
Protein Sulfenylation: A Novel Readout of Environmental 
Oxidant Stress

Phillip A. Wages†, Katelyn S. Lavrich†, Zhenfa Zhang‡, Wan-Yun Cheng§, Elizabeth 
Corteselli‡, Avram Gold‡, Philip Bromberg∥, Steven O. Simmons⊥, and James M. Samet*,†,∇

†Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 
27599-7310, United States

‡Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, United States

§Integrated Systems Toxicology Division, National Health and Environmental Effects Research 
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 
27711, United States

∥Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at 
Chapel Hill, Chapel Hill, North Carolina 27599-7310, United States

⊥National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research 
Triangle Park, North Carolina 27711, United States

∇Environmental Public Health Division, National Health and Environmental Effects Research 
Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina 27711, United 
States

Abstract

Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous 

environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) 

induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl 

thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in 

physiological contexts and are also toxicological targets of oxidant stress induced by 

environmental contaminants. We investigated whether exposure to environmentally relevant 

concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory 

proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were 

exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric 
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spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using 

immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression 

was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells 

exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at 

concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. 

Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory 

proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory 

cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air 

contaminant represents a novel marker of oxidative environmental stress.

INTRODUCTION

A number of epidemiological and toxicological studies conducted in recent years have 

shown an association between exposure to diesel exhaust and the incidence of 

cardiovascular and respiratory morbidity and mortality.1–6 Diesel exhaust is a complex 

mixture of gaseous and particulate components, including prooxidant organic compounds 

such as quinones.7 Quinones, as exemplified by 1,2-naphthoquinone (1,2-NQ), are toxic via 

two mechanisms of action. 1,2-NQ can form covalent adducts with macromolecules through 

Michael addition.8–10 It can also undergo redox cycling reactions to form reactive oxygen 

species (ROS) such as hydrogen peroxide (H2O2) that contribute to oxidative stress.11,12 

Investigations to date have predominantly focused on the effect of 1,2-NQ adduction, while 

the biological ramifications of 1,2-NQ-induced oxidative stress have yet to be fully 

investigated.

Oxidative stress has been identified as a mechanistic feature of a broad range of 

environmental exposures.13 Evidence of environmental oxidative stress typically involves 

the analysis of the oxidant-damaged biomolecules, such as the oxidation of protein thiols to 

sulfonates (Figure 1) as well as the formation of ROS such as H2O2. However, there is a 

growing appreciation that intracellular H2O2 is a closely regulated second messenger with 

pivotal roles in cellular processes ranging from the regulation of cytoskeletal function to 

bioenergetics and signaling.14–18 Specifically, H2O2 has been shown to hydroxylate 

cysteinyl thiols to form protein sulfenic acids. Sulfenylation of cysteines is now regarded as 

a critical step in the formation of inter- and intramolecular disulfide bonds as well as the 

formation of mixed disulfides with glutathione (Figure 1). Importantly, these formed 

disulfides can be reduced to the basal thiol level through the activity of proteins like 

glutaredoxin or thioredoxin, supporting the role of thiol oxidation as a hub of redox 
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signaling.15,18 The oxidation of protein cysteinyls to sulfenates has been directly linked to 

the regulation of signaling and metabolic processes.19–25

The inventory of cellular proteins known to be sulfenylated, recently termed the 

“sulfenome”, continues to expand with the development of new techniques and analytical 

strategies,26–29 yet to the best of our knowledge, the effect of an environmental exposure on 

protein sulfenylation has not been investigated. We report here that exposure to 1,2-NQ at 

concentrations that are theoretically achievable in real world scenarios12 induces 

sulfenylation of regulatory proteins in human airway epithelial cells (HAEC).

MATERIALS AND METHODS

Reagents

Tissue culture media and supplements were purchased from Lonza (Walkersville, MD). 

