histone H3K4me3 (Abcam ab1020, 1:1000) or histone

H3K9me3 (Abcam ab8898, 1:1000) diluted in TBS-T (50 mM Tris pH 7.5, 150 mM NaCl,

0.25% gelatin, 0.05% Tween-20), followed by anti-mouse HRP (GE NXA931) or anti-rabbit

HRP (GE NA-934) secondary antibodies. Blots were revealed using Pierce SuperSignal

West Pico chemiluminescent substrate and quantified using Bio-Rad Image Lab software.

clogP and TPSA calculation

These physicochemical properties were calculated using RDKit which is an open-source

cheminformatics toolkit.[24]
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In vitro solubility, log D and metabolic stability studies

These studies were performed at the Center for Drug Candidate Optimization (CDCO),

Monash Institute of Pharmaceutical Sciences, Monash University, Australia. Kinetic

solubility was assessed at pH 2 and 6.5 using nephelometry, and Log D was estimated at pH

3 and 7.4 using a chromatographic method; both of these methods have been described

previously.[25]

Metabolic stability was assessed by incubating the test compounds in rat liver microsomes

(Xenotech, Lenexa, KS) at 37°C using a substrate concentration of 1 μM and a microsomal

protein concentration of 0.4 mg/mL. The metabolic reaction was initiated by the addition of

an NADPH-regenerating system and quenched at various time points over 60 minutes using

chilled acetonitrile. Additional control samples were incubated in the absence of NADPH to

monitor for non-cytochrome P450 dependent metabolism. Samples were centrifuged at 4600

rpm for 3 minutes on a Heraeus Multifuge 3 S-R centrifuge before a 5 μL injection of the

supernatant was analysed by LC/MS.

LC/MS analysis was conducted on a Waters/Micromass Quattro Ultima PT Triple

Quadrupole MS coupled to a Waters Acquity UPLC (Milford, MA) under positive

electrospray ionisation.

Chromatography was conducted using an Ascentis Express RP-Amide column (50x2.1 mm,

2.7 μm) (Sigma-Aldrich, St Louis, MO) equipped with a Phenomenex SecurityGuard

column and a Luna C8 cartridge (Torrance, CA) and both were maintained at a temperature

of 40 °C. The mobile phase consisted of an aqueous phase (0.05% formic acid) and

acetonitrile. A 4-minute binary gradient was employed for optimum elution of the analyte

and internal standard (75 ng/mL Diazepam).

The first-order rate constant for substrate depletion was used to calculate the in vitro

intrinsic clearance which was scaled to predict the in vivo intrinsic clearance as described

previously.[26] The blood clearance and the predicted hepatic extraction ratio (EH) were

calculated using the well-stirred model of hepatic clearance based on scaling factors and

hepatic blood flow that have been d reported previously.[27]

Chemistry General Procedures—All reactions were performed under an atmosphere of

dry nitrogen unless otherwise stated. Reagents were obtained from commercial suppliers or

redistilled if required. Flash column chromatography was carried out using Merck Kiesegal

60 silica gel (230-400 mesh). Compounds 6-18 and 21-49 (Table 1) were prepared by

contract synthesis at SAI Life Sciences Limited and their data is reported in the supporting

information. Synthetic methodology and spectrometric data for compounds 19, 20, 50, 52-55
(Table 1) and 76-92 (Table 4) was described previously.[15a-c] All compounds evaluated in

biological assays had >95% purity as judged by the HPLC or LCMS.

Synthetic methodology

(1-Benzyl-4-piperidyl)[6,7-dimethoxy-2-(4-methyl-1,4-diazepin-1-yl)-4-
quinazolinyl]amine (1, BIX01294)—A mixture of N-(1-benzylpiperidin-4-yl)-2-

chloro-6,7-dimethoxyquinazolin-4-amine (0.413 g, 1 mmol) which was prepared according
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to the procedures described previously,[15a] and 1-methyl-1,4-diazepane (0.6 mL, 5 mmol)

in 2 mL toluene was heated at 130 °C for 50 minutes under microwave irradiation. The

reaction mixture was concentrated and purified by silica gel column chromatography using

MeOH (7 N NH3) and DCM gradient (2-5% of MeOH). The title product was obtained as

light yellow solid (0.489 g, 79 %).1H NMR (400 MHz, CDCl3) δ 7.34-7.23 (m, 5H), 6.89 (s,

1H), 6.69 (s, 1H), 4.96 (d, J = 7.8 Hz, 1H), 4.15-4.06 (m, 1H), 3.99-3.96 (m, 2H), 3.95 (s,

3H), 3.92 (s, 3H), 3.88 (t, J = 6.4 Hz, 2H), 3.55 (s, 2H), 2.92-2.89 (m, 2H), 2.71-2.69 (m,

2H), 2.58-2.56 (m, 2H), 2.37 (s, 3H), 2.22-2.13 (m, 4H), 2.04-1.98 (m, 2H), 1.62 (qd, J =

11.6, 11.0, 4.0 Hz, 2H); MS (ESI) m/z 491 [M+H]+; HRMS (ESI) m/z [M+H]+ calcd for

C28H39N6O2: 491.3134, found: 491.3124.

