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Abstract

Regulatory agencies require testing of chemicals and products to protect workers and consumers 

from potential eye injury hazards. Animal screening, such as the rabbit Draize test, for potential 

environmental toxicants is time-consuming and costly. Therefore, virtual screening using 

computational models to tag potential ocular toxicants is attractive to toxicologists and policy 

makers. We have developed quantitative structure–activity relationship (QSAR) models for a set of 

small molecules with animal ocular toxicity data compiled by the National Toxicology Program 

Interagency Center for the Evaluation of Alternative Toxicological Methods. The data set was 

initially curated by removing duplicates, mixtures, and inorganics. The remaining 75 compounds 

were used to develop QSAR models. We applied both k nearest neighbor and random forest 

statistical approaches in combination with Dragon and Molecular Operating Environment 

descriptors. Developed models were validated on an external set of 34 compounds collected from 

additional sources. The external correct classification rates (CCR) of all individual models were 

between 72 and 87%. Furthermore, the consensus model, based on the prediction average of 

individual models, showed additional improvement (CCR = 0.93). The validated models could be 

used to screen external chemical libraries and prioritize chemicals for in vivo screening as 

potential ocular toxicants.
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INTRODUCTION

The Draize test has been used as a standard testing protocol to evaluate ocular toxic potential 

of chemicals since it was developed in the 1940s.1 In this test, chemicals are applied to 

rabbit eyes, and the ocular responses are scored based on the damage to the cornea, iris, and 

conjunctiva. The Draize test has been applied by different regulatory agencies and 

pharmaceutical companies to evaluate the ocular toxicity of chemicals.2 Different agencies 

have their own scoring system to define the ocular toxicants. For example, the United Nation 

Globally Harmonized System (GHS),3 the U.S. Environmental Protection Agency (U.S. 

EPA) classification system,4 and the European Union (EU) classification system5 are three 

major regulatory criteria used for ocular hazard classification based on the Draize test 

results.

As one of the animal test protocols, the Draize test has the common disadvantages of other 

animal tests, such as being expensive and time-consuming. Furthermore, because the test 

rabbits need to be euthanized if the test uses irreversible damage to the eyes, the Draize test 

has been criticized for its cruelty.2 For this reason, alternative methods to evaluate the 

chemical ocular toxicity are in high demand. Since the 1990s, substantial efforts have been 

made to develop alternative in vitro methods to reproduce and predict eye irritation 

responses in the Draize test. For example, the National Toxicology Program (NTP) 

Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) 

and the Interagency Coordinating Committee on the Validation of Alternative Methods 

(ICCVAM) gathered various in vitro methods to evaluate chemical ocular toxicity. The 

NICEATM and ICCVAM have also executed validating studies to assess the reliability of 

these testing protocols.6 Five of these methods were recently recommended by ICCVAM as 

potential alternatives to the Draize test.7 However, currently available in vitro toxicity assays 

have several limitations: they all require physical samples of compounds for testing, and 

despite significant technical advances of the ICCVAM ocular toxicity assays, they require 

animal eyes as the testing tissues and still remain time-consuming and resource-intensive.

As compared to experimental testing protocols, the computational tools that could be used to 

evaluate potential chemical toxicity are almost of no cost and applicable for virtual 

compounds before they are synthesized. Quantitative structure–activity relationship (QSAR) 

analysis is a widely used computational method to generate models and predict the toxicity 
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of chemicals. In QSAR studies, the quality of the resulting models strongly depends on the 

chemical descriptors and the modeling approaches that are employed. Early efforts in the 

QSAR modeling of chemical ocular toxicity were based on the simple linear regression 

method and empirical descriptors (e.g., physicochemical properties).8,9 The models of this 

type are easy to implement and explain due to their simplicity, but their utility is limited to 

compounds that are highly similar to the modeling set. Later on, more sophisticated 

modeling approaches and descriptors have also been applied in this area. For example, 

Hopfinger and his co-workers used a membrane-simulated model to study ocular 

toxicity.10–13 They identified a set of empirical descriptors that strongly correlate to cornea 

permeability. Then, the same descriptor pool was used to develop an eye irritation model. 

