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1. Introduction

1.1. Overview

DNA polymerases are essential for the repair and replication of genomic DNA. These

enzymes must rapidly bind and incorporate the correct deoxynucleoside triphosphate

(dNTP) from a pool of chemically and structurally similar molecules in a template-

dependent manner to ensure high fidelity DNA synthesis. Appropriately, DNA binding

precedes nucleotide selection.1,2 In recent years, a wealth of structural information,

primarily from crystallographic structures, characterizing the structure of DNA polymerases

from diverse sources has hastened our molecular understanding of the critical and essential

role they play in faithful genome replication and repair. Based on primary sequence, DNA

polymerases are grouped into families.3 This article seeks to assimilate structural

information across DNA polymerases families to uncover molecular attributes that facilitate

nucleotide binding and catalysis. We analyze structural similarities and differences between

representative DNA polymerases from different families. By performing multiple structural

alignments on fifteen polymerase ternary substrate complex crystal structures, the alignment

confirms that the catalytic cores are conserved between families. It includes two key active

site metal ions along with two critical bridging aspartate residues, and one variable acidic

residue (aspartate or glutamate) that coordinate these metals. These elements, as well as the

incoming nucleotide, are highly conserved in structural space between polymerase families.

Several other charged residues are conserved among catalytic cores across polymerase

families. Importantly, we describe a tubular “channel” leading from the enzyme boundary to

the active site of the polymerases in three families; A, B, and X. The lack/presence of this

channel suggest that the mechanism of mobilizing a dNTP for insertion may differ across

polymerase families. In addition, domains other than the polymerase domain play a role in

formation of this channel. The features of DNA synthesis may depend on how the molecular

architecture of the channel affects substrate (right and wrong) access and product (PPi)

release. After a general description of DNA polymerase architecture and the active site for

each family, we discuss dNTP diffusion into the active site.
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1.2. DNA Polymerase Architecture

Based on protein sequence homology, DNA polymerases are grouped into at least 5

families: A, B, C, X, and Y (Table 1).3,4 Crystallographic structures of members of each

family have been characterized in various liganded forms. These structures indicate that the

proteins are multi-domain enzymes that include an accessory domain with an activity that

facilitates their respective biological function (Table 1 and Figure 1). In the case of

replicative DNA polymerases, an intrinsic 3′–5′-proofreading exonuclease activity often

resides on a domain that improves overall DNA synthesis fidelity by removing misinserted

nucleotides. In the case of a repair DNA polymerase, DNA polymerase (pol) β (X-family)

includes an amino-terminal deoxyribose phosphate (dRP) lyase domain that removes the 5′-

sugar-phosphate of an incised abasic site during the repair of simple DNA base lesions.5 The

polymerase domain of replicative and repair polymerases are composed of three

subdomains, as illustrated in Figure 1. Additionally a group of DNA polymerases, primarily

from the Y-family, are utilized to hasten DNA synthesis through damaged DNA. These

polymerases often include protein subdomains of unknown function.

The DNA polymerase domain in various polymerases has been likened to a right-hand with

fingers, palm, and thumb subdomains.21 The palm subdomain coordinates two metals

(Mg2+) necessary for catalysis with three acidic amino acid side chains and is structurally

homologous with members of the A-, B-, and Y-family polymerases (Figure 1). Although

the C- and X-family polymerases bind substrates and metals in an analogous manner, their

palm subdomain is not homologous with those of the other families. The subdomains of pol

β are referred to as N (nucleotide binding/selection), C (catalytic), and D (DNA-binding)

and are equivalent to the fingers, palm, and thumb, respectively, of right-handed

polymerases (Figure 1).22

Long after the discovery of Escherichia coli DNA polymerase I by Kornberg and

associates,23,24 structural studies revealed that substrate binding to DNA polymerases

induces structural rearrangements that facilitate selection of the correct incoming nucleotide.

Comparing structures of binary DNA/polymerase complexes with those that include an

incoming nucleotide (i.e., ternary complex) indicates that a subdomain (fingers or N-

subdomain) often repositions itself to close upon the nascent base pair.25,26 This results in a

nascent base pair that is sandwiched between the primer terminus and polymerase.

Critically, however, the architecture of the DNA-bound state of polymerases constrains the

path that the nucleotide must traverse or diffuse to enter the polymerase active site. Thus, a

feature of the molecular architecture of X-family members, that provided the original

motivation for this study, is a well-defined “tubular” channel that leads to the active site

from the surface of the enzyme (Figure 1). Since DNA restricts access to the active site,

nucleotides must diffuse through this channel. Once the nucleotide gets to the active site, a

specific geometry must be achieved with two divalent metal ions, DNA primer 3′-OH, and

incoming nucleotide to ensure high efficiency DNA synthesis. We identified a similar

channel in the structures of A- and B-family DNA polymerases, but a well-defined channel

that serves as a gateway to the active site seems absent in the other families (Figure 1). It

remains to be determined whether this limitation influences catalytic efficiency, fidelity, or

biological function.
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The identity, crystallographic structures, accessory domains, and biological function of the

polymerases analyzed in this study are outlined in Table 1. In general, replicative DNA

polymerases belong to the B- (eukaryotic) or C- (bacterial) families. Members of the X-

family are primarily involved in gap-filling DNA repair while Y-family DNA polymerases

are believed to be involved in translesional DNA synthesis. The A-family is composed of

DNA polymerases that are involved in both DNA repair and replication.

2. Structural Homology

2.1. Polymerase Subdomains

As noted above, the polymerase domain of most DNA polymerases are comprised of three

subdomains. The architectural arrangement of the subdomains of A-, B-, and Y-family DNA

polymerases have been compared to a right-hand and are referred to as fingers, palm, and

thumb. Although the structures of the fingers and thumb subdomains are distinct among

these families, the palm subdomains are homologous.27 The palm consists of two α-helices

stacked against a β-sheet. The active site acidic residues that coordinate two divalent metals

necessary for nucleotidyl transfer are found in the palm subdomain. In contrast, the

equivalent subdomain of pol β (X-family) is structurally similar, but topologically distinct,

from these other polymerase families. The strands of the β-sheet are anti-parallel in the palm

subdomain of A-, B-, and Y-family DNA polymerases. For pol β, the β-sheet is mixed with

essential acidic residues on parallel strands.28 The structural ambiguity in the catalytic palm

subdomain among the various polymerase families has confounded the subdomain

nomenclature of X-family DNA polymerases. This is because the fingers and thumb

subdomains can be defined by a structural alignment of the catalytic palm subdomains,

ignoring topological differences, or a functional alignment of the catalytic participants

(metals, dNTP, DNA).29 A functional alignment of pol β with other DNA polymerases of

known structure results in a consistent functional nomenclature of the subdomains; the

fingers and thumb subdomains of different DNA polymerases are functionally equivalent. In

contrast, the nomenclature based on the original structural alignment of the catalytic

subdomain of pol β defines the subdomains opposite to that of the functional alignment.