Compounds no. 2-5, 51, 73-75 (Table 1) were synthesized following an analogous approach

as for 1 with the following spectroscopic data:

(1-Benzyl-4-piperidyl)[6,7-dimethoxy-2-(4-methyl-1-piperazinyl)-4-
quinazolinyl]amine (2)—1H NMR (400 MHz, CDCl3): δ 7.34-7.27 (m, 5H), 6.90 (s, 1H),

6.70 (s, 1H), 5.02 (d, J = 7.2 Hz, 1H), 4.19–4.09 (m, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.86 (m,

4H), 3.55 (s, 2H), 2.91 (m, 2H), 2.49 (m, 4H), 2.34 (s, 3H), 2.21 (m, 2H) 2.15 (m, 2H), 1.62

(qd, J = 2.9, 11.5 Hz, 2H); HRMS (ESI) m/z [M+H]+ calcd. for C27H37N6O2, 477.2978;

found: 477.2970.

(1-Benzyl-4-piperidyl)(6,7-dimethoxy-2-piperidino-4-quinazolinyl)amine (3)—1H

NMR (400 MHz, CDCl3): δ 7.34-7.24 (m, 5H), 6.90 (br s, 1H), 6.68 (s, 1H), 4.95 (br s, 1H),

4.19–4.09 (m, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.80 (m, 4H), 3.55 (s, 2H), 2.91 (m, 2H), 2.21

(m, 2H) 2.15 (m, 2H), 1.64 (m, 8H); HRMS (ESI) m/z [M+H]+ calcd. for C27H36N5O2,

462.2868; found: 462.2855

(1-Benzyl-4-piperidyl)[2-(1-azepinyl)-6,7-dimethoxy-4-quinazolinyl]amine (4)
—1H NMR (400 MHz, CD3OD) δ 7.43 (s, 1H), 7.36-7.28 (m, 5H), 6.90 (s, 1H), 4.18-4.16

(m, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.77 (t, J = 12.0, 4H), 3.58 (s, 2H), 3.01 (d, J = 12.0,

2H), 2.18 (t, J =12.0, 2H), 2.09 (d, J = 12.0, 2H), 1.82-1.73 (m, 6H), 1.31- 1.29 (m,

4H) ;HRMS (ESI) m/z calc. for C28H42N5O2,476.3026; found: 476.3061.

(1-Benzyl-4-piperidyl){6,7-dimethoxy-2-[4-(2-pyridyl)-1-piperazinyl]-4-
quinazolinyl}amine (5)—1H NMR (400 MHz, CD3OD): δ 8.16 (m, 1H), 7.76 (br s, 1H),

7.62 (m, 3H), 7.51 (m, 3H), 7.19 (br s, 1H), 6.92 (m, 1H), 6.75 (m, 1H), 4.62 (m, 1H), 4.34

(br s, 2H), 4.04 (m, 4H), 3.98 (s, 3H), 3.96 (s, 3H), 3.77 (m, 4H), 3.57 (br app-d, J = 12.4

Hz, 2H), 3.30 (m, 2H), 2.34 (br app-d, J = 12.6 Hz, 2H), 2.17 (m, 2H); HRMS (ESI) m/z [M

+H]+ calcd. for C31H38N7O2, 540.3087; found: 540.3077

(1-Benzyl-4-piperidyl)[2-(4-methyl-1,4-diazepin-1-yl)-4-quinazolinyl]amine (73)
—1H NMR (400 MHz, CD3OD) δ 7.95 (d, J = 7.2 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.41 (d,

J = 8.0 Hz, 1H), 7.34-7.13 (m, 5H), 7.11 (t, J = 7.2 Hz, 1H), 5.42 (br.S, 1H), 4.18-4.09 (m,

1H), 3.96 (t, J = 4.8 Hz, 2H), 3.86 (t, J = 5.6 Hz, 2H), 3.57 (s, 2H), 2.97(d, J =12.0Hz, 2H),

2.88 (t, J =4.8Hz, 2H),2.74 (t, J =5.6Hz, 2H), 2.49(s, 3H), 2.04 (t, J = 12.0 Hz, 2H),
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2.06-2.03 (m, 4H), 1.72 (dq, J = 12.0, 3.2 Hz, 2H) ; MS (ESI) m/z 431.3 [M+H]+. HRMS

m/z [M+H]+ calcd. for C26H35N6, 431.2903; found: 431.2923.