For a summary of modeling studies in this area, please see the previously published 

reviews.14,15

Because of the limited availability of ocular toxicity data, very few of the previously 

published models were validated on external compounds. Most of the studies were based on 

the Draize test data instead of considering regulatory scoring systems. Furthermore, because 

only one type of descriptor and one modeling approach was used in most of the previous 

studies, the direct comparison of models is not possible. This paper addresses these 

challenges by applying the combinatorial QSAR (combi-QSAR) approach16 to an ocular 

toxicity data set recently compiled by ICCVAM. The compounds in this data set have been 

extensively studied by different regulatory agencies. We used several different combinations 

of various chemical descriptors and modeling approaches (so-called combi-QSAR 

approach). All of the resulting models were validated on a separately compiled external set. 

Previous combi-QSAR studies16–18 suggest that it is impossible to decide a priori which 

particular combination of a modeling method and a descriptor set will prove most 

successful. Thus, the consensus model (i.e., averaging of the results of all individual combi-

QSAR models) is the best alternative, which usually outperforms individual models.16–18 In 

this study, the consensus model has clear improvement in predictivity and coverage. We 

expect to use the resulting models as a virtual screening tool to prioritize new compounds 

for future experimental testing.

MATERIALS AND METHODS

Data Sets

The ocular toxicity data set used in this study was obtained from the ICCVAM.6 The original 

data set contains the ocular toxicity results of 232 agents. All of the agents have been tested 

by the Draize test and have scores from at least one of the three regulatory scoring systems 

(GHS, U.S. EPA, and EU). However, about 50% of the agents are duplicates or substances 

without defined chemical structures. Furthermore, inorganic compounds and mixtures 

cannot be properly represented by chemical descriptors. After these compounds were 

removed as unsuitable for modeling, we had 75 unique organic compounds remaining out of 

the original ICCVAM data set.

In different regulatory scoring systems, different terminologies were used to represent the 

categories of ocular toxicants. Generally, the compounds could be classified as (1) severe 

ocular toxicants (category 1 of GHS, category I of U.S. EPA, and R41 of EU); (2) moderate 
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ocular toxicants (category 2A of GHS, category II of U.S. EPA, and R36 of EU); (3) light 

ocular toxicants (category 2B of GHS and category III of U.S. EPA); and (4) nontoxicants 

(nonirritant of GHS, category IV of U.S. EPA, and nonirritant of EU). Because the “light 

ocular toxicants” defined by GHS (category 2B) and U.S. EPA (category III) are mostly 

“nonirritant” in EU results (except N-octanol in our data set), it is reasonable to define the 

severe and moderate ocular toxicants as “actives” and the light ocular toxicants and 

nontoxicants as “inactives”. On the basis of this rule, we defined a composite category for 

this study out of the three scoring systems (Table 1).

Using the composite classification as defined above, the ocular toxicity results from these 

three scoring systems are highly correlated with each other. Among the 75 ICCVAM 

compounds, 30 compounds are active, and 40 compounds are inactive in all of the sources 

(100 and 0% active data ratio, respectively, in Figure 1). The only five compounds that have 

conflicting results we defined as “actives” since all of them have at least one “moderate 

toxic” result (Figure 1). This 75 compound data set was then used to develop the QSAR 

models in this study.

From the previous ocular toxicity studies, we compiled an external set from two reports. 

Takahashi and his co-workers recently studied the correlation between the results of a short 

time bioassay and the GHS scores for a small set of compounds.19 Within this data set, 21 

out of 44 compounds are not in the ICCVAM data set. The GHS scores of these 21 new 

compounds could be classified as 17 actives and four inactives based on the criteria 

mentioned above. In another study, Kulkarni and his co-workers developed a predictive 

ocular toxicity model of 37 compounds with their molar adjusted eye scores calculated from 

relevant Draize test results.10 There are 13 out of 37 compounds that are new to us, and all 

of them are inactives based on our definitions. As a result, we have a 34 compound external 

set (17 actives and 17 inactives) that could be used to validate our resulting models since all 

of these compounds do not exist in the ICCVAM data set and are “unknown” to the resulting 

models. The compounds in the modeling and external sets are available in Tables 1 and 2 in 

the Supporting Information.