Phenol red-free keratinocyte basal medium (KBM) was acquired from Cell Applications, 

Inc. (San Diego, CA). Adenoviral vectors were obtained from the Gene Therapy Center 

Virus Vector Core Facility (University of North Carolina at Chapel Hill). The following 

chemicals were obtained from Sigma-Aldrich (St. Louis, MO): hydrogen peroxide (H2O2), 

1,2-naphthoquinone (1,2-NQ), Me2SO, dimedone, DTT, tert-butyl 2,2,2-

trichloroacetimidate (TBTA), copper sulfate (Cu2SO4), and sodium ascorbate (SA). Biotin 

azide (PEG4 carboxamide-6-azidohexanyl biotin) was obtained through Life Technologies 

(Grand Island, NY). Basic laboratory supplies were obtained from Fisher Scientific 

(Raleigh, NC).

Cell Culture

SV40 large T antigen-transformed HAEC (BEAS-2B, subclone S6, passage 54–60) were 

cultured as previously described30 in keratinocyte growth medium (KGM). Cells at 80% 

confluence were deprived of growth factors overnight by changing cell medium to KBM. 

Cells were exposed to KBM containing H2O2 or 1,2-NQ (dissolved in Me2SO, final Me2SO 

concentration ratio of <1:1000) at the indicated concentrations for 10 min or as otherwise 

noted. Cells were then quickly rinsed with PBS and then labeled in KBM with 5 mM 

dimedone or a dimedone analogue (DYn-2 or DAz-2) with Me2SO at a 1:200 dilution for 1 

h.

Viral Transduction

The plasmid for the genetically encoded H2O2 sensor, HyPer, was purchased from Evrogen 

(Axxora, Farmingdale, NY). The genetically encoded pH sensor, SypHer, was created as 

described by Poburko et al.31 through a single-point Cys199Ser mutation of HyPer. Both 

plasmids were introduced into lentiviral vectors as described previously.12 Stable expression 

of Hyper and SyPher in the cytosolic compartment of BEAS-2B cells was accomplished 

using lentiviral transduction. For cytosolic catalase overexpression, cells were transduced 

with an adenoviral vector encoding human catalase driven by a cytomegalovirus promoter at 

a MOI of 500 for 4 h, followed by a 1 day incubation in KGM.32 The pH-specific 

fluorogenic sensor pHred, created by the laboratory of Yellen,33 was obtained as a construct 

through Addgene (Cambridge, MA) for expression in BEAS-2B cells via transient 
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transfection of 1–2 μg of plasmid DNA using the suggested X-tremeGENE 9 protocol 

(Roche Applied Science, Indianapolis, IN).

Detection of Intracellular Sulfenylation

Staudinger Ligation—Cells labeled with DAz-2 underwent Staudinger ligation for 

fluorescent detection utilizing the recommended protocol of the Sulfenylated Protein Cell-

Based Dectection Kit (Cayman Chemical, Ann Arbor, MI). Labeled cells were then detected 

by fluorescence microscopy using a Nikon Eclipse C1si instrument with laser excitation at 

488 nm and 525/30 nm emission with identical laser settings. Images were then imported 

into ImageJ (National Institutes of Health, Bethesda, MD) for Lookup Table editing to 

enhance the visual determination of fluorescence by converting images to 16-bit 

monochromatic images, implementing Green Lookup Table edited to an interpolated 4 color 

Table (0 Green, 150 Green, 175 Green, 255 Green) followed by a median filter with a 2.0 

pixel radius.

Immunoblotting—Cells labeled with dimedone were washed three times with ice-cold 

PBS and lysed in a mild detergent buffer [1% NP40, 150 mM Tris-HCl (pH 7.4), 150 mM 

NaCl, and 5 mM DTT supplemented with Calbiochem protease inhibitor cocktail set III 

(EMD Millipore, Temecula, CA)] for 20 min and then centrifuged at 4 °C and 12000g for 10 

min. The supernatant was collected and normalized for protein concentration via the 

Bradford assay. Samples were prepared for Western blotting with 4× Laemmli Sample 

Buffer and boiled for 10 min before being loaded into Mini-PROTEAN TGX Precast Gels 