(1-Benzyl-4-piperidyl)(2-piperidino-4-quinazolinyl)amine (74)—1H NMR (400

MHz, CDCl3) δ 7.95-7.94 (d, J = 7.2, 1H), 7.56-7.52 (t, J = 8.0, 1H), 7.49 (d, J = 12.0, 1H),

7.34-7.23 (m, 5H), 7.14 (t, J = 12.0, 1H), 4.18-4.08 (m, 1H), 3.80 (t, J = 5.6, 4H), 3.56 (s,

2H), 2.98 (d, J = 12.0, 2H), 2.19 (t, J = 12.0, 2H), 2.05 (d, J = 12.0, 2H), 1.77-1.62 (m, 8H);

MS (ESI) m/z 402.3 [M+H]+.

(1-Benzyl-4-piperidyl){6,7-dimethoxy-2-[4-(2-pyridyl)-1-piperazinyl]-4-
quinazolinyl}amine (75)—1H NMR (400 MHz, MeOD) δ 8.10 (d, J = 4.8, 1H), 7.93 (d, J

= 8.0, 1H), 7.60-7.51 (m, 2H), 7.41-7.26 (m, 6H), 7.09 (t, J = 8.0, 1H), 6.84 (br, d, 8.0, 2H),

6.69 (m, 1H), 4.20-4.17 (m, 1H), 3.97 (br, s, 4H), 3.59 (br, s, 6H), 2.99 (d, J = 10.0, 2H),

2.24 (t, J = 10.0, 2H), 2.08 (d, J = 12.0, 2H), 1.73 (quin, J = 12.0, 2H); MS (ESI) m/z 480.4

[M+H]+.

(Isopropyl)[6,7-dimethoxy-2-(4-methyl-1-piperazinyl)-4-quinazolinyl]amine (51)
—To a solution of (Isopropyl)(2-chloro-6,7-dimethoxy-4-quinazolinyl)amine (263 mg, 0.93

mmol) which was prepared according to the procedures described previously,[15b] in 4 mL

of i-PrOH was added 1-methylpiperazine (0.21 mL, 1.86 mmol), followed by 0.47 mL of

HCl in dioxane (4.0 M, 1.86 mmol). The resulting mixture was then stirred at 160 °C under

microwave irradiation for 15 minutes. After the addition of 1 mL NH4OH, the solvent was

removed and the residue was subjected to flash chromatography purification to give the

desired compound as off-white solid (234 mg, 73%). 1H NMR (400 MHz, CD3OD) δ 7.40

(s, 1H), 6.87 (s, 1H), 4.49 (dt, J = 13.2, 6.6 Hz, 1H), 3.90 (s, 3H), 3.89 (s, 3H), 3.87 – 3.78

(m, 4H), 2.56 – 2.48 (m, 4H), 2.34 (s, 3H), 1.32 (d, J = 6.6 Hz, 6H). MS (ESI) m/z 346.25

[M+H]+.

tert-butyl (1-benzylpiperidin-4-yl)carbamate (57)—To a solution of 1-

benzylpiperidin-4-amine 56 (1 mL, 933 mg, 4.9 mmol) in dry DCM (20 mL) were added

Et3N (1 mL, 725 mg, 7.2 mmol) and di-tert-butyl dicarbonate (1.23 g, 5.6 mmol). The

reaction mixture was stirred overnight at room temperature and then diluted with DCM (20

mL). The organic layer was washed with aqueous NaHCO3 solution and brine, dried over

anhydrous MgSO4 and concentrated in vacuo to give 57 (1.42 g, quant.) as a white solid. 1H

NMR (400 MHz, CDCl3) δ 7.37-7.28 (m, 4H), 7.27-7.22 (m, 1H), 4.45 (br, s, 1H), 3.48 (s,

2H), 2.79 (br, d, J = 11.8 Hz, 2H), 2.08 (td, J = 11.8, 2.0 Hz, 2H), 1.89 (d, J = 11.8 Hz, 2H),

1.47-1.37 (m, 11H).