Chemical Descriptors

Chemical ocular toxicity models for the 75 ICCVAM compounds were developed with 

various types of 2D chemical descriptors, from Dragon (version 6)20 and MOE (version 

2011).21 The types of MOE descriptors include topological indices, structural keys, E-state 

indices, physical properties (such as Log P, molecular weight, and molar refractivity), and 

topological polar surface area. The types of Dragon descriptors included in this study are E-

state values and E-state counts, constitutional descriptors, topological descriptors, walk and 

path counts, connectivity and information indices, 2D autocorrelations, Burden eigenvalues, 

molecular properties (such as the octanol–water partition coefficient), Kappa, hydrogen 

bond acceptor/donor counts, molecular distance edge, molecular fragment counts, and 

chemical fingerprints. There are overlaps between Dragon descriptors and MOE descriptors, 

but both included unique types of descriptors as well. Initially, Dragon software yielded over 

2000 chemical descriptors for the training set. Redundant descriptors were identified by 

analyzing correlations coefficients between all pairs of descriptors, and if the correlation 

Solimeo et al. Page 4

Chem Res Toxicol. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coefficient between two descriptors was higher than 0.99, one of them was randomly 

removed. As a result, the total number of Dragon descriptors used in model building was 

reduced to 493. Because the number of MOE descriptors is much less than the Dragon 

descriptors, we used all 186 available MOE descriptors in our modeling process.

Universal Statistical Figures of Merit for All Models

Because we employed different modeling approaches and different descriptors in the 

modeling process (described below), universal statistical metrics are needed to evaluate the 

performance of models developed independently for the ICCVAM set. To harmonize the 

results of this study, we used sensitivity (the percentage of experimental toxicants that are 

predicted correctly), specificity (the percentage of experimental nontoxicants that are 

predicted correctly), and correct classification rate (CCR) to evaluate the predictions. These 

parameters are defined as follows:

(1)

(2)

(3)

k Nearest Neighbor (kNN)

The kNN QSAR method22 employs the kNN classification principle and the variable 

selection procedure. Briefly, a subset of nvar (number of selected variables) descriptors is 

selected randomly at the onset of the calculations. The nvar is set to different values, and the 

training set models are developed with leave-one-out cross-validation, where each 

compound is eliminated from the training set and its ocular toxicity is predicted as the 

average activity of k most similar molecules where the value of k is optimized as well (k = 

1–5). The similarity is characterized by Euclidean distance between compounds in 

multidimensional descriptor space. A method of simulated annealing with the Metropolis-

like acceptance criteria is used to optimize the selection of variables. The objective of this 

method is to obtain the best leave-one-out cross-validated (LOO-CV) CCR possible by 

optimizing the nvar and k. Additional details can be found elsewhere.22

Following our general QSAR modeling workflow methodology,23 all of the kNN models 

were extensively validated. The modeling compounds were divided multiple times into 

training/test sets using the Sphere Exclusion approach.24 The statistical significance of the 

models was characterized with the standard LOO-CV CCR for the training sets and the 

conventional CCR for the test sets. The model acceptability cutoff values of the LOO-CV 
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accuracy of the training sets and the prediction accuracy for test sets were both set at 0.7. 

Models that did not meet both training and test set cutoff criteria were discarded. The 

discussion of the workflow used to develop validated QSAR models is given in a recent 

review.25

Random Forest (RF)

In machine learning, a RF is a predictor that consists of many decision trees and outputs the 

prediction that combines outputs from individual trees. The algorithm for inducing a random 

forest was developed by Breiman and Cutler.26 In this study, the implementation of the 

random forest algorithm available in R.2.15.127 was used. In the RF modeling procedure, n 
samples are randomly drawn from the original data. These samples were used to construct n 
training sets and to build n trees. For each node of the tree, m variables were randomly 

chosen from the all of the available chemical descriptors (e.g., the 493 Dragon descriptors). 

The best data split was calculated using the m variables for the modeling set. In this study, 

only the defined parameters (n = 500 and m = 13) were used for model development.

Combinatorial QSAR

The whole workflow of the modeling process is shown in Figure 2. The individual 

classification models were developed using the combination of one type of descriptors 

(Dragon or MOE) and one type of modeling tools (kNN or RF), resulting in four different 

models: Dragon-RF (D-R), Dragon-kNN (D-k), MOE-RF (M-R), and MOE-kNN (M-k). 

The consensus model was generated as the average of the prediction values of the individual 

models.

RESULTS AND DISCUSSION

Overview of the ICCVAM and External Data Sets

We could analyze the chemical space of our data set, including both ICCVAM and external 

compounds, by performing principle component analysis (PCA) of the chemical descriptors 

used in this study. After PCA with the 186 MOE descriptors for all of the compounds in 

both modeling (ICCVAM) and external validation sets, we selected the first three most 

important components to generate a three-dimensional plot (Figure 3) for these 109 (75 

modeling and 34 validation) compounds. This plot could be viewed as the chemical space 

covered by the compounds used in this study. We noticed two structural outliers in our data. 