Since the topology of the catalytic subdomain of X-family members is unique, an alternative

is to consider members of the X–family as left-handed, rather than the original right-hand

analogy.30 This approach highlights the non-homologous nature of the catalytic palm

subdomains, but requires prior knowledge of the architectural origin of the nomenclature. A

functional alignment would be the simplest approach, but the hand-like analogy offers no

functional insight. Accordingly, a functionally-based nomenclature where the subdomains

are referred to as C– (catalytic), D– (DNA binding), and N–subdomains (nucleotide binding/

selection) to highlight their intrinsic function.22 These correspond to the palm, thumb, and

fingers subdomains, respectively, for polymerases that utilizes the architectural analogy to a

right hand.

Even though replicative C-family DNA polymerases do not show primary sequence

similarity with members of the X-family, their catalytic subdomain exhibits strikingly

similarity to that of pol β and not to the eukaryotic B-family replicative enzymes.12,13 Based

on the structure of the catalytic subdomain of polymerases from the various families, there

Wu et al. Page 3

Chem Rev. Author manuscript; available in PMC 2015 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



appears to be two superfamilies of DNA polymeraes that can be separated by the topology

of the β-sheet in the catalytic subdomain: anti-parallel (A-, B-, and Y-family) or mixed (C-

and X-family). Although members of these alternate superfamilies appear to have evolved

separately, they share many general structural and mechanistic features with polymerases

from these other families.

2.2. Structural Alignment of DNA Polymerases Within Families

To structurally align DNA polymerase structures, the structural alignment program

STAMP,31 a component of the VMD package,32 was employed that minimizes Cα distance

between aligned residues of each crystal structure by rigid-body rotation and translation. The

multiple structure alignments (MSA) of ternary complex crystal structures from

representative members of A-, B-, C-, X- and Y-families were analyzed (Table 1). The

crystal structures within each family were aligned according to a Cα distance minimization

criterion. After MSA, pseudo-colors were assigned to each residue according to Qres,33 from

blue (Qres = 1) to white (Qres= 0). Qres is a similarity order parameter of the aligned

residues:

(1)

where Qi,n
res is the structural similarity of the ith residue in the nth protein, r(n)

ij is the Cα
distance between residues i and j of the protein, N is a normalization constant and σij is the

variance, indicating sequence separation of the structural alignment between residues i and j:

σij
2=|i−j|0.15.33

Multiple structure alignment was initially performed for three crystallographic structures of

members of the X-family of DNA polymerases. Three high-resolution ternary complex

structures (pol/DNA/dNTP) were compared: pol β (PDB ID 2FMS),14 pol λ (PDB ID

2PFO),15 and pol μ (PDB ID 2IHM).16 These structures include two essential metal ions at

the catalytic core making them excellent candidates for comparison. Figure 2 shows the

resultant overlay of the three structures after MSA. The ribbon representations are colored

according to Qres, a similarity order parameter of each aligned residue. The alignment

indicates Leu551 of pol λ has the largest value of Qres (0.86). A functional role for this

residue has not been identified suggesting that its conservation is due to a structural role.

Not surprisingly, the active site aspartates that coordinate catalytically essential divalent

metal ions exhibit high Qres values (≥0.77). The dark blue ribbon representation indicates

that many of the residues of these polymerases are structurally well conserved (Figure 2).

However, localized elements shown in white are also observed, highlighting where

structural conservation is absent.

The residues in the amino-terminal 8-kDa lyase domain of pol β are highly conserved

among X-family members. Although the domain exhibits high structural identity, the

deoxyribose phosphate lyase activity exhibited with pol β and pol λ is absent in pol μ.16 A

particular lysine residue in the 8-kDa domain (Lys72, pol β; Lys312, pol λ) is the primary

nucleophile in the dRP lyase activity while valine sits at this position in pol μ.16,34,35 In
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addition to its lyase activity, another critical role of this domain in X-family polymerases is

targeting the enzyme to the 5′-phosphate in gapped DNA during replication/repair.36–38 The

three polymerase subdomains, along with the lyase domain, form a donut-like structure that

creates a tubular channel (Figures 1 and 2). Since DNA enters the active site from one side

of the polymerase structure, nucleoside triphosphates must enter the active site from the

opposite side. This channel is observed in all three ternary complex structures from X-

family DNA polymerases (e.g., pol β; Figure 1) and is described in detail below. Despite

catalytic and sequence differences in the 8-kDa domains of these three polymerases, the 8-

kDa domain is an essential component of this channel that influences the path of the

incoming nucleotide.

Figure 2 illustrates that the polymerase domains of three A-family ternary complex

structures analyzed have very similar molecular architectures. The largest Qres for an A-

family member was 0.88 for Asn580 of Klentaq DNA polymerase. Yet, as with the X-family

enzymes, there were regions that lacked homology and are illustrated in white (Figure 2). In

addition, the analysis revealed an apparent channel where dNTPs could diffuse into the

active site (e.g., pol β; Figure 1). The T7 structure also includes thioredoxin, an extrinsic

accessory domain believed to act as a processivity subunit. In the crystal structure, it is

distant from the short duplex required for crystallization and does not form part of the

channel. Accordingly, it is not shown in Figure 2.

We found that B-family DNA polymerases have a more diverse molecular architecture than

the corresponding enzymes in the A- and X-families (Figure 2). In this case, the highest Qres

is only 0.71. Interestingly, a tubular channel is not easily recognized in the absence of the

3′-5′ exonuclease domain in B-family polymerases (Figure 1). As observed with the yeast

pol δ ternary complex structure, the 3′–5′ proofreading exonuclease domain is essential for

the structural integrity of the channel that provides access to dNTPs (Figure 3). This is

similar to the structural role provided by the 8-kDa domain of X-family enzymes where an

intrinsic accessory domain restricts nucleotide access to the active site (e.g., lyase domain of

pol β, Figure 1).