N-Methyl(1-benzyl-4-piperidyl)amine (58)—To a suspension of LiAlH4 (1.0 g, 26.35

mmol) in dry THF (10 mL), was added dropwise at 0 °C a solution of 57 (1.4 g, 4.82 mmol)

in dry THF (10 mL). The reaction mixture was refluxed for 72 hours, cooled to 0 °C and

diluted with THF. Ethyl acetate was added to quench the excess of LiAlH4 and 3N aqueous

NaOH solution was added to form a white precipitate. The mixture was filtrated over a celite

cake and the filtrate was concentrated under reduced pressure to furnish 58 (980 mg, quant.)
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as a pale yellow oil. Crude product was engaged in the next reaction without further

purification.

(1-Benzyl-4-piperidyl)-N-methyl(2-chloro-6,7-dimethoxy-4-quinazolinyl)amine
(59)—To a mixture of 2,4-dichloro-6,7-dimethoxyquinazoline (650 mg, 2.51 mmol) and 58
(680 mg, 3.34 mmol) in dry THF (16 mL) was added Et3N (1.4 mL, 1.02 g, 10.0 mmol).

The reaction mixture was stirred overnight at room temperature and then concentrated under

reduced pressure. The residue was purified by flash chromatography (DCM/MeOH 100:0 to

98:2) to furnish 59 (500 mg, 47%) as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.35-7.30

(m, 4H), 7.28-7.24 (m, 1H), 7.14 (s, 1H), 7.12 (s, 1H), 4.29 (tt, J = 10.8 Hz, 3.7 Hz, 1H),

3.98 (s, 3H), 3.93 (s, 3H), 3.53 (s, 2H), 3.17 (s, 3H), 3.03 (d, J = 10.8 Hz, 2H), 2.15-1.97 (m,

4H), 1.90-1.83 (m, 2H).

(1-Benzyl-4-piperidyl)-N-methyl[6,7-dimethoxy-2-(4-methyl-1,4-diazepin-1-yl)-4-
quinazolinyl]amine (60)—To a solution of 59 (63 mg, 0.15 mmol) in dry toluene (3 mL)

was added 1-methyl-1,4-diazepane (0.18 mL, 165 mg, 1.45 mmol). The reaction mixture

was refluxed overnight and then concentrated under reduced pressure. The residue was

purified by flash chromatography (DCM/MeOH 97:3 to 95:5) to furnish quinazoline 12d (48

mg, 63%) as colourless oil. 1H NMR (400 MHz, CD2Cl2) δ 7.34-7.29 (m, 4H), 7.28-7.21

(m, 1H), 7.04 (s, 1H), 6.85 (s, 1H), 4.19-4.08 (m, 1H), 3.95-3.89 (m, 5H), 3.86-3.81 (m,

5H), 3.49 (s, 2H), 3.08 (s, 3H), 2.99 (br, d, J = 10.0 Hz), 2.71-2.66 (m, 2H), 2.58-2.52 (m,

2H), 2.34 (s, 3H), 2.10-1.92 (m, 6H), 1.88-1.81 (m, 2H). MS (ESI) m/z 505.3 [M+H]+.

HRMS (ESI) m/z [M+H]+ calcd for C 29H41N6O2: 505.3291, found: 505.3277.

Compound 61-63 were synthesized following procedure similar to 60

(1-Benzyl-4-piperidyl)-N-methyl(6,7-dimethoxy-2-piperidino-4-
quinazolinyl)amine (61)—1H NMR (400 MHz, CDCl3)δ 7.35-7.30 (m, 4H), 7.29-7.23

(m, 1H), 7.01 (s, 1H), 6.94 (br, s, 1H), 4.19-4.07 (m, 1H), 3.96 (s, 3H), 3.88 (s, 3H),

3.82-3.78 (m, 4H), 3.51 (s, 2H), 3.07 (s, 3H), 3.05-2.99 (m, 2H), 2.10-1.95 (m, 4H),

1.89-1.83 (m, 2H), 1.70-1.58 (m, 6H). MS (ESI) m/z 476.3 [M+H]+. HRMS (ESI) m/z [M

+H]+ calcd for C28H38N5O2: 476.3026, found: 476.3028.

(1-Benzyl-4-piperidyl)-N-methyl[2-(1-azepinyl)-6,7-dimethoxy-4-
quinazolinyl]amine (62)—1H NMR (400 MHz, CD2Cl2) δ 7.35-7.29 (m, 4H), 7.28-7.22

(m, 1H), 7.09 (br, s, 1H), 7.05 (s, 1H), 4.21 (br, t, J = 10.3 Hz), 3.93 (s, 3H), 3.84 (s, 3H),

3.80 (b, t, J = 5.7 Hz) 3.49 (s, 2H), 3.12 (s, 3H), 3.00 (br, d, J = 11.2 Hz), 2.11-1.92 (m, 4H),

1.89-1.75 (m, 6H), 1.58-1.51 (m, 4H). MS (ESI) m/z 490.3 [M+H]+. HRMS (ESI) m/z [M

+H]+ calcd for C29H40N5O2: 490.3182, found: 490.3167.