The one in the modeling set is polyethylene glycol 400 (CAS Registry Number: 

25322-68-3), widely used in a variety of pharmaceutical formulations due to its low toxicity. 

However, although it is a low molecular weight grade of polyethylene glycol, there is no 

other similar polymer in our data set. Similarly, there is a structural outlier, Acid red 92 

(CAS Registry Number: 18472-87-2), existing in our external validation set. Excluding 

structural outliers from the modeling set may improve robustness of QSAR models,17 while 

outliers in the external set should be detected by model's applicability domain.18,28 This 

study, however, is limited by the relatively small size of the modeling set and could not 

demonstrate the advantage of using applicability domain (data not shown). However, when 

additional data becomes available in the future, this critical issue needs to be considered to 

develop enhanced models.
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Model Characteristics

The prediction results of all four individual models and the consensus model for the 34 

external compounds (17 toxicants and 17 nontoxicants) are shown in Figure 4. The 

sensitivity, specificity, and CCR were 0.82, 0.82–0.92, and 0.85–0.88, respectively, for all 

four individual models, respectively. Only the RF-MOE model has relatively low accuracy 

(CCR = 0.73). Because the number of nontoxicants is higher than the toxicants in our 

modeling set (40 nontoxicants vs 35 toxicants), the prediction accuracy of the external 

nontoxicants (specificity) by all of the resulting models is somewhat higher than the 

predictivity of the external toxicants (sensitivity) (Figure 4). In several of our previous 

studies, we indicated that a consensus model (based on the predictions averaged over all 

available individual models) has better performance when compared to most individual 

modes.17,18,28,29 Moreover, for the consensus model, there is no need to decide which model 

to use out of several equally performing ones. In this study, our consensus model was based 

on the average of all four individual models. The prediction result of the external set shows 

that the consensus model has better predictivity for both toxicants (sensitivity of 0.88) and 

nontoxicants (specificity of 1) (Figure 4).

To compare the resulting models with existing computational tools, we have used the eye 

irritation module of the current Organisation for Economic Co-operation and Development 

(OECD) QSAR Toolbox30 to predict the same external compounds. There are only two 

external compounds, 2-methyl-1-pentanol and 3-methoxy-1,2-propanediol, that were 

identified as having structural alerts of ocular toxicity. The 2-methyl-1-pentanol is toxic, but 

the 3-methoxy-1,2-propanediol is actually nontoxic. The remaining compounds were 

identified as having “undefined functional groups”. For this reason, the prediction results of 

external compounds by our models are better than the results obtained from the OECD 

QSAR Toolbox eye irritation module.

Interpretation of Predictive QSAR Models

To obtain relevant toxicity mechanisms from our modeling results, we chose to analyze 

Dragon descriptors for their diversity and kNN models for their ease of interpretation (by 

frequency of descriptor occurrence). Several descriptors were found to be most frequently 

used in the kNN models that satisfied our criterions (CCR > 0.7 for both training and 

relevant test sets), suggesting that they may play a critical role in predicting ocular toxicity 

of organic compounds. The most important Dragon descriptors used in the kNN modeling 

approach are shown in Table 2, along with their frequencies of occurrence in acceptable 

models and their interpretations (Table 2). The first important descriptor refers to alcohols, 

which may cause mild to severe eye irritation.31–34 There are three druglike index 

descriptors that are considered to be important in our models. These types of descriptors 

were created based on Ghose–Viswanadhan–Wendoloski's (GVW) consensus definitions of 

drug classes.35 They identified drug classes using calculated physiochemical properties. 

Many pharmaceutical drugs have eye-related side effects, including dry eye, pupil dilation, 

retinal damage, and reduced acuity.36 The descriptor 3 represents anti-infective drugs. 

Within this drug category, the ophthalmic solutions have been known to cause acute corneal 

epithelial cell membrane damage.37 Antidepressant drugs, which are represented by the 

descriptor 6, could induce ocular phototoxicity.38 The patients on antidepressants or 
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undergoing neurological therapy are reported to be susceptible to retinal irritation and 

toxicity.38–40 There is no evidence about the relationship between ocular toxicity and esters 

(descriptor 4, Table 2). On the contrary, the esters are reported to be used to treat ocular 

infections.41 In our model, it could be considered as a negative modulator. As compared to 

esters, the carboxylic acids, which are represented by descriptor 8, can cause burns on the 

eyes.42 The remaining two descriptors (descriptors 5 and 7, Table 2) have obscure 

relationships with chemical ocular toxicity. Although ocular toxicity was observed with the 

amines (e.g., triethylamine43), this effect is most likely due not to a specific property of the 

chemical but rather to the alkaline nature of aliphatic amines.