The aligned structures after MSA for C- and Y-family representatives are also shown in

Figure 2. The alignments illustrate relatively conserved structures (blue ribbons) except for

some elements that are unique to each polymerase (white regions). A channel that might

restrict nucleotide access to the active site is not clearly observed in the Y-family structures

(e.g., pol ι in Figure 1). The fingers and thumb subdomains are small compared to those in

other families and the active sites are solvent exposed. The small size of the fingers and

thumb subdomains may be related to the low-fidelity of Y-family DNA polymerases.39 The

C-family enzymes also do not have a clear channel (Figures 1). However, in one member of

the C-family, the 3′–5′ exonuclease domain of PolC (PDB ID 3F2B) was deleted for

structural characterization and may provide a component of the channel.12 Considering that

the 3′–5′ exonuclease domain is structurally integral to the channel in B-family DNA

polymerases, the possibility of a channel for nucleotide entry to the active site should not be

excluded in C-family enzymes.
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2.3. Catalytic Core

2.3.1. Structural Alignment Within Families—The channels noted in several families

of DNA polymerases lead from the surface into the active site or catalytic core. The catalytic

core for X-family DNA polymerases is illustrated for pol β (Figure 4), and it exhibits high

conservation among the family members. Essential elements of the core are the bound

incoming dNTP, two octahedral-coordinated divalent metal ions (Mg2+), the 3′-DNA

primer-terminus, and active site aspartates (190, 192, and 256) (Figure 4A). We examined

the relative positions of the pro-RP non-bridging oxygen of the α-phosphate of the bound

dNTP and two divalent metal ions. These three elements play a critical role in chemistry for

nucleotide insertion. The relative positions of these three atoms after MSA for different X-

family DNA polymerases are tabulated in Table 2. The results indicate that these atoms are

conserved in geometric space. By performing MSA for the three ternary complexes of pol β
(PDB ID 2FMS), pol λ (PDB ID 2PFO), and pol μ (PDB ID 2IHM), we observe that the

three aspartate residues and metals are conserved in structural space as well as sequential

space (Figures 4A and 5; Table 2).

The conservation in the positioning of the pro-RP oxygen of the α-phosphate of the bound

dNTP and two divalent metal ions in structural space is also observed in A-family DNA

polymerases. However, the active site acidic residues that coordinate the metal ions include

a glutatmate residue (Asp475, Asp654 and Glu655 in T7). The glutamate in T7 DNA

polymerase shows a somewhat different position than the corresponding aspartate (e.g.,

Asp256, pol β) of X-family and the other members of the A-family. An analogous glutamate

in the catalytic core is also observed in members of the Y-family. The relative positioning of

these atoms with respect to other A-family members is tabulated in Table 3.

For B-family members, the position of catalytic residues and the three aspartate residues are

conserved in both structural and sequential space. However, there is some variation in the

divalent metal ion composition of several of the crystallographic structures. The pol δ (PDB

ID 3IAY) active site has three Ca2+ ions (Figure 5).10 The third divalent metal in pol δ has

been suggested to facilitate product pyrophosphate dissociation.10 The other Ca2+ ions in pol

δ are positioned as other divalent metals in other DNA polymerase families. While there is

some variation in the number and position of the divalent metal ions in B-family enzymes,

the relative position of the catalytic participants appears to be conserved. Structural and

sequential space conservation of the three aspartate positions of the B-family structures is

also observed. However, unlike the X-family, the three aspartate residues (Asp249, Phi29;

Asp608, pol δ; Asp411, RB69) located in the catalytic core after MSA, exhibit a somewhat

different orientation in each structure (not shown). Despite the variations in acidic residue

identity and metal ion, the conservation of three negatively charged residues (aspartates

and/or glutamates) and two divalent metal ions in both structural and sequential space are

common features in A-, B- and X-families irrespective of species.

The ternary complex structures analyzed above represent pre-catalytic complexes that have

been trapped using a dideoxy-terminated primer terminus (i.e., O3′ absent), inert divalent

metal (i.e., Ca2+), or non-hydrolysable incoming nucleotide analog (i.e., bridging oxygen

between Pα and Pβ substituted with carbon or nitrogen). Recently, ternary complex
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crystallographic structures of intermediate complexes undergoing nucleotidyl transfer have

been captured with natural substrates and metals. This was achieved by generating crystals

of pre-catalytic substrate complexes in the presence of Ca2+ and initiating the reaction

through ion exchange with Mg2+. The reaction is stopped by freezing the crystal as the

reaction progresses (i.e., after a defined time period) and the structure is determined. This

approach has successfully trapped ternary product complex structures of pol η (Y-family)40

and pol β (X-family).41 Interestingly, an additional transient divalent metal site is observed

bridging oxygen atoms on the products (Figure 4B). This metal appears to be associated

with the product state and postulated to be involved in pyrophosphorolysis, the reverse

reaction of DNA synthesis.41 It is observed during correct, but not incorrect nucleotide

insertion. Additionally, it is expected to be unique to X- and Y-family DNA polymerases

since other DNA polymerases have a conserved basic side chain that occupies this

position.25,41

2.3.2. Structural Alignment of Catalytic Cores From Various Families—
Although it is not unexpected that a structural conservation was observed among family

members or that the active site of polymerases from various families is conserved, it is of

functional interest to examine whether their might be a structural conservation beyond the

active site for DNA polymerases belonging to different families. Investigating the

structurally conserved assembly units between different families is especially challenging.

Unfortunately, the STAMP alignment algorithm31 could not be directly applied to DNA

polymerases in different families, because of their dissimilar architectures and gene

sequences. Thus, in an attempt to compare the chemical environment of the active site in

various family members, we selected the three catalytic atoms described above (two metals

and the pro-RP oxygen of the α-phosphate of the bound dNTP) to define an alignment

platform. This permitted us to examine the conservation of residues in the vicinity of the

active site of members from different polymerase families. Figure 6 shows the relative

positions of the divalent metal ions, and the bound dNTP and DNA primer terminus after the

alignment of three crystallographic structures from three different families (Klentaq, A-

family; pol δ, B-family; pol β, X-family). Overall, the figure illustrates that the triphosphate

groups, metals and primer terminus are structurally conserved between families. The

aspartate (Asp762) that may be involved in primer O3′ deprotonation is somewhat

displaced in the B-family representatives (Figure 6B).

2.3.3. Active Site Architecture—Since substrates and cofactors are highly charged, it is

reasonable to expect that electrostatic interactions provide the dominant force that assembles

catalytic participants (i.e., incoming dNTP, metals, active site acidic residues and primer

terminus). As indicated previously for pol β,42 charged residues beyond the active site (i.e.,

second shell), may contribute to stabilization of the transition state. These residues would

also be expected to contribute to the dynamics involved in the conformational adjustments

that must occur to achieve the geometry necessary for catalysis. By performing MSA for the

three X-family closed ternary complexes, i.e., for pol β (PDB ID 2FMS), pol λ (PDB ID

2PFO), and pol μ (PDB ID 2IHM), we find that two arginine residues likely contribute to

substantial stabilization of the active site; Arg254 and Arg183 (pol β), Arg488 and Arg420

(pol λ) and, Arg418 and Arg323 (pol μ). Figure 7 illustrates the relative positions of these
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residues with respect to the catalytic core of pol β. The equivalent residues in the other X-

family DNA polymerases superimpose with those from pol β highlighting their structural

and sequence conservation; Gly189 (pol β), Gly426 (pol λ), and His329 (pol μ) also

structurally align. The histidine in pol μ is within hydrogen bonding distance to the

phosphate backbone of the primer terminus and the γ-phosphate of the incoming nucleotide.

