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Abstract

A fluorous tagging strategy coupled with enzymatic synthesis is introduced to efficiently

synthesize multiple phosphatidylinositides, which are then directly immobilized on a fluorous

polytetrafluoroethylene (PTFE) membrane to probe protein-lipid interactions.

Phosphatidylinositol (PtdIns) is a membrane-bound lipid that features a hydrophilic inositol

head unit linked with a hydrophobic diacylglycerol (DAG) through a phosphate group.[1]

Three of the five hydroxyls in inositol undergo dynamic phosphorylation/dephosphorylation

processes to generate the seven known phosphatidylinositides (PIs). Due to their interactions

with a wide range of effector proteins,[2] PIs are one family of the most versatile signaling

molecules that regulate many cellular processes such as cell proliferation and vesicle

transport.[3] Abnormal levels of PIs have been associated with multiple diseases including

cancer and neurodegenerative diseases.[4] However, the detailed mechanisms by which PIs

regulate different diseases are largely unknown, partly because of the difficulty in generating

PI derivatives as cellular probes.

PIs and their derivatives are notorious for their structural complexity, with seven stereogenic

centers and the hydroxyl groups around the inositol head unit having similar reactivity. Most

of the synthetic strategies require selective protection and deprotection of the hydroxyl

groups, and usually take more than 15 steps to synthesize one PI.[5] The synthetic efforts are

daunting when multiple PIs are targeted. In addition, PIs contain both the highly hydrophilic

inositol phosphate head group and highly hydrophobic aliphatic side chains, making them

difficult to purify from the reaction mixtures. Despite elegant work from several groups on

developing novel methods and convergent strategies to prepare PIs and their derivatives,[5]

efficient synthesis of various PIs remains a technical challenge.
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Using enzymes as catalysts in organic synthesis has long been an alternative method to

traditional organic synthesis.[6] This approach has not been extended to PI synthesis

although multiple enzymes that catalyze the formation of various PIs from PtdIns are well

studied.[7] The highly hydrophilic nature of the inositol phosphates head group further

makes it difficult to separate the PIs from the enzymatic reaction mixtures containing

inorganic salts. Utilizing highly fluorinated (fluorous) tags to assist separation of enzymatic

products from mixtures over fluorous media[8] has also been explored. For example, kinetic

resolution of a fluorous ester has been carried out in a fluorous triphasic separative reaction

to generate pure products without chromatography.[9] Recently, fluorous tagged

oligosaccharides have been used as enzymatic substrates in Nimzyme assays to detect

enzymatic activities in cell lysates.[10] However, these developments are focused on one-

step enzymatic transformation and further applications of the products are not explored. We

introduce here “fluorous enzymatic synthesis” (Fig. 1) where tandem enzymatic reactions

are used to generate multiple probes after purification through fluorous solid phase

extraction (FSPE)[8a]. These probes can then be used as enzyme reporters, or be directly

immobilized on a fluorous surface to form a microarray[11] to investigate protein-small

molecule interactions. PtdIns(4,5)P2 is the most well-studied PI and functions as a substrate

of multiple enzymes including phosphoinositide 3-kinase (PI3K) and phospholipase C

(PLC).[12] To validate “fluorous enzymatic synthesis”, we designed the fluorous

PtdIns(4,5)P2 derivative 1 with the fluorous tag at the sn-2 position. The long alkyl chain

was used to ensure similar hydrophobicity and membrane localization as endogenous

PtdIns(4,5)P2 and to minimize the effect of the fluorous group on the head unit, where most

metabolic reactions take place. The fluorophore was also added at the sn-1 position for

sensitive monitoring of subsequent reactions. To synthesize 1 (Scheme 1), the fluorinated

acid 2 was generated by the radical addition of the according perfluorinated iodide C6F13I

with undec-10-enoic acid followed by reduction with lithium aluminum hydride.[13]

Coupling of 2 with the alcohol 3 and subsequent removal of the p-methoxybenzyl (PMB)

protective group provided 4 in 90% yield. The alcohol in 4 was then phosphorylated and

coupled with the inositol head group 5,[5a] and the resulting intermediate was oxidized with

t-BuOOH to generate 6. Next, both benzyloxycarbonyl (Cbz) and benzyl (Bn) groups were

removed by hydrogenolysis while the methoxymethyl (MOM) group was removed by

treatment with trimethylsilyl bromide (TMSBr) followed by methanolysis. The fully

deprotected 7 was produced in 81% yield. Selective coupling of the terminal amine in 7 with

N-hydroxysuccinimide (NHS) ester of fluorescein 8 provided the fluorous, fluorescent

PtdIns(4,5)P2 derivative 1. The critical micelle concentration (CMC) of 1 was measured as

17 μM (Fig. S1), similar to that of the endogenous PtdIns(4,5)P2 suggesting that the fluorous

1 is a good mimic as the endogenous PtdIns(4,5)P2.[14]

To investigate whether the tagged PtdIns(4,5)P2 derivative worked as the enzyme substrate,

the fluorous 1 was treated with purified PI3K, a kinase that phosphorylates endogenous

PtdIns(4,5)P2 to form the corresponding PtdIns(3,4,5)P3 under standard PI3K reaction

conditions.[7a] The reactions were monitored by fluorescent detection of both PtdIns(4,5)P2

and PtdIns(3,4,5)P3 on TLC (Fig. 2). The starting material was cleanly converted to the

product in 6 h under standard assay conditions. Likewise, when treated with PLC, another

metabolic enzyme that utilizes PtdIns(4,5)P2 as a substrate, fluorous 1 was completely
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converted to the product DAG without any indication of formation of side products (Fig. 2).