(1-Benzyl-4-piperidyl)-N-methyl{6,7-dimethoxy-2-[4-(2-pyridyl)-1-piperazinyl]-4-
quinazolinyl}amine (63)—1H NMR (400 MHz, CD2Cl2) δ 8.17 (ddd, J = 4.9 Hz, 2.0 Hz,

0.80 Hz, 1H), 7.50 (m, 1H), 7.35-7.29 (m, 4H), 7.28-7.22 (m, 1H), 7.06 (s, 1H), 6.89 (s, 1H),

6.71 (d, J = 8.6 Hz, 1H), 6.62 (ddd, J = 7.1 Hz, 4.9 Hz, 0.80 Hz, 1H), 4.18 (tt, J = 11.2 Hz,

3.8 Hz, 1H), 3.94-3.90 (m, 7H), 3.85 (s, 3H) 3.63-3.58 (m, 4H), 3.50 (s, 2H), 3.11 (s, 3H),
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3.00 (br d, J = 11.2 Hz), 2.17-1.94 (m, 4H) 1.90-1.83 (m, 2H). MS (ESI) m/z 554.3 [M+H]+.

HRMS (ESI) m/z [M+H]+ calcd for C32H40N7O2: 554.3243, found: 554.3237.

4-(1-Benzyl-4-piperidyloxy)-2-chloro-6,7-dimethoxyquinazoline (64)—To a

mixture of 2,4-dichloro-6,7-dimethoxyquinazoline (515 mg, 2.0 mmol) and 1-

benzylpiperidin-4-ol (430 mg, 2.25 mmol) in dry DMSO (7.5 mL) was added slowly at

room temperature KOt-Bu (335 mg, 3.0 mmol). The reaction mixture was stirred at room

temperature for 2 hours. Water (20 mL) was added and the aqueous layer was extracted with

DCM (3 × 30 mL). The combined organic extracts were washed with brine (30 mL), dried

over anhydrous MgSO4 and then concentrated under reduced pressure. The crude product

was purified by flash chromatography (EtOAc/Pet. Ether 1:1) to furnish the title compound

64 (550 mg, 67%) as a pale yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.36-7.29 (m, 4H),

7.28-7.22 (m, 2H), 7.17 (s, 1H) 5.41 (tt, J = 8.2 Hz, 4.0 Hz, 1H, H3), 3.99 (s, 3H), 3.98 (s,

3H), 3.57 (s, 2H), 2.85-2.75 (m, 2H), 2.40 (br, t, J = 9.1 Hz), 2.18-2.09 (m, 2H), 2.00-1.90

(m, 2H)

4-(1-Benzyl-4-piperidyloxy)-6,7-dimethoxy-2-(4-methyl-1,4-diazepin-1-
yl)quinazoline (65)—To a solution of 64 (80 mg, 0.19 mmol) in dry toluene (3 mL) was

added 1-methyl-1,4-diazepane (0.25 mL, 230 mg, 2.0 mmol). The reaction mixture was

refluxed overnight and then concentrated under reduced pressure. The residue was purified

by flash chromatography (DCM/MeOH 99:1 to 95:5) to furnish quinazoline 65 (87 mg,

93%) as a yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 4H), 7.29-7.23 (m, 1H),

7.17 (s, 1H), 6.89 (s, 1H), 5.28 (dq, J1 = 11.8 Hz, 3.8 Hz, 1H), 3.99-3.95 (m, 5H), 3.93 (s,

3H), 3.87(t, J = 6.4 Hz, 2H), 3.57 (s, 2H), 2.83-2.70 (m, 4H), 2.62-2.56 (m, 2H), 2.41-2.35

(m, 5H), 2.14-2.03 (m, 4H), 2.00-1.99 (m, 2H). MS (ESI) m/z 492.3 [M+H]+. HRMS (ESI)

m/z [M+H]+ calcd for C28H38N5O3: 492.2975, found: 492.2965.