These interactions may facilitate template-independent polymerization.16

We also performed an alignment with nine polymerase structures from other families with

respect to the pro-RP oxygen of the α-phosphate and two divalent metal ions. The aligned

structures are: T7 (PDB ID 1T7P),8 Klentaq (PDB ID 3KTQ),6 and BF (PDB ID 3EZ5)7

from the A-family; Phi29 (PDB ID 2PYJ)9 and pol δ (PDB ID 3IAY) from the B-family; pol

β (PDB ID 2FMS) and pol λ (PDB ID 2PFO) from the X-family; pol ι (PDB ID 3H4D)18

and pol η (PDB ID 3MR2)20 from the Y-family. Several structures only included a single

divalent metal and were excluded: PolC (PDB ID 3F2B, C-family), PolIII (PDB ID 3E0D,

C-family)13 and pol (PDB ID 3IN5, Y-family)19 and pol μ (PDB ID 2IHM, X-family).

Additionally, the two active site Ca2+ ions in Dpo4 (PDB ID 2R8H, Y-family)17 appear to

distort the active site as judged by large deviations in the positions of active site residues

relative to the other structures in the alignment, and this structure also was not used.

The structural alignment of the catalytic core and conserved active site residues in these nine

structures is shown in Figures 8 and 9. The imaginary plane, composed of the pro-RP oxygen

of the α-phosphate and two divalent metal ions (Mg2+) in pol β, is shown as a reference

plane in Figure 8 (semi-transparent gray disk). The two metal ions from the other structures

are projected relative to the plane after the alignment. Figure 8 illustrates that all of the metal

ions from the nine structures, except pol ι (Y-family), superimpose well. The positions of

two of the metal ions (orange) of pol ι are displaced slightly from the consensus.

Interestingly, whereas the phosphates of the incoming nucleotides superimpose well, the

sugar and bases do not suggesting that the nascent base pair geometry in these structures

differ somewhat. Following this approach, we traced the positions of key active site residues

in the catalytic core and other conserved charged residues. In Figure 9, the nitrogen atoms of

basic side chains within hydrogen bonding distance to either of the phosphates of the

incoming nucleotide are shown. Other atoms (i.e., oxygen and nitrogen) that might influence

the active site environment are shown in Figure 10C. There is a cluster of lysine residues

near the α-phosphate of the dNTPs (Figure 9, top panel) and a histidine cluster, A-family,

around the β-phosphate of the incoming dNTP (Figure 9, middle panel). The cluster of

lysine residues near the α-phosphate could easily coordinate the pro-SP oxygen, but in the

case of the α-phosphate in X- and Y-family DNA polymerases, there is a lack a basic side

chain that might coordinate the pro-SP oxygen.25 Arginines from X-family polymerases are

clustered around the β-phosphate (Figure 9, middle panel). Lysines from Y-family and

arginines from A-family polymerases are found in clusters near the γ-phosphate (Figure 9,

lower panel). These arginines and lysines are distributed in a very broad region enveloping

the scaffold of the phosphate backbones of the incoming dNTPs; along with the divalent

metals, they neutralize the charge on the triphosphate as well as play a critical role in

catalysis. It is likely that the basic side chains of these residues also play an important role in

targeting the incoming nucleotide to the polymerase active site.43 In addition, the structural

Wu et al. Page 8

Chem Rev. Author manuscript; available in PMC 2015 March 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



alignment indicates that subtle electrostatic differences exist between polymerases from

different families and this may impact substrate specificity (i.e., ability to select right from

wrong; fidelity). In addition to a proofreading activity, replicative DNA polymerases exhibit

high fidelity due to their efficient insertion of the correct nucleotide.44 The high fidelity and

correct insertion efficiency exhibited by replicative DNA polymerases is due to their rapid

insertion of a correct nucleotide, while low fidelity enzymes exhibit slow rates of insertion.

Since both low and high fidelity DNA polymerases bind the correct nucleotide with similar

efficiencies, fidelity is linked to the rate of correct nucleotide insertion. It is expected that

the basic side chain interactions observed with the pro-SP oxygen of the α-phosphate of the

incoming nucleotide with replicative polymerases noted above will facilitate correct

nucleotide insertion.25

From the structural alignment, we observed that the two active site aspartates that coordinate

both metals are highly conserved in position (Figure 10A and B). The oxygens of these

aspartates converged tightly around the metal ions (Figure 10B). The lower efficiency and

fidelity of DNA synthesis exhibited by Y-family DNA polymerases is most likely reflected

in the positioning of charged active site residues in the catalytic core. As noted above, X-

and Y-family DNA polymerases do not exhibit a conserved basic side chain interacting with

the pro-SP oxygen of the α-phosphate. The lack of this interaction would be expected to

diminish the rate of correct nucleotide insertion thereby decreasing fidelity.25 Likewise, the

aspartate or glutamate residues located near the 3′-OH primer terminus (Figure 10C) exhibit

a broad range of positions in contrast to the bridging aspartate residues (Figure 6B).

Structurally conserved residues near the active site are tabulated for each polymerase family

in Table 4. The role of this Asp/Glu near the primer terminus is of immense interest. Site-

directed mutagenesis of this residue in pol β (Asp256) coupled with crystallographic,

activity pH-profiles, and computational studies indicate that this residue plays a central role

in nucleotidyl transfer.45 In addition to coordinating the catalytic metal, Asp256 coordinates

O3′ of the primer terminus and serves as a general base upon O3′ activation; i.e., O3′−

formation.42 Thus, the pKas of both the donor (primer O3′) and the acceptor group (OD2 of

Asp256) are regulated by the catalytic metal ion.

3. DNA Polymerase Channels

3.1. Nucleotide Access

An electrostatic surface representation of DNA polymerases often identifies a cleft where

DNA binds; basic protein side chains interact with the negatively charged sugar-phosphate

backbone of the DNA. As noted above, structures of ternary substrate complexes indicate

that the path accessible for an incoming nucleotide is restricted to an apparent channel

leading from the surface into the polymerase active site. Previous calculations have

suggested that nucleotide diffusion into the active site of RNA polymerase is severely

restricted.49 Before the characteristics of these channels in DNA polymerases are described,

it is useful to compare the relative total solvent-excluded volume of each DNA polymerase.