In cellular systems, PIs work as both starting materials for and products of multiple

enzymatic reactions. To demonstrate that such complexity can also be recapitulated in the

fluorous enzymatic synthesis, the tandem sequence of enzymatic reactions were

investigated. The fluorous PtdIns(3,4,5)P3 generated from the PI3K reaction followed by

FSPE was directly used in a reaction catalyzed by phosphatidylinositol 3,4,5-triphosphate 5-

phosphatase 2 (SHIP2)[7c] to produce the corresponding PtdIns(3,4)P2. As measured by

TLC, the reaction generated a single product within 6 h. After FSPE, the fluorous

PtdIns(3,4)P2 was further subjected to dephosphorylation by phosphatase and tensin

homolog (PTEN)[7d] to yield the corresponding PtdIns(4)P. Again, only the desired product

was produced which was further purified through FSPE (Fig. 2).

Both 31P NMR (Fig. 3) and MS (Fig. S2) were used to demonstrate the efficiency of FSPE

purification. As described above, fluorous PtdIns(4,5)P2 was first treated with PI3K and the

resulting product was used as the substrate in SHIP2 reaction. To purify a product through

FSPE, the reaction mixture was added to a column packed with fluorous silica. The column

was first eluted with 20% and then 60% MeOH in water. As shown in Figure 3, the 31P

NMR of the reaction mixture is dominated by ATP, the phosphate donor for the

phosphorylation, and its hydrolyzed product ADP, with little signal for the PtdIns(3,4,5)P3

product before FSPE. In contrast, after FSPE, the 60% MeOH fraction gave only resonances

corresponding to PtdIns(3,4,5)P3. These results suggest that FSPE efficiently enriches the

desired fluorous product. Such enrichment is also critical for the MS analysis. No molecular

ion was detected for PtdIns(3,4,5)P3 before FSPE while the major signal in the MS spectrum

after FSPE was the enzymatic product PtdIns(3,4,5)P3 (Fig. S2). A similar phenomenon was

observed for the SHIP2 reaction: in both 31P NMR or MS spectra, the desired reaction

product was only detected after FSPE (Fig. 3 and Fig. S2).

Although cleavable linkers can be envisioned to avoid the trace of the fluorous tag on the

enzymatic products, we chose to use non-cleavable fluorous tag for this work so that the

enzymatic products could be directly immobilized on a fluorous surface for a small molecule

array. We chose to use Teflon as the fluorous surface because the fluorous array used in the

literature[11] is no longer commercially available. Equal molar amounts of the three fluorous

tagged PIs, PtdIns(4,5)P2, PtdIns(3,4,5)P3, and PtdIns(3,4)P2, from the enzymatic reactions

were spotted on a perfluorinated Teflon membrane for immobilization. Because each PI

contains the same fluorophore fluorescein, the efficiency of loading was quantified by

fluorescence scanning at the excitation/emission wavelengths of 488/520 nm (Fig. 4A).

Indeed, the intensities of the three lipids were in the same range suggesting that they have

similar capacity to immobilize on the Teflon membrane. When the quantity of the

immobilized lipid doubles, so does the fluorescence intensity. The membrane was then

incubated with biotin-conjugated antibody against PtdIns(3,4,5)P3. After washing with

buffer, the membrane was treated with Cy5-streptavidin and scanned for Cy5 signal

(λex/λem = 633/670 nm) after washing with buffer (Fig. 4B). Only fluorous PtdIns(3,4,5)P3

was detected by anti-PtdIns(3,4,5)P3. Similarly, both fluorous PtdIns(4,5)P2 and

PtdIns(3,4,5)P3 were detected by anti-PtdIns(4,5)P2 (Fig. 4C) while anti-PtdIns(3,4)P2

recognized fluorous PtdIns(3,4)P2 and PtdIns(4,5)P2 (Fig. 4D). These binding profiles are

consistent with the intrinsic affinity of each antibody with different endogenous PIs,[15]
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suggesting that the fluorous tag does not significantly interfere with the antibody-lipid

interactions.

Conclusions

In conclusion, a fluorous enzymatic synthesis strategy was developed to make multiple PIs

which can be directly immobilized onto a fluorous microarray. Our experiments clearly

demonstrate the advantage of the combination of fluorous tagging and enzymatic reactions

in making multiple PIs at both the synthesis and the separation stages. Although cleavable

linkers can be readily incorporated to remove the fluorous tag at the end of the enzymatic

syntheses, this work purposely leaves the tag intact after enzymatic reactions so that the

products could be directly immobilized onto a fluorous microarray. Indeed, the antibodies

against PIs selectively recognize the fluorous-tagged lipids with the same binding profiles as

their non-tagged parents, suggesting that the fluorous tag has little impact on their functions.

This strategy should also be applicable to other complex endogenous small molecules whose

biosynthetic enzymes are well characterized.
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Fig. 1.
Schematic illustration of “Fluorous Enzymatic Synthesis”. The enzymatic products can be directly immobilized on a fluorous

surface.
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Fig. 2.
Enzymatic synthesis with PI3K, PLC, SHIP2, and PTEN. The reaction progression was monitored by TLC.
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Fig. 3.
Efficiency of FSPE on product purification and characterization with 31P NMR.
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Fig. 4.
Selective binding profiles of fluorous lipids with antibodies on a fluorous membrane.
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Scheme 1.
Synthesis of the fluorous substrate PtdIns(4,5)P2.
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