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Abstract

Self-folded redox/acid dual-responsive nanocarriers (RAD-NCs) are developed for physiologically 

triggered delivery of anticancer drug. The evidenced redox/acid responsiveness, facile decoration 

of ligands, and active tumor-targeting capability of RAD-NCs suggest their potential as a 

promising formulation for tumor-targeted chemotherapy.

The last decades have witnessed vast efforts being put into the design of versatile anticancer 

drug delivery systems for precise “on demand” release and enhanced therapeutic efficacy.1-2 

The distribution of conventional chemotherapeutic agents is nonspecific in the body where 

they affect both cancerous and normal cells, thereby limiting the achievable dose within the 

tumor and also leading to suboptimal treatment due to excessive toxicities.3 In light of this, 

delivery approaches based on smart stimuli-responsive materials have drawn extensive 

attention these years.1, 4-7 Various nanomaterials and formulations have been engineered 

and tailored with integration of stimuli triggers.8-15 Recently, there has been a growing 

interest in designing and developing smart drug delivery systems with the ability to respond 

to dual or multiple stimuli, thereby assuring drug release under complex pathological 

conditions with fine-tuned drug release profile to augment therapeutic efficacy.16-18 

Numerous nanomaterials with dual or multi-sensitivities, such as pH/temperature, pH/redox, 

pH/glucose, pH/enzyme, dual enzyme, enzyme/light have been developed and studied.19-25 

For example, the endosomal acidification can be utilized as a trigger for endosomal escape 

and the release of encapsulated drugs.26-28 While glutathione (GSH), a tripeptide, is found at 

2 to 3 orders higher level (approximately 2-10 mM) in the cytosol than in the extracellular 

fluids (approximately 2-20 μM), rendering the relatively low intracellular redox 
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potential.29-32 Therefore a combination design integrating pH and redox responsive 

elements can significantly enhance therapeutic efficacy.33-35

In this communication, we developed a novel redox/acid dual-responsive nanocarrier (RAD-

NCs) with a well-defined core-shell structure capable of targeted delivery of the broad-

spectrum anticancer drug doxorubicin (DOX) to cancer cells. As shown in Figure 1, the 

RAD-NCs were assembled from a graft copolymer mainly comprised of polyethylene glycol 

(PEG) and polyserine, which are highly biocompatible. As a commonly used non-ionic 

hydrophilic polymer, PEG possesses a lot of advantages favoring its application in the 

design and development of polymer-based drug delivery systems.36 Different from 

traditional redox responsive formulations using redox-responsive disulfide-containing cross- 

linkers, the disulfide bonds were directly incorporated into the PEG backbone as a shell 

component; while highly acidic-sensitive hydrophobic ketal groups were introduced to the 

polyserine side chanis (designated m-polyserine). DOX was non-covalently encapsulated in 

the hydrophobic core during a self-folding process due to the amphiphilic nature of the 

copolymer. Additionally, the pendant acid-labile ketals on the polyserine segment sheds 

upon acidic hydrolysis, which renders the resulting PEG-polyserine water soluble,37 leading 

to the pH-responsive release of the encapsulated DOX.

Attributed to the reversible characteristic of thiol-disulfide chemistry, disulfide bonds are 

often incorporated into the design and development of redox-responsive nanomaterials.38 

Herein, the disulfide bond was directly incorporated into the polymeric backbone via a 

condensation polymerization in our design.39-40 Importantly, these disulfide bonds not only 

served as a redox-sensitive moiety, but also provided potential for further modification of 

the RAD-NCs surface such as conjugation of tumor-targeting ligand, as they can be facilely 

utilized as reaction site. Folic-acid moiety, the receptor of which is overexpressed on the 

surface of various types of tumor cells, is decorated into the polymeric shell for enhanced 

cellular uptake and nuclear localization of the DOX loaded RAD-NCs. The insertion of 

folic-acid moiety is achieved using a facile two-step procedure (Figure 1-A). Antioxidant 

GSH (0.5 mM) was first added into the RAD-NCs solution to partially break the disulfide 

linkers, followed by purification and addition of folic acid-polyethylene glycol-maleimide 

(folic acid-PEG-maleimide) for conjugation with the thiol group. The DOX loaded FA-

RAD-NCs are expected to enhance anticancer efficacies of DOX due to its two-phase 

release kinetics and synergetic effect of folic-acid targeting.