4-(1-Benzyl-4-piperidyloxy)-6,7-dimethoxy-2-[4-(2-pyridyl)-1-
piperazinyl]quinazoline (66)—66 was synthesized following a procedure similar to

65. 1H NMR (400 MHz, CDCl3) δ 8.22 (ddd, J = 4.9 Hz, 1.9 Hz, 0.68 Hz, 1H), 7.50 (m,

1H), 7.37-7.30 (m, 4H), 7.29-7.23 (m, 1H), 7.19 (s, 1H), 6.94 (s, 1H), 6.70 (d, J = 8.60 Hz,

1H), 6.64 (m, 1H), 5.30 (m, 1H), 3.98-3.94 (m, 10H), 3.66-3.64 (m, 4H), 3.58 (s, 2H),

2.85-2.76 (m, 2H), 2.52-2.46 (m, 4H), 2.39 (t, J = 8.8 Hz, 2H), 2.17-2.09 (m, 2H), 2.00-1.91

(m, 2H). MS (ESI) m/z 541.3 [M+H]+. HRMS (ESI) m/z [M+H]+ calcd for C31H37N6O3:

541.2927, found: 541.2936.

2-Chloro-6,7-dimethoxy-4-(4-piperidylthio)quinazoline (70)—To a suspension of

sodium hydride (60% in mineral oil, 70 mg, 1.75 mmol) in dry THF (4 mL) was added

dropwise at 0 °C, a solution of thiol 69 (350 mg, 1.61 mmol) in dry THF (4 mL). Reaction

mixture was stirred at 0 °C for 20 minutes and a solution of 2,4-dichloro-6,7-

dimethoxyquinazoline (415 mg, 1.60 mmol) in dry THF (4 mL) was added dropwise. The

mixture was stirred for 1 hour at 0 °C and then overnight at room temperature. An aqueous

ammonium chloride solution (20 mL) was added and the aqueous phase was extracted with

diethyl ether (2×50 mL). The combined organic extracts were washed with brine (40 mL),

dried over anhydrous MgSO4 and concentrated under reduced pressure. The crude product
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was purified by flash chromatography (Petroleum Ether/Et2O 2:1 to 1:1) to furnish 4-

thioquinazoline 69 (560 mg, 80%) as a colourless solid. Compound 69 (170 mg, 0.39 mmol)

was solubilised in 4N HCl solution in dioxane (5 mL, 20 mmol). The reaction mixture was

stirred overnight at room temperature and then concentrated under reduced pressure to give

hydrochloride salt of piperidine 70 (170 mg, 98%) as a light brown solid.

1H NMR (400 MHz, d6-DMSO) δ 9.38 (br, s, 1H), 9.17 (br, s, 1H), 7.67 (br, s, 2H), 7.31 (s,

1H), 7.16 (s, 1H), 4.26 (td, J = 10.4, 5.1 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.30 (br, d, J =

12.8 Hz, 2H), 3.13 (br, q, J = 12.8 Hz, 2H), 2.30 (dd, J = 12.8, 3.2 Hz, 2H), 2.00 (qd, J =

12.8, 3.2 Hz, 2H). MS (ESI) m/z 340.1 [M+H]+. HRMS (ESI) m/z [M+H]+ calcd for

C15H18ClN3O2S: 340.0887, found: 340.0882.

4-(1-Benzyl-4-piperidylthio)-2-chloro-6,7-dimethoxyquinazoline (71)—To a

solution of 70 (170 mg, 0.38 mmol) in an ethanol/methylene chloride mixture (10 : 5 mL)

were added triethylamine (0.16 mL, 1.19 mmol), acetic acid (0.07 mL, 1.22 mmol) and then

benzaldehyde (0.06 mL, 0.59 mmol). The reaction mixture was stirred for 5 minutes and

sodium triacetoxyborohydride (130 mg, 0.60 mmol) was added. The reaction mixture was

stirred overnight at room temperature and then concentrated under reduced pressure. The

crude residue was purified by flash chromatography (DCM/MeOH 100:0 to 98:2) to give N-

benzylpiperidine 71 (110 mg, 67%) as a yellow oil. 1H NMR (400 MHz, CD3OD) δ

7.39-7.24 (m, 5H), 7.17 (s, 1H), 7.12 (s, 1H), 4.14 (m, 1H’), 4.00 (s, 3H), 3.97 (s, 3H), 3.59

(s, 2H), 2.91 (br, d, J = 11.5 Hz, 2H), 2.37 (br, t, J = 11.5 Hz, 2H), 2.22 (dd, J1 = 11.5, 3.6

Hz, 2H), 1.85 (qd, J = 11.5 Hz, 3.6 Hz, 2H). MS (ESI) m/z 430.1 [M+H]+. HRMS (ESI) m/z

[M+H]+ calcd for C22H24ClN3O2S: 430.1356, found: 430.1345.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Synthesis of 2,4-disubstituted quinazolines Reactions and Conditions: (a) different amines,

Et3N (or DIEA), THF (or DMF), r.t., 18 h; (b) different amines (10 eqv), microwave,

toluene (or neat), 130-185 °C, 30-50 min (c) i-PrOH, 4 M HCl/dioxane, microwave, 160 °C,