(Bio-Rad, Hercules, CA) alongside Precision Plus Protein Kaleidoscope Standards (Bio-

Rad) and then gel electrophoresed for size separation. Gels were transferred using the Trans-

Blot Turbo Transfer System onto nitrocellulose membranes (Bio-Rad). Membranes were 

then blocked with 5% milk in TBST for 1 h at room temperature followed by incubation 

with the primary antibody overnight at 4 °C and then secondary antibody for 1 h at room 

temperature. The following antibodies were used: anti-sulfenic acid-modified cysteine (2-

Thiodimedone-Specific Ig) antibody (Millipore) and anti-GAPDH (6C5), anti-catalase 

(A-7), goat anti-mouse IgG-HRP, and goat anti-rabbit IgG-HRP (all from Santa Cruz, 

Dallas, TX). After antibody incubation, membranes were set in Clarity Western ECL 

Blotting Substrate for 5 min followed by detection with a LAS-3000 FujiFilm Imager.

Copper-Catalyzed Azide Alkyne Cycloaddition—Cells labeled with DYn-2, which 

was prepared as described by Paulsen et al.,22 were washed three times with ice-cold PBS, 

then lysed with mild detergent buffer described in Immunoblotting for 20 min, and 

centrifuged at 4 °C and 12000g for 10 min. The protein supernatant was normalized to 1.5 

mg/mL and precleared of endogenous biotin by agitation in a 150 μL slurry of Pierce 

NeutrAvidin agarose (N-agarose, Life Technologies). Cleared samples were labeled with 

biotin using copper-catalyzed azide alkyne cycloaddition (CuAAC) by agitation for 1 h in a 

buffer containing the following (final concentrations): biotin azide (0.2 mM), TBTA (0.1 

mM), Cu2SO4 (1.0 mM), and SA (1.0 mM). An aliquot of each sample was immunoblotted 

for total sulfenylation probed against Pierce High Sensitivity NeutrAvidin-HRP (N-HRP, 

Life Technologies). The remaining post-CuAAC sample was separated into equal aliquots 

for immunoprecipitation overnight at 4 °C with anti-GAPDH (6C5) (Santa Cruz) or anti-
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PTP1B (H-135) (Santa Cruz) followed by rotation for 2 h with Protein A-agarose. Samples 

were then prepared for immunoblotting and probed against N-HRP (Life Technologies), and 

anti-GAPDH (6C5) or anti-PTP1B (H-135) (both from Santa Cruz).

Detection of Recombinant Protein Sulfenylation

Deuterated dimedone (d6-dimedone) and iodo-dimedone (I-dimedone) were synthesized as 

described by Seo and Carroll.34 Recombinant GAPDH from rabbit muscle (Sigma-Aldrich) 

was reduced in a solution of Tris-HCl (50 mM, pH 7.4) with 10 mM DTT on ice for 30 min 

and then purified with Micro Bio-Spin Columns Bio-Gel P-6 (Bio-Rad) before use in 

sulfenylation assays. GAPDH (25 μM) was stimulated with a range of molar equivalents of 

H2O2 or 1,2-NQ dissolved in Tris-HCl (50 mM, pH 7.4) in the presence of 10 mM d6-

dimedone. Samples were then reduced with DTT, isolated with P-6 column, and labeled 

with 20 mM I-dimedone. Samples of modified GAPDH were digested at 37 °C overnight 

using Trypsin Gold (Promega, Madison, WI) and RapiGest surfactant (Waters Corp., 

Milford, MA) according to the manufacturer’s specifications. The resulting mixture was 

analyzed for the presence of modified peptides by injection onto an Agilent (Milford, MA) 

1200 HPLC system coupled to an Agilent 6520 Accurate Mass Q-TOF mass spectrometer. 

Peptides were separated on a 150 mm × 2.1 mm Agilent PLRP-S 5 μm analytical column 

using a gradient of 0.1% formic acid in water and 0.1% formic acid in acetonitrile at a flow 

rate of 200 μL/min, and data were collected in positive mode while scanning from m/z 100 

to 3200.