From available crystal structures, it is evident that pol β (X-family) is the smallest

polymerase examined and those from the replicative C-family the largest. However, since

domains or flexible loops are often removed to facilitate crystallization, the calculated
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volumes should be considered a minimum estimate. We have listed the ratio of residues

present in the crystallized structure (C) to the total number of residues (T) for representative

members of the various polymerase families in Table 5. Thus, the size of the crystallized

enzymes are: C-family (Pol C) > B-family (Phi29) > A-family (Klentaq) > Y-family (pol ι)

> X-family (pol β).

When the surface of a ternary substrate complex structure is viewed from an appropriate

angle, an apparent pore or channel that leads to the active site is observed (e.g., with pol β;

Figure 11). Figure 12 illustrates the calculated channel for the binary DNA and ternary

(+dNTP) complex structures of pol β. In these illustrations, the pink opaque surface

designates the surface of the calculated channel. In Figure 12, the protein in the vicinity of

the channel is semi-transparent to enable illustration of how the protein influences the

topology of the channel. For the binary DNA complex, the channel can be viewed as the

environment through which the dNTP must traverse to reach the active site/primer-terminus.

For the ternary substrate complex structures, the channel represents a constrained path for

the departure of pyrophosphate. We quantify and compare, for most cases, the shapes and

volume of these entrance and exit channels. These estimates provide boundaries and insights

into nucleotide binding and strategies used by different polymerases to limit or trap

substrates/products necessary for DNA repair and replication synthesis.

3.2. Depth

To quantify features of the nucleotide access channel, three amino acid Cα atoms define an

imaginary plane perpendicular at the channel entrance. The distances from this plane to the

C3′ of the DNA primer terminus and the center of mass of the bound incoming dNTP

defines the depth of the channel. For instance, in the case of pol β, we selected Cα (Asp17,

lyase domain; Arg102, D-subdomain; and Arg149, C-subdomain) to define the imaginary

plane at the entrance of the channel. Although the catalytic event actually occurs at O3′ of

the primer terminus, this atom is often missing in crystallographic structures, so that

chemistry is abrogated. The distances from the pol β primer terminus C3′ and the center of

mass of bound dNTP to the channel entrance described above are 13.3 and 13.1 Å,

respectively. For Klentaq (A-family), the distances are 12.5 and 10.8 Å, respectively.

Similarly, for Phi29 (B-family), the distances are 22.4 and 24.9 Å, respectively. These

values provide an estimate for the depth of the respective channels that a nucleotide must

traverse as it approaches the polymerase active site (Table 6). Thus, a nucleotide must

diffuse through a confined space considerably further with Phi29 than with the other

polymerases examined.

3.3. Volume

The volume of the channel can be estimated using the 3V algorithm.50 This approach adopts

two rolling probe spheres (large and small). The larger rolling probe (r = 8 Å; shell volume)

scans the entire surface of the DNA polymerase (only protein) while a smaller probe (r = 3

Å; solvent-excluded volume) is used to determine the space that is “unoccupied” in a cavity

or channel by subtracting the solvent excluded volume from the shell volume. We define the

dNTP access channel volume, by estimating the volume of a channel in the absence of

dNTP and DNA strands (A) minus the volume of the dNTP and DNA that penetrate the
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channel (B) + volume of free dNTP (C); i.e., (A)−(B)+(C). There is some difficulty in

selecting the sizes of the large/small probes. For example, 9 and 3 Å was shown to be a

reasonable pair for drug-binding pocket of P-glycoprotein.50,51 In another example, 10 and 3

Å was a reasonable pair for the ribosomal exit tunnel.50,52,53 After exploration of alternate

probe sizes, 8 and 3 Å seem to be appropriate for DNA polymerases.

The channel volume corresponds to the space available to a nucleotide as it accesses the

active site from the surface of the enzyme. This information and the visualization of the

overall shape of the channel in various DNA polymerase are useful. First, the channel

volumes for binary DNA and ternary substrate complexes for pol β are illustrated in Figure

12. For the ternary complex of pol β, the measured channel volume is 3,338 Å3. We

corrected this value for DNA penetrating the channel by 751 Å3; and finally, the volume of

the dNTP, 389 Å3, was added so as to estimate the channel volume utilized by the incoming

dNTP, 2,976 Å3 (Table 4). This volume, 3,338 Å3 is encompassed by the pink surfaces in

Figures 11 and 12. The estimated channel volumes for other families are given in Table 7.

3.4. Function

3.4.1. Influence of Conformational Changes on Active Site Access—From

kinetic and structural analysis of binary DNA and ternary (+dNTP) complexes of DNA

polymerases from several families, the incoming dNTP interacts with the fingers or N

subdomain and is positioned in the active site. The precise positioning of the incoming

dNTP induced by the fingers subdomain in the active site is thought to be coupled to a

conformational change from an “open” to “closed” form of the DNA polymerase.25,26 This

repositioning relies on rotation of the fingers subdomain ~41° toward the primer-template in

T7 (PDB ID 1T7P)8 and 46° in Klentaq (PDB ID 3KTQ)6 to achieve the “closed”

conformation (A-family members). In contrast, kinetic data suggests that the dNTP

undergoes free diffusion through the channel with RB69 (B-family).54 As tabulated in Table

6, the distance between the center of mass of the bound incoming dNTP and the imaginary

plane at the entrance of the channel is ~25 Å for Phi29 DNA polymerase (B-family).

Since many DNA polymerases undergo conformational adjustments upon binding a

nucleotide, it is informative to examine the impact of the conformational change on the

channel. Where both binary and ternary complex structures are available, we computed the

associated volumes for each pair: binary (PDB ID 3EYZ) and ternary (PDB ID 3EZ5) for

BF; binary (PDB ID 4KTQ) and ternary (PDB ID 3KTQ) for Klentaq; binary (PDB ID

2PZS) and ternary (PDB ID 2PYJ) for Phi29; binary (PDB ID 3ISB) and ternary (PDB ID

2FMS) for pol β as well as a ternary complex with an active site mismatch (PDB ID 3C2M);

and binary (PDB ID 1XSL) and ternary (PDB ID 1XSN)) for pol λ. The channel volumes of

the ternary complex structures are shown for representative members of A, B, and X-

families (Figure 13A). The channel volumes for ternary complex structures of A and X-

families are similar. However, the comparison of channel volumes of the ternary complex

structures for B-family members exhibits a wider distribution, 5,937–7,980 Å3.