The graft copolymer for assembling RAD-NCs was synthesized via a two-step 

polymerization as illustrated in Figure S1. Monomer I, N,N-bis(2-aminoethyl)-N-[2-(tert-

butylcarbamoyl)ethyl-amine, was synthesized as reported.41-42 As a connection, partially 

protected tris(2-aminoethyl)amine (monomer I) condensed with bifunctional NHS-

PEG5000-NHS (monomer II) and NHS-PEG-SS-PEG-NHS (monomer III) to form a 

multiblock copolymer. After removing the protective Boc group, the third amino group on 

the connection was liberated and served as the initiator for side-chain polymerization.43 The 

molecular weight of the resulting linear backbone was assayed using the gel permeation 

chromatography (GPC), and this linear block copolymer displays a narrow distributed 

molecular weight at 78,064 g/mol. The ring-opening polymerization (ROP) of amino acid N-

carboxyanhydrides (monomer IV, Figure S2), facilitated by N-Trimethylsilyl (TMS), 
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gradually proceeded on the main chain, leading to the structurally well-defined graft 

copolymer, which is sensitive to both pH and redox potential.44-45

To fold the graft copolymer and encapsulate DOX, DOXHCl was dissolved into dimethyl 

sulfoxide (DMSO) together with TEA under stirring, followed by the addition of 

homogenous graft copolymer solution. The mixture was then simply mixed with large 

quantities of water under vigorously stirring. Together with DOX encapsulation, the folding 

was processed instantly and efficiently. Within the folding process of graft copolymer, as 

much as 23.1 wt% of DOX (percentage of DOX weight compared to the total weight) can be 

encapsulated into the nanocarriers. The transmission electron microscopy (TEM) image of 

RAD-NCs appeared as monodispersed particles with a diameter of around 200 nm, which 

was in good agreement with the results determined by the dynamic laser scattering (DLS) 

assay (Figure 2), while no significant size and morphology changes were observed with 

DOX encapsulation (Figure S3). The zeta potential of RAD-NCs and DOX/RAD-NCs were 

-0.651 mV and -0.372 mV, respectively. The loading capacity of DOX under this condition 

was ~ 16.7 wt% of the total weight.

To evaluate the redox/acid sensitivities of RAD-NCs, reducing and acidic conditions 

mimicking the intracellular environment were performed. To study the dual-responsive 

conformational changes of RAD-NCs, nanocarriers were treated with GSH (10 mM), acid 

(pH 5.0) and GSH/acid, respectively. The corresponding conformational changes after 24 h 

were further monitored using the TEM imaging. According to Figure 3-A, the treatment of 

GSH (10 mM), acid (pH 5.0) and the combination of GSH and acid all led to the degradation 

of RAD-NCs, confirming the redox/acid sensitivities of RAD-NCs. These results suggested 

that RAD-NCs were capable of undergoing degradation in response to the intracellular 

microenvironment, indicating their potential for stimuli-triggered intracellular drug release.