Live Cell Imaging

Immediately before exposure, HyPer- or SypHer-expressing cells were placed in KBM 

without phenol red. Fluorescence in cell cultures was imaged using a Nikon Eclipse C1si 

spectral confocal imaging system under illumination with 404, 488, or 561 nm primary laser 

lines (Nikon Instruments Corp., Melville, NY). Sequential scans of each laser line were 

performed at a frequency of 60 s with 10 cells expressing the biosensor in the field of view 

and results calculated as a ratio of the respective 525/30 nm emission for the 404 and 488 

nm excitation of each sensor. Baseline fluorescence was established for 5 min prior to the 

addition of 0–10 μM 1,2-NQ. To normalize for variability in the dynamic range of the 

sensors expressed in individual cells, 100 μM H2O2 was added at min 30, 1 mM H2O2 was 

added at min 33, and 5 mM DTT was added at min 35. Data were expressed normalized to 

the maximal sensor response (percent oxidized HyPer) or as raw ratiometric values 

normalized to baseline. HyPer cells expressing pHred were analyzed similarly but with an 

additional excitation at 561 nm allowing for a ratiometric analysis of pH between the 404 

and 561 nm exciations and 605/75 nm emission.

Statistical Analyses

All imaging data were quantified using NIS-Elements AR software (Nikon). Data are 

expressed as means ± SEM of at least three separate experiments. Statistical significance (p 

< 0.05) of immunoblot results was determined through one-way ANOVA with Dunnett’s 

post-test. PRISM (Graphpad Software, La Jolla, CA) was used for statistical analyses.
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RESULTS

Exposure to 1,2-Naphthoquinone Induces Protein Sulfenylation in BEAS-2B Cells

Dimedone is a cell permeable molecule that can be used to label sulfenic acids specifically 

and irreversibly (Figure 1). A number of dimedone analogues have been generated to meet a 

range of analytical goals.35 We used an azide-based dimedone derivative, DAz-2, to 

biotinylate protein sulfenic acids using a commercially available assay that allows for their 

detection as a fluorescent readout in fixed BEAS-2B cells exposed to 3–100 μM 1,2-NQ. As 

shown in Figure 2A, exposure of BEAS-2B cells to concentrations of 1,2-NQ as low as 3 

μM for 10 min resulted in a marked increase in the concentration of protein sulfenylation, 

the magnitude of which approximated that induced by exposure to 1000 μM H2O2. In accord 

with our previous report,12 exposure of BEAS-2B cells to 0–100 μM 1,2-NQ for 10 min did 

not result in cytotoxicity.

To assess the range of proteins sulfenylated in response to 1,2-NQ exposure, we next 

subjected protein extracts of BEAS-2B cells treated with 3–1000 μM 1,2-NQ for 10 min to 

immunoblotting using an antibody that detects the dimedone– protein thioether complex.36 

The results (Figure 2B) show that 1,2-NQ induces a dose-dependent increase in protein 

sulfenylation of multiple proteins varying in molecular weight between 37 and 250 kDa.

1,2-Naphthoquinone-Induced Protein Sulfenylation Is Dependent on H2O2

Sulfenylation of proteins can occur by the reaction of peroxynitrite, hypohalous acids, 

haloamines, and hydroperoxides with cysteine residues.37 We have previously reported that 

exposure to environmentally relevant concentrations of 1,2-NQ results in elevation of H2O2 

levels in BEAS-2B cells.12 We therefore examined the role of H2O2 generation in 1,2-NQ-

induced protein sulfenylation in BEAS-2B cells. In agreement with our previous studies 

using the H2O2 sensor, HyPer, 10 μM 1,2-NQ induced a rapid increase in the level of 

cytosolic H2O2 (Figure S1). The responsiveness of HyPer to H2O2 is known to be 

influenced by pH. We, therefore, conducted control experiments using BEAS-2B cells 

expressing the pH sensor SypHer or pHred, which showed that the HyPer fluorescence 

intensity changes observed in response to 10 μM 1,2-NQ over a 30 min time period were not 

attributable to changes in cytosolic pH (Figure S1).