The ratio of channel volumes for the paired binary and ternary complex structures (Vbin/

Vter) can be calculated to determine the fractional volume change due to subdomain closing

upon nucleotide binding: Fvol=(Vbin−Vter)/(Vbin) (Figure 13B). This quantity is useful for
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understanding the channel response upon binding the incoming dNTP. The measured Fvol

values were as follows: Phi29 (0.19) ~ Klentaq (0.18) > BF (0.11) > pol λ (0.04). For pol β
structures, we also calculated the fractional volume change with an active site mismatched

nascent base pair (PDB ID 3C2M) and compared it with that for a correct base pair (PDB ID

2FMS); these were −0.01 and 0.08 respectively. For the ratio of channel volumes (Vbinary/

Vternary), Phi29 (1.23) ~ Klentaq (1.21) > BF (1.13) > pol λ (1.04) (Table 4). These data are

consistent with the concept that the movement of the dNTP through the channel in members

of the B-family occurs primarily by diffusion. The data also indicate that pol β exhibits a

small fractional volume change upon binding the correct or incorrect nucleotide.

Structures of Klentaq (A-family) transitioning between binary and ternary complexes are

illustrated in Figure 14. A large protein backbone change occurs in the vicinity of the

incoming nucleotide upon ternary complex formation, presumably trapping the incoming

nucleotide (Figure 14). The conformational change results in a large change in channel

volume (from 3,220 Å3 to 2,651 Å3). Kinetic analysis of PPi release from T7 DNA

polymerase55 and the Klenow fragment for E. coli DNA polymerase I56 suggests that it

dissociates after a post-chemistry conformational change such as subdomain opening. This

is also consistent with structural characterization of ternary product complexes recently

reported for the X-family pol β; i.e., the PPi product is only observed in the closed protein

conformation. 41

Finally, the shape of the channel entrance for DNA polymerases from different families is

illustrated in Figures 15 (with protein), and the overall shape of the channel is illustrated in

Figure 16 (without protein). Figure 16 shows the diverse topologies of the channels for both

binary and ternary complexes. These observations are consistent with properties of the

subdomain motion. For A- and B-family polymerases, the hinging motion occurs in the

vicinity of the templating base, whereas for pol β this occurs in the vicinity of the incoming

nucleotide.25 Accordingly, opening and closing motions with pol β have a smaller impact on

the volume near the dNTP-binding pocket. This is consistent with the report that pol λ does

not show a significant protein conformational change between the ternary and binary

complxes.15 Thus, conformational changes with pol λ are limited upon binding an incoming

nucleotide and the volume of the channel would not be expected to be altered in the

transition between binary and ternary complexes.

3.4.2. Proofreading Exonuclease Domain—The impact of the dNTP-induced

conformational change on channel volume is different for A- and B-family members. Since

these polymerases often include a proofreading exonuclease domain, the efficiency of

proofreading could be impacted by the position of this accessory domain relative to the

channels described here. The 3′–5′ proofreading exonuclease domain removes incorrect

nucleotides that have undergone catalysis resulting in a mismatched primer terminus. For the

A-family polymerases, for instance, it has been proposed that a misinsertion could cause

instability in the ternary “closed” complex, leading to a quick transition to the “open”

conformation.6 Thus, misinsertion could be coupled to the large conformational change of

the DNA polymerase. The 3′–5′ proofreading exonuclease domain of the A-family

polymerases is positioned distal to the incoming dNTP access channel (Figure 1). In

contrast, this domain forms part of the channel for the B-family polymerases (Phi29, Figure
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1; pol δ, Figure 3). Thus, since the exonuclease domain forms a portion of the channel in the

B-family polymerases, it might influence substrate and product binding. In this case, the

polymerase domain conformational changes may not be a prerequisite for proofreading, as it

might be for the A-family. However, it has recently been demonstrated that the stability of

the closed complex is dramatically lower after misinserting an incorrect nucleotide with pol

β that does not have a proofreading activity.41 It was postulated that the open conformation

would provide an opportunity for an extrinsic proofreading enzyme access to the

mismatched primer terminus. Accordingly, it is not unexpected that subdomain motions

could also influence proofreading with B-family DNA polymerases.

4. Concluding Remarks

From structural alignments of fifteen DNA polymerases crystal structures across five DNA

polymerase families, a common catalytic core in all of these enzymes include the incoming

dNTP, two metal ions, two bridging aspartate residues and a third variable acidic residue

(aspartate and glutamate). These elements are conserved in structural space across the

families, and of special note is the conserved architecture of the triphosphate group of the

incoming nucleotide. Charged residues in the vicinity of the catalytic core are conserved

among, but not between, polymerase families.

We also observed well-defined dNTP access channels leading into the catalytic core in DNA

polymerases of the A-, B-, and X-families. With the A-family polymerases, the distance

from the DNA primer terminus to the channel entrance is the shortest among the three

families. On the other hand, the A- and B-family polymerases exhibit a large relative change

in channel volume upon dNTP binding. In contrast, the distance from the DNA primer

terminus to the channel entrance in B-family polymerases is greater than that calculated for

A- and X-family members. The smaller polymerase subdomains and solvent accessible

active site of the Y-family DNA polymerases suggest that access to their active sites are not

restricted for these specialized DNA polymerases. Finally, the channels in the X-family

polymerases are not appreciably different in DNA binary or ternary (+dNTP) liganded

states. It remains to be determined how trafficking of substrate binding and product release

is modulated for the divergent polymerase channels described here.
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Figure 1.
DNA polymerase domain and subdomain organization. The polymerase domain of

representative family members are colored according to subdomain. The DNA polymerases

of the A- (T7), B- (Phi29), and Y-families (pol ι) are colored according to an architectural

analogy to a right-hand: thumb, orange; palm, light blue; and fingers, green. The C- (PolC)

and X-family (pol β) DNA polymerase subdomains are colored similarly but their

nomenclature often uses a functional designation: D (DNA binding), orange; C (catalytic),

light blue; and N (nucleotide selection), green. The accessory domains are colored pink

(e.g., exonuclease, lyase, or PAD). Also indicated in a ribbon representation are the PHP

(polymerase and histidinol phosphate domain), DB (duplex binding domain) and OB

(oligonucleotide/oligosaccharide-binding domain). The exonuclease domain of T7 and

Phi29 DNA polymerases are positioned differently with respect to the polymerase active

site. For pol ι, the PAD (polymerase associated domain) lies near the catalytic core. The

DNA is omitted for clarity, but enters the active site from the back of the structures in this

viewpoint. A tubular channel where nucleotides must enter the active site is indicated in the

pol β structure. The PDB ID codes for the illustrated structures are given in Table 1.
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Figure 2.
DNA polymerase family-dependent structure conservation. Ribbon representation of

crystallographic ternary complex structures of alternate DNA polymerase families after

multiple structural alignments (MSA). The viewpoint is opposite to that shown in Figure 1

(i.e., rotated 180º) so that the view is down the duplex DNA (semi-transparent gold ribbons).