The drug release profile of RAD-NCs upon acid and redox gradient was assessed in 

phosphate-buffered saline (PBS, 0.1 M) and acetate buffer with and without GSH (1 mM 

and 10 mM) at 37 °C, respectively. The relevant results were summarized in Figure 3B. As 

expected, the release rate of DOX in PBS (pH 7.4) was much slower than that in acetate 

buffer (pH 5.0). About 14.0% and 24.0% of DOX was released from the nanocarriers in the 

first 5 h at pH 7.4 and 5.0, respectively. DOX could be further released from RAD-NCs at 

pH 5.0 and achieved 71.7% after 48 h, while the released DOX was only 38.9% for 

nanocarriers incubated at pH 7.4 over the same time period. The amount of DOX released 

from the nanoparticles was promptly increased when it was incubated in the medium 

supplemented with 10 mM GSH, but the release profiles were similar to those in the plain 

media. At 48 h, the amount of DOX released from the nanoparticles was 84.2% and 94.0% 

at pH 7.4 and 5.0 in the presence of 10 mM GSH, respectively. It should be noted that even 

the low GSH concentration (1 mM) could notably enhance the release of DOX at both pH, 

indicating the superior redox-sensitivity of RAD-NCs, which could be attributed to the 

direct incorporation of disulfide bonds to the polymeric backbone of the nanocarriers, the 

cleavage of which highly promoted drug release. This finding was also consistent with the 

TEM results in Figure 3-A, which displayed that the incorporation of redox-triggered 

degradation significantly affected the integrity of nanocarriers. Furthermore, it was 
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suggested that the release of DOX from RAD-NCs displayed a two-phase pattern where an 

initial fast release phase was followed by a slow release phase.

Targeting moiety, folic acid was modified onto the surface of nanocarriers using a facile 

two-step procedure (Figure 1-A). GSH (0.5 mM) was first added into the RAD-NCs 

solution under stirring, followed by the addition of folic acid-PEG-maleimide. The RAD-

NCs conjugated with folic acid moiety was observed using TEM (Figure S4-A). After 

targeting ligand conjugation, the nanocarriers maintained their redox and acid sensitivities 

(Figure S4-C). This is the first time that disulfide bonds have been incorporated onto the 

backbone of the polymeric nanocarrier for both the redox-sensitivity and the subsequent 

insertion of ligand for active targeting at tumor site.

The endocytosis pathway of DOX loaded RAD-NCs (DOX/RAD-NCs) was determined via 

pre-incubating human cervical carcinoma epithelial (HeLa) cells with several specific 

inhibitors of various kinds of endocytosis. As shown in Figure S5, sucrose (SUC, inhibitor 

of clathrin-mediated endocytosis), amiloride (AMI, inhibitor of macropinocytosis) and 

methyl-β-cyclodextrin (MCD, inhibitor of lipid raft) all reduced the uptake of DOX/RAD-

NCs significantly, which indicated DOX/RAD-NCs were taken up by HeLa cells via 

clathrin-mediated endocytosis, macropinocytosis and lipid raft, especially 

macropinocytosis.46-50 In contrast, insignificant inhibition on the cellular uptake of 

nanocarrier was found in the cells pretreated with chlorpromazine (CPZ, inhibitor of 

clathrin-mediated endocytosis) and nystatin (NYS, inhibitor of caveolin-mediated 

endocytosis). Similar phenomenon was also observed in the cellular uptake of polymeric 

micelles.51 These results indicated that clathrin-mediated endocytosis, macropinocytosis and 

lipid raft might play a major role in the internalization of the nanocarrier. The intracellular 

delivery of DOX/RAD-NCs and DOX/FA-RAD-NCs in HeLa cells was also explored using 

confocal laser scanning microscopy (CLSM). The fluorescence of DOX was clearly 

observed in HeLa cells after 1 h of incubation with DOX/RAD-NCs, which provided a 

visual evidence of the cellular internalization of DOX/RAD-NCs and the release of the 

loaded DOX molecules. When the incubation time was prolonged to 4 h, DOX was 

delivered and released into the nuclei of HeLa cells, as indicated by the magenta 

fluorescence (Figure 4-A). Similar pattern was observed in HeLa cells incabuted with 

DOX/FA-RAD-NCs (Figure 4-B, Figure S6). The fluorescence intensity of DOX is 

significantly higher compared with DOX/RAD-NCs, which can be attributed to the active 

targeting ability of folic acid moiety.