We next examined the role of H2O2 in 1,2-NQ-induced protein sulfenylation by increasing 

the rate of catabolism of H2O2 by overexpressing catalase in BEAS-2B cells. Catalase 

overexpression ablated the increase in H2O2 concentration induced by treatment of 

BEAS-2B cells with either 3 or 10 μM 1,2-NQ throughout the experiments, confirming the 

efficacy of catalase overexpression as a means to blunt H2O2 levels induced by 1,2-NQ 

exposure in BEAS-2B cells. Immunoblotting assays showed that catalase overexpression 

blunted protein sulfenylation induced by treatment of BEAS-2B cells with 3 or 10 μM 1,2-

NQ (Figure S2). We then examined the temporal relationship between 1,2-NQ-induced 

production of H2O2 measured using HyPer and protein sulfenylation levels quantified using 

immunoblotting. Exposure to 10 μM 1,2-NQ induced a rapid peak in protein sulfenylation 

that coincided with the sharp rise in cytosolic H2O2 levels reported by HyPer (Figure 3). 

Protein sulfenylation then appeared to decrease at a rate faster than that observed for H2O2 
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concentrations, although protein sulfenylation rebounded with 10 μM 1,2-NQ (but not with 

3 μM) reaching its highest level at 30 min of exposure. In support of the earlier experiments 

(Figure S2), BEAS-2B cells overexpressing catalase showed diminished levels of protein 

sulfenylation induced by exposure to 3 or 10 μM 1,2-NQ (Figure 3). These results 

established that 1,2-NQ-induced protein sulfenylation depends on the generation of H2O2 in 

BEAS-2B cells.

1,2-Naphthoquinone-Induced Sulfenylation of Regulatory Proteins

To examine the effect of 1,2-NQ on the sulfenylation of specific proteins of interest in 

BEAS-2B cells, we used a copper-catalyzed azide–alkyne cycloaddition (CuAAC) labeling 

strategy to biotinylate protein sulfenic acids, to gain the analytical sensitivity and specificity 

afforded by the strong avidin–biotin interaction (Figure S3A). CuAAC-based detection of 

protein sulfenylation in BEAS-2B showed elevations at 1,2-NQ concentrations as low as 1 

μM for 10 min (Figure S3B,C). We next examined specific proteins sulfenylated as a result 

of exposure of BEAS-2B cells to 1,2-NQ.

We tested the effect of 1,2-NQ exposures on the sulfenylation of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) because of its integral role in cellular 

bioenergetics,38,39 and of protein tyrosine phosphatase 1B (PTP1B) for its pivotal role in 

signaling processes.20,40 Levels of sulfenylation of GAPDH and PTP1B were measured in 

immunoprecipitates of the same protein extract samples prepared from BEAS-2B cells 

exposed to 10 μM 1,2-NQ using the CuAAC biotinylation protocol. Exposure of BEAS-2B 

cells to 1,2-NQ induced GAPDH sulfenylation that increased steadily over a 30 min 

exposure time course (Figure 4A,C). In contrast, the level of sulfenylated PTP1B in the 

same samples attained a maximum after exposure for 1 min and decreased rapidly thereafter 

(Figure 4B,D). The same marked difference in the time courses of 1,2-NQ-induced 

sulfenylation was observed when GAPDH and PTP1B were immunoblotted from the 

CuAAC-biotinylated protein fraction (Figure S4).

1,2-Naphthoquinone Induces Sulfenylation of the Catalytic Cysteine (150C) in GAPDH

To examine the site specificity of 1,2-NQ-induced sulfenylation, we utilized an isotope 

labeling strategy devised by Seo and Carroll34 to detect sulfenic groups in trypsin digests of 

recombinant GAPDH treated with 1,2-NQ in vitro (Figure 5A). The catalytic cysteine (150C) 

of GAPDH serves as the peroxide-susceptible thiol that becomes sulfenylated upon 

oxidation, inactivating GAPDH.41 Mass spectrometric analysis of the isotopically coded, 

dimedone-labeled GAPDH peptides showed maximal sulfenylation of 150C in GAPDH 

treated with 1.0 molar equiv of 1,2-NQ. In contrast, H2O2 exposure induced increasing 

sulfenylation of 150C with exposure to up to 2.0 molar equiv (Figure 5B).