Accordingly, the fingers, or N, subdomain is on the left in each structure (opposite to that

shown in the Figure 1) while the palm, or C, subdomain is positioned at the bottom of each

structure. The ribbons are colored according to the calculated MSA for each Cα. A color key

illustrating backbone structural conservation is shown: dark blue as the MSA value

approaches 1 (i.e., conserved), and unique regions for each structure are colored white (i.e.,

MSA = 0). The PDB ID ID codes for the illustrated structures are given in Table 1.
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Figure 3.
Surface representation of pol δ (B-family) colored according to MSA. The 3′–5′-

exonuclease domain (residues 316–531; gray surface) sterically restricts and defines the

dNTP access channel for this DNA polymerase. A surface representation of the DNA is

colored orange. The domains and polymerase subdomains are indicated. The DNA duplex

penetrates the channel and occludes nucleotide access from the opposite side in this

viewpoint. The image on the right shows a detailed view of the vicinity of the channel

(outlined in white in the global view). The incoming nucleotide (yellow stick representation)

is sitting in the active site at the end of the channel. The PDB ID code is 3IAY.10
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Figure 4.
DNA polymerase β active site. (A) Two divalent metal ions (green, Mg2+) are octahedrally

coordinated by substrates (non-bridging oxygens of each phosphate of the incoming dNTP

and DNA primer terminus O3′), two water molecules (W) and three acidic enzyme side

chains (Asp190, Asp192, and Asp256; D190, D192, and D256, respectively). A non-

hydrolyzable analog dUMPNPP, (2′-deoxyuridine-5′-(α,β)-imido triphosphates; yellow

carbons), was used to trap the ternary substrate pre-catalytic complex (PDB ID 2FMS).14

The catalytic metal that coordinates O3′ of the primer terminus induces a 3′-endo sugar

pucker at the primer terminus. The α-phosphate (Pα) of the incoming nucleotide is

indicated. (B) Crystallographic characterization of intermediates during correct nucleotide

insertion has identified a product associated divalent metal (MgP) that coordinates oxygens

on phosphates of the product molecules (nascent primer terminus and PPi; PDB ID

4KLG).41 Four water molecules complete the octahedral coordination for this transient
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metal (not shown). The nucleotide associated divalent metal B has lost its coordination with

Pγ as PPi begins to dissociate. A sodium ion (Na+) is observed occupying the metal A site in

this product ternary complex. In this view, the preceding base pair (previous primer

terminus) is light gray.
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Figure 5.
DNA polymerase family-dependent active site conservation. Surface representation of

crystallographic ternary complex structures of DNA polymerases from alternate families

after multiple structural alignments (MSA). The surfaces are colored according to the

calculated MSA for each Cα. A color key illustrating backbone structural conservation is

shown: dark blue as the MSA value approaches 1 (i.e., conserved), and unique regions for

each structure are colored white (i.e., MSA = 0). The focused view is on the polymerase

active site and indicates that the active sites are highly conserved (i.e., colored dark blue).

The 3′-end of the primer terminus (O3′) in each structure is indicated. The red and orange

spheres represent the active site divalent metals (red, Mg2+; orange, Ca2+). The gray surface

represents the clipping plane necessary to view the active site. The PDB ID codes for the

illustrated structures are given in Table 1.
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Figure 6.
Overlay of the catalytic core of three DNA polymerases from different families. (A) Klentaq

(A-family, yellow), pol δ (B-family, cyan), and pol β (X-family X, pink) were superimposed

with respect to the Rp-oxygen of the a-phosphate of the incoming dNTP and the two active

site metal ions (A and B). These three atoms form an imaginary plane (semi-transparent gray

circle). The oxygens of the α-, β-, and γ-phosphates of the incoming dNTPs and metals

align well. (B) DNA polymerase active site acidic residues. The oxygens of two aspartates

(Asp608, Asp764; pol δ) are hidden and not clearly seen in this view. Three residues,

Asp785 (Klentaq), Asp764 (pol δ), and Asp192 (pol β), are well conserved behind the plane.

The PDB ID codes for the illustrated structures are given in Table 1.
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Figure 7.
Overlay of the catalytic core of three X-family DNA polymerases. Two conserved active

site arginines are shown (183 and 254 in pol β, R183 and R254, respectively). Only the

metal ions of pol β (dark green spheres, Mg2+) are shown. Protein carbon atoms are colored

according to their Cα Qres values (0–1), and oxygen and nitrogen protein atoms are colored

red and gray, respectively. His329 (H329) of pol μ is also shown corresponding to Gly189

(G189) and Gly426 (G426) of pol β and pol λ, respectively. This histidine hydrogen bonds

to phosphate oxygens on the primer-terminus and γ-phosphate of the incoming nucleotides

facilitating template-independent DNA synthesis.16 This histidine is also observed in

terminal deoxynucleotide transferase, another template-independent DNA polymerase. The

primer-terminus O3′ and Pα of the incoming nucleotide of pol β are also indicated. The

PDB ID codes for the illustrated structures are given in Table 1.
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Figure 8.
Stereo view of an overlay of the catalytic core of ternary complex DNA polymerase

structures from different families (A, T7, Klentaq, and BF; B, Phi29 and pol δ; X, pol β and

pol λ; Y, pol ι and pol η). The nine structures (dNTP and metal ions) are aligned with

respect to the pro-RP oxygen of the α-phosphate of the incoming dNTP of pol β (thick pink

carbon bonds), and the two metal ions. The plane defined by these three atoms is shown as

reference (semi-transparent gray disk). The PDB ID codes for the illustrated structures are

given in Table 1.
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Figure 9.
Stereo view of an overlay of DNA polymerase ternary complex structures illustrating

potential hydrogen bonding donors (arginine, lysine, and histidine) in the vicinity of the

phosphates of the incoming nucleotide for polymerases from various families. The

imaginary plane (semi-transparent gray), active site metals, and incoming nucleotide from

pol β are shown as reference. These atoms are within 5 Å of the corresponding phosphates.