15 min.
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Scheme 2.
Synthesis of quinazolines analogues with a N-Me group at position-4. Reactions and

Conditions: (a) Boc2O, Et3N, DCM, 17 h, r.t.; (b) LiAlH4, THF, 3 days; (c) 2,4-

dichloro-6,7-dimethoxyquinazoline, Et3N, THF, 18 h, r.t.; (d) different amines (10 eqv),

toluene, reflux, 18 h.
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Scheme 3.
Synthesis of quinazolines analogues with an oxygen atom at position-4. Reactions and

Conditions: (a) KO-tBu, DMSO, 1-Benzyl-4-piperidinol, 2 h, r.t.; (b) cyclic amines (10

eqv), toluene, reflux, 18 h.
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Scheme 4.
Synthesis of quinazolines analogues with a sulphur atom at position-4. Reactions and

Conditions: (a) MsCl, Et3N, DCM, 0 °C, 1 h; (b) KSAc, DMF, 60 °C, 16 h; (c) NaBH4,

MeOH, r.t., 20 min; (d) NaH, THF, 0 °C, 20 min, then, 2,4-dichloro-6,7-

dimethoxyquinazoline; (e) 4N HCl in dioxane, r.t. 16 h; (f) benzaldehyde, Na(AcO)3BH,

Et3N, AcOH, EtOH, r.t., 16 h; (g) N-methyl homopiperazine (10 eqv), toluene, reflux, 18 h.
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Figure 1.
SAR of quinazoline scaffold for Pf3D7 activity. The underlined features are conserved for

human G9a/GLP inhibition.
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Figure 2.
Stage-dependent antimalarial activity. (A) Synchronized P. falciparum parasites were

treated with DMSO or 10x IC50 values of compounds 11 or 22 for three distinct 12 hour

periods of the intraerythrocytic life cycle. (B) Re-invasion of treated parasites at 47 hours

post-invasion was quantified by flow cytometry. (C) After 12-hour treatment, parasites were

washed, diluted, and allowed to grow for four days after which parasitemia was measured by

flow cytometry. Data are mean ± SD of 30,000 RBCs from duplicate samples.
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Figure 3.
Histone methylation levels in treated parasites. P. falciparum 3D7 parasites were treated

with the indicated compounds or DMSO vehicle control for 12 hours. Specific histone

H3K4me3 and H3K9me3 levels were quantified by densitometry, normalized to histone H3

core signal, and resulting methylation levels relative to DMSO control treated parasites are

indicated below each pair of methylation specific and corresponding core histone H3 bands
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Table 1

SAR for R2 and R4 substituents

Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

1 BIX01294 43.4 4.8 110.6 3.86 65.99

2 18.5 5.5 297.3 3.48 65.99

3 23.3 4.7 201.8 4.71 62.75

4 29.1 3.8 130.6 5.10 62.75

5 26.5 2.6 98.2 4.44 78.88

6 67.6 4.9 72.5 4.44 78.88

7 54.0 4.9 90.8 4.44 78.88

ChemMedChem. Author manuscript; available in PMC 2015 October 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sundriyal et al. Page 26

Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

8 30.3 10.7 353.2 3.89 79.82

9 41.7 9.6 230.3 4.11 89.05

10 36.6 5.9 161.3 4.25 65.99

11 37.6 10.1 268.7 4.34 71.98

12 47.0 11.2 238.3 4.53 79.82

13 45.4 7.9 174.1 5.35 62.75

14 67.4 3.6 53.5 5.21 62.75

15 80.4 6.3 78.4 4.98 71.98
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

16 60.6 6.4 105.7 5.82 79.82

17 76.0 5.4 71.1 4.96 62.75

18 71.5 6.1 85.4 6.11 62.75

19 >300 ND - 2.30 65.99

20 >300 ND - 1.90 65.99

21 56.5 5.5 97.4 2.88 78.88

22 36.6 14.2 388 3.14 62.75
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

23 173.8 26.8 154.3 1.99 71.98

24 53.4 10.8 202.3 2.77 71.98

25 19.6 11.7 597 3.09 62.75

26 18.7 5.7 304.9 3.64 62.75

27 369.0 ND - 4.35 79.82

28 246.6 ND - 4.08 95.95

29 197.3 10.5 53.3 3.48 65.99
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

30 144.5 6.5 45 4.44 78.88

31 178.5 6.3 35.3 4.71 62.75

32 330.4 ND - 3.09 65.99

33 92.9 5.6 60.3 4.06 78.88

34 94.3 6.3 66.9 4.32 62.75

35 152.4 15.3 100.4 3.17 71.98

36 110.6 6.5 58.8 4.27 62.75
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