DISCUSSION

Toxicological studies have long equated oxidative stress with the production of ROS and 

damage to DNA, lipids, and proteins, leading to a loss of function and cell death. However, 

there are now numerous examples of physiological redox reactions such as reversible 

cysteine sulfenylation that are involved in pivotal regulatory functions in the cell, from 
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signaling to energy metabolism.17,21,24,42 These processes themselves represent potential 

targets of oxidant stress induced by xenobiotics. This study demonstrates that exposure to 

environmentally relevant concentrations of a ubiquitous redox-active environmental 

pollutant can induce H2O2-dependent protein sulfenylation in a dose- and time-dependent 

manner.

Although 1,2-NQ toxicity has been thought to predominantly occur through covalent 

adduction,7 there is evidence to suggest that induction of oxidative stress is a major pathway 

of 1,2-NQ toxicity. Our previous study implicated 1,2-NQ-induced H2O2 generation in the 

induction of inflammatory gene expression, suggesting a mechanism of toxicity that does 

not require the adduction of proteins.12 This study further supports the importance of 1,2-

NQ-induced H2O2, as it was shown to induce sulfenylation of thiols on regulatory proteins. 

Given the critical role of protein sulfenylation in many redox-dependent physiological 

processes,19,22,43 the inappropriate induction of sulfenylation by 1,2-NQ exposure 

represents a significant, previously unrecognized mechanism of cellular toxicity. Work by 

Rhee,20 Tonks,44 and others40 has shown that the activity of protein tyrosine phosphatases 

(PTP) is redox-regulated by reversible sulfenylation in response to physiological stimuli, 

and further, PTP activity has been shown to be inhibited in response to 1,2-NQ exposure.8 

Of direct relevance to diesel exhaust, our laboratory has shown that DEP exposure inhibits 

PTP activity, induces a pan-activation of intracellular signaling, and specifically impairs the 

dephosphorylation of the epidermal growth factor receptor.45 Ongoing work in our 

laboratory is aimed at examining the relationship among protein sulfenylation, loss of PTP 

activity, and inflammatory and adaptive gene expression in human airway epithelial cells.

In general, redox-dependent signaling is associated with a classic negative-feedback process 

as the rapid activation of redox-dependent gene expression also leads to induction of 

expression of antioxidant mediators.16,46 Our finding of a biphasic response in total protein 

sulfenylation is in accord with the induction of redox-dependent gene expression observed 

in anticancer therapies such as ionizing radiation47 and nitric oxide.48,49 The early induction 

and subsequent decline of protein sulfenylation observed in this study may reflect the 

regulation of redox-dependent transcriptional activation via a biphasic response of signaling 

through protein sulfenylation. The second, later increase in protein sulfenylation resulting 

from 10 μM 1,2-NQ exposure may reflect loss of cell viability caused by prolonged 

exposure to 1,2-NQ.

GAPDH and PTP1B were selected in this study as examples of regulatory proteins whose 

activity is known to be controlled through cysteine thiol oxidation50 and are also 

toxicologically important as targets in cellular bioenergetics and inflammatory signaling, 

respectively. The differences in the time course of sulfenylation of GAPDH and PTP1B 

observed in this study were unexpected, as increasing H2O2 levels could be expected to 

oxidize GAPDH and PTP1B with similar efficacy. One possible explanation for the 

differential kinetics may be that some proteins become sulfenylated at different rates as a 

consequence of localized induction of intracellular H2O2 produced under different exposure 

conditions.11,51 Oxidants, including 1,2-NQ, can also target cysteinyl thiols, most notably 

glutathione, that usually serve as a “first line” of defense against ROS, allowing GAPDH 

and PTP1B to be more readily targeted.12,46 Susceptible cysteine such as those in PTP1B 