Advantages and Pitfalls of the Consensus Model

To stress the advantage of the consensus model using the combi-QSAR technique, it should 

be made clear that from the viewpoint of toxicologists and other biologists that QSAR 

modeling is always a tool to analyze how the change of functional groups affects biological 

activity for a generic set of compounds. On the basis of this hypothesis, most of the 

traditional QSAR studies used a single modeling approach to develop a single model based 

on one type of descriptors. The assumption that “similar structures yield similar properties” 

runs contrary to the use of the traditional QSAR workflow for data sets with diverse 

compounds. As compared to traditional data mining and data modeling procedures (e.g., 

modeling by using one statistical tool and one type of descriptors), this study focuses on 

prediction based on a combination of various types of models (by using different statistical 

tools and different types of chemical descriptors). Consensus modeling based on the combi-

QSAR workflow will take advantage of the output from each individual model and utilize 

most optimally the chemical and/or biological information of the diverse chemical data set. 

On the other hand, the combi-QSAR modeling is more time-consuming than the 

development of a single model.

It needs to be noted that the prediction values of all individual models and that of the 

consensus model range from 0 to 1, and we set the classification threshold as 0.5 to 

determine toxic and nontoxic predictions. Table 3 shows the experimental and predicted 

ocular toxicity results of several sample compounds from the external set. In most cases, the 

consensus model could compensate for the errors from individual models (e.g., the 

predictions of compounds #2 and #3). However, the last compound was predicted incorrectly 

by all individual models, and the consensus model failed as well. In this case, our modeling 

results indicate that we are lacking necessary information in the modeling set for compounds 

with such a chemical scaffold. Therefore, compounds similar to compound #4 in Table 3 

should be tested experimentally with higher priority in the future as this would allow 

knowledge gaps to be addressed and for the improvement of computational models.

CONCLUSIONS

In this study, several QSAR approaches have been used to develop predictive models of the 

largest publicly available regulatory ocular toxicity set of diverse organic compounds. Every 

compound in this data set has been extensively evaluated for its eye irritation effect by the 

Draize test. Three regulatory agencies categorized these compounds using their own scoring 
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system based on Draize test results. We used a composite score to classify all of the 

compounds into ocular toxicants and nontoxicants. This composite score has high 

correlation with all three regulatory scoring systems. The resulting models were validated by 

predicting the toxicity of an external validation set compiled from different sources. It was 

observed that all models showed comparable performance for the external validation set. 

The most significant result of our studies is the demonstrated superior performance of the 

consensus modeling approach when all models are used concurrently and predictions from 

individual models are averaged. The predictive accuracy of the consensus QSAR models 

was shown to be superior to any individual models when predicting the same set of external 

compounds. The models reported in this paper could be used to evaluate the ocular toxicity 

of new organic compounds. Meanwhile, we invite all interested researchers to send us 

compounds for ocular toxicity prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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U.S. EPA U.S. Environmental Protection Agency
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NICEATM NTP Interagency Center for the Evaluation of Alternative 

Toxicological Methods

ICCVAM Interagency Coordinating Committee on the Validation of 

Alternative Methods
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combi-QSAR combinatorial QSAR

CCR correct classification rate
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kNN k nearest neighbor
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Figure 1. 
Experimental animal ocular toxicity results for 75 ICCVAM compounds.
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Figure 2. 
Combinatorial QSAR modeling workflow.
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Figure 3. 
Chemical space of the ICCVAM modeling set (purple, n = 75) and external validation set 

(red, n = 34) shown as first three principle components (57% explained variance) of 186 

two-dimensional MOE descriptors using MOE 2011.
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Figure 4. 
Performance on external set (n = 34) of four individual QSAR models and their consensus 

model.
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Table 1

Transformation of Different Regulatory Scoring Systems of Chemical Ocular Toxicity into Binary Composite 

Classifications in This Study

GHS U.S. EPA EU composite

severe ocular toxicants category 1 category I R41 “toxic” (active)

moderate ocular toxicants category 2A category II R36 “toxic” (active)

light ocular toxicants category 2B category III “nontoxic” (inactive)

nontoxicants nonirritant category IV nonirritant “nontoxic” (inactive)
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