To assess anticancer efficacy of RAD-NCs, DOX encapsulated nanocarriers was treated 

with HeLa cells and evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay. As shown in Figure 4-C, D, cell viability was dependent on both 

DOX concentration and incubation time, as expected. The halfmaximal inhibitory 

concentration (IC50) of DOX/RAD-NCs and DOX/FA-RAD-NCs towards HeLa cells for 24 

h treatment were 2.5 mgL−1 and 0.9 mgL−1, respectively. Both DOX/RAD-NCs and 

DOX/FA-RAD-NCs have displayed higher cytotoxicity than free DOX solution (for 24 h 

treatment: IC50= 2.6 mgL−1). Interestingly, for 24 h treatment, DOX/FA-RADs didn't show 

enhanced cytotoxicity compared with free DOX solution. This might be attributed to the 

difference in surface property of the NCs caused by the introduction of folic acid targeting 
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moiety.52 Empty RAD-NCs and FA-RAD-NCs without DOX did not show significant 

cytotoxicity within the tested range of concentrations (Figure S7). It was suggested that the 

controlled release of DOX achieved by redox/acid responsive RAD-NCs provided higher 

cytotoxic activity towards cancer cells. DOX/FA-RAD-NCs showed significantly enhanced 

cytotoxicity (2.8-fold for 24 h treatment) compared with DOX/RAD-NCs towards folic acid 

positive HeLa cells where folate receptor proteins were overexpressed, which can be 

attributed to the existence of folic acid targeting moiety.

In summary, we have developed a novel redox/acid dual responsive nano-vehicle for 

programmed anticancer drug delivery. Due to the synergetic effect of folic-acid targeting 

effect and its two-phase release kinetics, the anticancer efficacy of DOX/FA-RAD-NCs is 

significantly enhanced. The facile synthetic route, ease of decoration, high loading capacity 

of drug and synergistic degradation mechanism render this dual-responsive drug carrier a 

promising formulation for tumor-targeted chemotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic design of the redox/acid dual-responsive nanocarriers (RAD-NCs) for anticancer 

drug delivery. A) Schematic illustration of the formation and structural transitions of RAD-

NCs for targeted intracellular drug delivery. i) Self-assemble the graft copolymer with DOX 

into nanocarriers; ii) decoration of the targeting ligand (folic acid) with thiol groups 

generated by partial cleavage of disulfide using glutathione; iii) intracellular delivery of 

RAD-NCs. B) Schematic of the chemical structure of the graft copolymer and DOX. The 

scissors represent cleavage sites.
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Figure 2. 
Characterization of graft; copolymer and nanocarriers. A) Respenstative TEM image of 

RAD-NCs.. Scale bar: 200 nm. B) Hydrodynamic size of RAD-NCs measured by DLS. 

Iinset: TEM image of RAD-NCs (zoom in). Scale bar: 100 nm.
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Figure 3. 
A) Respenstative TEM images of nanocarriers treated with GSH (10 mM) and acid (pH 5.0): 

GSH (left), aciid (middle) and GSH/acid (right). Scale bars: 200 nm. B) DOX release 

profiles of DOX-loaded micelles in different buffers at 37 °C. Data represent mean ± SD 

(n=3).
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Figure 4. 
The cellular uptake behavior and cytotoxicity of DOX/RAD-NCs and DOX/FA-RAD-NCs 

toward HeLa cell line. (A, B) Intracellular trafficking of DOX/RAD-NCs (A) and DOX/FA-

RAD-NCs (b) on HeLa cell line observed by CLSM. The late endosomes and lysosomes 

were stained by LysoTracker Green, and the nuclei were stained by Hoechst 33342. Scale 

bar: 10 μm. (C, D) Viabilities of HeLa cells incubated with blank medium, free DOX, DOX/

RAD-NCs and DOX/FA-RAD-NCs at various DOX concentrations for C) 24 h and D) 48 h. 

The horizontal ordinate indicates the concentration of DOX. Error bars indicate s.d. (n=4).
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