Wages et al. Page 8

Chem Res Toxicol. Author manuscript; available in PMC 2016 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and GAPDH that are subject to redox regulation in physiological contexts may be oxidized 

differentially by reactive electrophiles. Alternatively, these proteins may inherently have 

different susceptibilities to oxidation due to steric constraints or differences in the pKa of 

their cysteinyl thiols. In the case of tyrosine phosphatases such as PTP1B, the formation of 

the sulfenic acid is likely to be an intermediate step in the formation of the more stable 

sulfenamide20 or to conjugation with glutathione.52 This would be supported by the 

relatively short duration of detectable PTP1B sulfenylation, as the high specificity of 

dimedone for sulfenic acids would not detect the sulfenamides, gluthionyl-ethers, or higher 

oxidation states such as the sulfinic (SO2H) or sulfonic (SO3H) acids.35,53,54 In contrast, 

sulfenylation of the GAPDH active site cysteine generates a more stable and long-lived 

species and as such would allow for labeling with dimedone.38,39,55 Additional studies will 

be needed to elucidate the mechanistic basis for the differential kinetics of GAPDH and 

PTP1B sulfenylation.

Our observation that, on a molar basis, 1,2-NQ appears to be 100 times more potent than 

H2O2 in inducing protein sulfenylation may be explained by differences in the targets with 

which each stimulus preferentially interacts. This would be consistent with reports that the 

pattern of EGF-stimulated protein sulfenylation is significantly different relative to that 

induced by H2O2.17,37 H2O2 is subject to catabolism by multiple enzymes, including 

catalase, glutathione peroxidase, and peroxiredoxin. In addition to 1,2-NQ generation of 

ROS through redox cycling,11 1,2-NQ also generates H2O2 in mitochondria through 

uncoupling of the respiratory chain.12 Additionally, our cell-free studies demonstrate the 

interaction between GAPDH and 1,2-NQ, as proposed by Kumagai and his colleagues,7 is 

yet another nonenzymatic mechanism through which 1,2-NQ can lead to elevated ROS 

levels. Thus, multiple sources of ROS may act synergistically to induce a sustained and 

localized elevation of the level of H2O2 in cells exposed to 1,2-NQ at a rate that overcomes 

the capacity of antioxidant mechanisms. These considerations would suggest that 1,2-NQ 

exposure could be more effective in driving sulfenylation than addition of an exogenous 

bolus of H2O2.

In summary, through the use of multiple analytical approaches, this study provides the first 

evidence that exposure of a lung epithelial cell line to environmental concentrations of a 

ubiquitous redox-active pollutant can induce cysteinyl sulfenylation of critical regulatory 

proteins, a novel biomarker of xenobiotic oxidant stress. Exposure to the ubiquitous 

environmental oxidant 1,2-NQ induces H2O2-dependent sulfenylation of cysteine residues in 

proteins, including GAPDH and PTP1B, proteins involved in bioenergetic and signaling 

regulation, respectively. The work presented in this study shows that protein sulfenylation is 

a novel readout of oxidant stress induced by exposure to environmental agents.
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ABBREVIATIONS

1,2-NQ 1,2-naphthoquinone

150C catalytic cysteine of rabbit glyceraldehyde-3-phophate dehydrogenase

CuAAC copper-catalyzed azide alkyne cycloaddition

Cu2SO4 copper sulfate

d6-dimedone deuterated dimedone

GAPDH glyceraldehyde-3-phophate dehydrogenase

HAEC human airway epithelial cells

H2O2 hydrogen peroxide

ICDID isotope-coded dimedone iodo-dimedone

I-dimedone iodo-dimedone

KBM keratinocyte basal medium

KGM keratinocyte growth medium

PTP1B protein tyrosine phosphatase 1b

ROS reactive oxygen species

SA sodium ascorbate

TBTA tert-butyl 2,2,2-trichloroacetimidate
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Figure 1. 
Schematic of cysteinyl-thiol post-translational modifications. A dashed line indicates the 

possible reversibility of thiol oxidation. Dimedone (shown) and dimedone-like molecules, 

including DAz-2 and DYn-2, specifically and irreversibly label sulfenic acids (SOH). 