The PDB ID codes for the illustrated structures are given in Table 1.
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Figure 10.
Stereo view of an overlay of DNA polymerase ternary complex structures illustrating atoms

in the vicinity of the active site metals ligands. The atoms are colored according to the

identity of the DNA polymerase as illustrated in Figures 8 and 9. The imaginary plane

(semi-transparent gray), active site metals, and incoming nucleotide from pol β are shown as

reference. Acidic side chain oxygens are shown that are within 4.93 Å of metal A (panel A)

and 2.67 Å of metal B (panel B). Since the catalytic metal site is not always occupied, a

liberal cutoff threshold was chosen to identify potential coordinating acidic side chains for

metal A. Since site B is always occupied with a divalent metal, a more conservative

threshold was employed. (C) Side chain nitrogen (large spheres) and oxygen (small spheres)

atoms within 9.1 Å of metal A are shown (excluding metal liagnds). The PDB ID codes for

the illustrated structures are given in Table 1. The distances denoted are measured from the

catalytic ion (metal A).
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Figure 11.
Nucleotide access channel for pol β (X-family; PDB ID 2FMS).14 The view is the similar to

that in Figure 1 (DNA enters the active site from the opposite side in this view). The top

panel illustrates the donut-like protein architecture creating a path that the incoming

nucleotide must diffuse to access the active site. The 5′-terminus of the template strand is

indicated, as well as the relative position of the C-, D-, and N-subdomains of the polymerase

domain. The green incoming nucleotide is indicated. The bottom panel superimposes the

surface of the calculated channel (pink) estimated by 3V algorithm software.50
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Figure 12.
Binary and ternary pol β complex channels. The volume of the apparent channel leading to

the active site is calculated for the binary (PDB ID 3ISB, top panel)46 and ternary (PDB ID

2FMS, bottom panel)14 substrate complex structures of pol β. It is defined by estimating the

volume of the channel in the absence of dNTP and DNA strands (A) minus the volume of

dNTP and DNA strands which overlap with the channel (B) and adding back the volume of

free dNTP (C); (A)−(B)+(C). The dNTP is part of the channel in the ternary substrate

complex. Structurally, the surface of the enclosed calculated channel volume is colored pink.

The surface of the polymerase is a semi-transparent light blue. The dNTP is shown in a stick

representation (green carbons) in the ternary substrate complex. The volumes of the

channels are estimated employing the two-rolling sphere method (8 and 3 Å radii).50
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Figure 13.
(A) The calculated channel volumes for ternary substrate complex structures from various

families. Additionally, the calculated channel volume for a ternary complex structure of pol

β with an active site mismatch (dAMPCPP–dG, incoming nucleotide–templating nucleotide;

pol βMM), and pol λ with one (pol λ1) or two (pol λ2) active site metals are also shown. (B)

The ratio of the channel volumes calculated for binary (By) DNA complexes relative to that

determined upon formation of the ternary (Ty) complex (i.e., +dNTP). Relative volume

difference between the binary DNA complex of pol β and the mismatched ternary complex

(pol β MM) is also shown. The PDB ID codes for the structures used in these calculations are

given in Tables 1 and 4.
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Figure 14.
(A) Altered backbone conformation of an A-family DNA polymerase (Klentaq) upon

binding a nucleotide. The polymerase backbone of the binary DNA complex (PDB ID

4KTQ) is shown in a worm representation. The backbone is colored according to the Cα
displacement when binding an incoming dNTP (PDB ID 3KTQ).6 A color scale for the Cα
displacement (Å) is shown below the structure. Additionally, the diameter of the worm is

proportional to the magnitude of backbone displacement. The largest conformational

adjustment upon binding the incoming nucleotide is in the Fingers subdomain. The gold

surface encompasses the estimated channel volume of the binary complex employing two-

rolling sphere method.50 (B) A surface representation of the binary DNA complex colored

according to the backbone displacement described above is superimposed with a ribbon

representation of the ternary complex. The viewpoint is the same as that shown in panel A.

Only a short portion of α-helix O (ternary complex) that repositions itself upon binding a

nucleotide is visible. The calculated channels for the binary (gold) and ternary complexes

(green) are also shown.
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Figure 15.
Altered channel topology when transitioning from the binary DNA complex to a ternary

complex. The primer terminus in each structure is indicated (white arrow) and the

subdomains responsible for DNA binding (Thumb or D-subdomain) and dNTP binding

(Fingers or N-subdomain) are indicated. The channel volume (semi-transparent pink

surface) of each complex was calculated employing a two-rolling sphere method.50 The

PDB ID codes for the ternary and binary complexes are given in Tables 1 and 4,

respectively.
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Figure 16.
Altered channel topology when transitioning from the binary DNA complex to a ternary

complex. The channel volume (semi-transparent pink surface) of each complex, as viewed

in Figure 16, is shown without the polymerase. The incoming nucleotide of the ternary

complexes is shown in a stick representation.
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TABLE 5

Residues in Crystal Structures of Ternary Substrate Complexes (C) Relative to that of Full-length Enzyme (T)

polymerasea (family) C T C/T domainsb

Klentaq (A) 539 540 0.998 Pol, Exo

Phi29 (B) 567 575 0.986 Pol, Exo

PolC (C)c 1006 1455 0.691 Pol

pol β (X) 326 335 0.973 Pol, Lyase

pol ι (Y) 373 390 0.956 Pol

a
The PDB ID codes are given in Table 1.

b
Polymerase domain, Pol; Exonuclease Domain, Exo.

c
Among 1455 residues, amino-terminal residues (1–232) and the 3′–5′ proofreading exonuclease domain (412–617) were removed from the

engineered construct.
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TABLE 6

Distance (Å) from DNA Primer Terminus or Incoming Nucleotide to the Entrance of the Channel

DNA polymerase (family)a C3′–entranceb dNTP–entrancec

Klentaq (A) 12.5 10.8

Phi29 (B) 22.4 24.9

pol β (X) 13.3 13.1

a
The PDB ID codes for the ternary complexes are given in Table 1.

b
Distances calculated from C3′ of the primer terminus to the entrance of the channel defined by an imaginary plane (see text).

c
Distances calculated from the center of mass of the incoming dNTP to the entrance of the channel.
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Table 7

Calculated Channel Volumes for Crystallographic Structures from Various DNA Polymerase Families

polymerase (family), PDB ID total channel (A) DNA + dNTPb (B) dNTP (C) channel (A)−(B)+(C)

ternary complexes

T7 (A), 1T7P 3633 1406 424 2651

Klentaq (A), 3KTQ 3546 1347 452 2651

BF (A), 3EZ5 4085 1839 429 2675

Phi29 (B), 2PYJ 11246 3719 453 7980

δ (B), 3IAY 8028 2484 393 5937

RB69 (B), 3NCI 7595 1374 447 6668

β (X), 2FMS 3338 751 389 2976

λ (X), 2PFO 3131 835 392 2688

μ (X), 2IHM 2737 712 405 2430

λ (X), 1XSNc 3331 715 401 3017

β (X), 3C2Md 3647 812 433 3268

binary DNA complexes

BF (A), 3EYZ 4991 1979 – 3012

Klentaq (A), 4KTQ 3734 514 – 3220

Phi29 (B), 2PZS 12820 2985 – 9835

β (X), 3ISB 3232 – – 3232

λ (X), 1XSL 3470 341 – 3129

a
Units are Å3.

b
Volume that penetrates the channel (A).

c
Ternary complex structure with a single bound Mg2+ in site B.

d
Ternary complex structure with an active site mismatch (dAMPCPP–dG; incoming nucleotide-templating nucleotide).
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