37 111.0 10.8 97.3 3.95 71.98

38 335.0 ND - 2.79 95.95

39 >2000 ND - 1.91 89.05

40 685.5 ND - 3.06 79.82

41 >2000 ND - 2.68 89.05

42 >2000 ND - 3.01 79.82
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

43 107.4 17.8 165.8 3.55 79.82

44 569.6 ND - 3.142 62.75

45 194.5 28.3 145.6 4.11 75.64

46 161.4 ND - 4.38 59.51

47 922.6 ND - 3.23 68.74

48 272.3 ND - 4.33 59.51
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

49 76.6 12.2 159.3 4.87 59.51

50 322.5 ND - 2.61 62.75

51 >300 ND - 2.22 62.75

52 >300 ND - 1.90 65.99

53 >300 ND - 2.38 71.98
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Cmpd ID R4 R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP PSA

54 -N(Et)2 27.6 >10 - 3.00 62.75

55 -N(Me)2 34.4 >10 - 2.22 62.75
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Table 2

SAR of 4-amino region

Cmpd ID X R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 ClogP PSA

1 BIX01294 NH 43.4 4.8 110.6 3.86 65.99

60 N-Me 158.7 6.0 37.9 3.89 57.2

3 NH 23.3 4.7 201.8 4.71 62.75

61 N-Me 495.1 8.1 16.4 4.74 53.96

4 NH 29.1 3.8 130.6 5.10 62.75

62 N-Me 399.5 5.4 13.6 5.13 53.96
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Cmpd ID X R2 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 ClogP PSA

5 NH 26.5 2.6 98.2 4.44 78.88

63 N-Me 472.3 9.6 20.4 4.47 70.09

65 O 1464 7.9 5.4 3.83 63.19

66 O 2061 15.7 7.7 4.41 76.08

72 S 1541 10.2 6.7 4.55 53.96
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Table 3

SAR of 6,7-dimetoxy region

Cmpd ID R2 R6 = R7 Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 clogP TPSA

1 BIX01294 -OMe 43.4 4.8 110.6 3.86 65.99

73 H 100.7 7.0 69.6 3.85 47.53

3 -OMe 23.3 4.7 201.8 4.71 62.75

74 H 384.6 4.0 10.5 4.70 44.29

5 -OMe 26.5 2.6 98.2 4.44 78.88

75 H 353.6 5.0 14.2 4.43 60.42
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Table 4

SAR of position-7 substituent

Cmpd ID X Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 ClogP TPSA

76 (TM2-115) 42.7 4.7 110.1 3.86 65.99

77 -OH >2000 ND - 1.99 76.99

78 >2000 ND - 2.23 69.23

79 >2000 ND - 2.62 69.23

80 >2000 ND - 3.01 69.23

81 >2000 ND - 3.40 69.23

82 >2000 ND - 3.79 69.23

83 >2000 ND - 2.28 78.02

84 >2000 ND - 3.40 69.23
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Cmpd ID X Pf3D7 IC50 (nM) HepG2 IC50 (μM) HepG2/Pf3D7 ClogP TPSA

85 >2000 ND - 3.15 69.23

86 >2000 ND - 3.54 69.2

87 >2000 ND - 2.24 78.46

88 >2000 ND - 2.78 78.46

89 >2000 ND - 2.32 109.1

90 150 3.0 9.4 4.10 65.99

91 319.1 ND - 3.09 75.22
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Table 5

Pharmacokinetics and physicochemical properties of a few representative compounds

1 76 11 22

BIX-01294
[b]

TM2-115
[b]

Pf3D7 IC50 (nM) 43.4 42.7 37.6 36.6

HepG2 IC50 (nM) 4800 4700 10100 14200

HepG2/3D7 110.6 110.1 268.6 388.0

rat plasma t1/2 (h) >4h >4h >4h >4h

MW 491 491 492 386

clogP 3.86 3.86 4.34 3.14

logD pH 3 0.5 0.9 1.4 1

logD pH 7.4 5 4.2 4.2 3.8

solubility pH 2 (μg/ml) >100 >100 >100 50-100

solubility pH 6.5 (μg/ml) >100 50-100 50-100 6.3-12.5

rat microsome t1/2 (min) 53 28 184 97

in vitro CLint (μl/min/mg protein) 33 62 9 18

Predicted EH
[a] 0.45 0.61 0.19 0.31

[a]
predicted in vivo hepatic extraction ratio

[b]
data for 1 and 76 taken from reference 21
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