Glutaredoxin (Grx) and thioredoxin (Trx) reduce disulfide bonds or mixed disulfide bonds 

with glutathione to the thiol. The continual presence of H2O2 hyperoxidizes the sulfenic acid 

to the sulfinic (SO2H) and sulfonic (SO3H) acids, which are largely irreversible under 

physiological conditions.
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Figure 2. 
1,2-Naphthoquinone induces intracellular protein sulfenylation. (A) BEAS-2B cells were 

exposed to H2O2 (0–1000 μM) or 1,2-NQ (0–100 μM) for 10 min and labeled with DAz-2 

followed by conjugation to FITC by Staudinger ligation. (B) BEAS-2B cells were exposed 

to the indicated concentration of 1,2-NQ for 10 min and then immunoblotted for 

sulfenylation using the α-thiodimedone antibody. GAPDH was utilized as a loading control.
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Figure 3. 
1,2-Naphthoquinone-induced protein sulfenylation is H2O2-dependent. Control BEAS-2B 

cells (■) and BEAS-2B cells overexpressing catalase (empty blue squares) were exposed to 

3 μM (A) or 10 μM (B) 1,2-NQ for the indicated time, labeled with dimedone, and harvested 

for immunoblotting to detect protein sulfenylation (SOH). Values are presented as means ± 

SEM (n = 3). An asterisk indicates p < 0.05 compared to the control. Cytosolic H2O2 was 

monitored in BEAS-2B cells expressing HyPer (●) exposed to 3 μM (A) or 10 μM (B) 1,2-

NQ over a time course of 30 min. HyPer-expressing cells overexpressing catalase (empty 

blue circles) were exposed in the same manner. Intracellular H2O2 levels are reported every 

minute as an average of the percent maximal oxidation of HyPer induced by 1,2-NQ 

exposure (n = 3; error bars omitted for the sake of clarity).
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Figure 4. 
1,2-Naphthoquinone-induced sulfenylation of regulatory proteins with differential kinetics. 

BEAS-2B cells were exposed to 10 μM 1,2-NQ from 0 to 30 min followed by CuAAC. 

Lysates were subjected to immunoprecipitation using specific antibodies GAPDH (A and C) 

and PTP1B (B and D). Immunoblots were probed against neutravidin-HRP (N-HRP) and 

then GAPDH (A) or PTP1B (B). Data are shown as a representative immunoblot of three 

experiments, quantified respectively as a ratio of the sulfenylated protein to total GAPDH 

and PTP1B, (C) N-HRP/GAPDH and (D) N-HRP/PTP1B. Values shown as means ± SEM 

normalized to the unexposed control. An asterisk indicates p < 0.05 compared to the control.
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Figure 5. 
1,2-Naphthoquinone induces sulfenylation of the GAPDH catalytic cysteine. (A) General 

scheme of isotope-encoded dimedone iododimedone (ICDID) strategy for quantifying 

sulfenic acids relative to total thiols. Deuterated dimedone (d6-DMD) labels all sulfenic 

acids, while subsequent treatment with iodo-dimedone (I-DMD) labels all remaining thiols 

(d0-DMD). Samples are then trypsinized and subjected to QTOF-MS analysis for the d6/d0 

ratio of the indicated GAPDH peptide sequence (center) containing 150C. (B) Recombinant 

GAPDH (25 μM) was incubated with either H2O2 or 1,2-NQ at indicated molar 

equivalencies and then subjected to ICDID, and values are reported as a ratio of 

sulfenylated 150C to reduced 150C. Values are presented as means ± SEM (n = 3). An 

asterisk indicates p < 0.05 compared to the control.
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