

NIH Public Access Author Manuscript

Chem Commun (Camb). Author manuscript; available in PMC 2013 August 07.

Published in final edited form as:

Chem Commun (Camb). 2012 August 7; 48(61): 7568–7570. doi:10.1039/c2cc33401a.

α-Amination of keto-nitrones *via* Multihetero-Cope rearrangement employing an imidoyl chloride reagent†

Justin T. Malinowski, Ericka J. Malow, and Jeffrey S. Johnson

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States

Jeffrey S. Johnson: jsj@unc.edu

Abstract

 α -Aminations of ketone-derived nitrones have been developed *via* [3,3]-rearrangement of the intermediates generated upon condensation with imidoyl chlorides. Careful reagent selection provides synthetically attractive amino protecting groups. The enediamide or α' -carbamoyl enamide products can be hydrolyzed to the desired carbonyl, or exposed to electrophiles for further α -functionalization.

a-Amino carbonyls are ubiquitous in organic chemistry. Creation of this functional group *via* C_{α} -N bond construction is a central challenge in organic synthesis that has received considerable attention in the literature.¹ The electrophilic α -amination of enolates and their equivalents is in principle a direct, efficient method for α -amino carbonyl synthesis and significant work on this problem has been reported. Azodicarboxylates are especially prominent N(+)-sources that have been widely and effectively applied to this reaction, including asymmetric variants,² but come with several drawbacks. Atom inefficiency, explosion hazard,³ and typically harsh or multistep deprotection protocols to reveal the amine somewhat counterbalance the favourable reactivity profile. Thus, an argument can be made that an important but often-overlooked component of the electrophilic a-amination problem lies in the "packaging" of the amine product. Previous studies by our group made use of a weak N–O bond for electrophilic amination methodology,⁴ and we questioned whether this tactic could be harnessed to provide convenient nitrogen protecting groups (e.g. Boc, Fmoc, Cbz) concomitantly upon α -amination. The purpose of this communication is to report a [3,3]-rearrangement of imidoyl nitrones providing α -amination products with synthetically-attractive amino protecting groups.

[3,3]-Sigmatropic rearrangements are important reactions for the reliable introduction of various functionality in complex settings.⁵ Multihetero-[3,3]-rearrangements, such as those of *N*-alkyl-*N*-acetoxyenamines, are an important subclass.⁶ Coates and Cummins were the first to develop this rearrangement as a method for α -functionalization: treatment of *N*-⁴Bu nitrones with acyl chlorides provide α -acyloxy carbonyls (eqn (1)).^{6b} Extension of this strategy to achieve α -amination has been scarcely pursued. The use of an imidoyl chloride rather than an acyl chloride in the condensation with a keto-nitrone afforded α -amido ketone products in two preliminary investigations.⁷ The imidoyl electrophiles used (Y, Z = Ph *or* Y

[†]Electronic supplementary information (ESI) available: Experimental details and characterization data for new compounds. See DOI: 10.1039/c2cc33401a

[©] The Royal Society of Chemistry 2012

 $Correspondence \ to: \ Jeffrey \ S. \ Johnson, \ \texttt{jsj@unc.edu}.$

= Ph, Z = Me (Scheme 1)) provided *N*-Ph/Me-benzoylamino products that would be difficult to convert to the free α -amino ketones.

In formulating a reaction design for an α -amination that proceeds with concurrent generation of synthetically-attractive protecting groups, we envisioned that a [3,3]-rearrangement involving an appropriately functionalized imidoyl chloride reagent could be useful (Scheme 1). Herein, we disclose an α -amination protocol for keto-nitrone substrates *via* [3,3]-rearrangement. The α -amino products obtained are conveniently configured as benzyl carbamates (NH–Cbz). An unexpected deprotonation event occurs with acyl migration to furnish enediamide or α' -carbamoyl enamide products dependent on the α -proton availability on the nitrone substrate (*vide infra*).

The requisite keto-nitrones were prepared *via* hydroxylamine/ketone condensation.⁸ A variety of enolizable ketones were employed with aryl, alkyl, and cyclic substrates providing varied yields (13–88%) of nitrone product.⁹ These compounds are stable to SiO₂ chromatography and can be stored in a freezer indefinitely. The Cbz-protected trifluoromethyl imidoyl chloride **1** was synthesized *via* the published two step route.¹⁰

The reaction of cyclopentanone-derived nitrone **2** and the imidoyl chloride **1** in the presence of Et₃N at 0 °C led to rapid and complete reagent consumption. Analysis of the crude reaction mixture showed formation of an α' -carbamoyl enamide product (**3**), rather than the anticipated α -amino imine or ketone (Scheme 2). This was rationalized *ex post facto* by a 1,4-trifluoroacetyl migration/proton transfer^{6a} of the initial [3,3]-imine product (**5** \rightarrow **3**, Scheme 2). At this time it is unclear whether the system is under kinetic or thermodynamic control, although the formation of α' -carbamoyl enamide products (deprotonation at the less-hindered site) suggests a kinetic scenario. Equimolar quantities of nitrone and reagent **1** treated with 2.0 equiv. triethylamine provided the optimal results for this transformation when run in CH₂Cl₂ at 0 °C. The reaction was usually complete within 30 min.

A divergence in reactivity was observed when acetophenone-derived nitrone **6** was subjected to identical conditions. In the absence of an α' -enolizable proton, terminal deprotonation occurred at the α -site furnishing the enediamide product (**9** \rightarrow **7**, Scheme 3).

With optimized conditions in hand and two product classes identified, we explored the scope of the [3,3]-rearrangement/ α -amination. Nitrones derived from acetophenone derivatives provided moderate yields ranging from 49–66% (7, 10–12, Table 1). The enediamide moiety was formed exclusively in the (*Z*)-configuration. When a propiophenone-derived nitrone was used, the product geometry was reversed (12), presumably due to increased A^{1,3}-strain introduced by the methyl substituent (*vs.* –H). Cyclic nitrones also performed well in the [3,3]-rearrangement (Table 2). Cyclopentyl and cyclohexyl substrates provided α' -carbamoyl enamides in 64–78% yields (3, 13–16). The use of a 4-^{*t*}Bu-cyclohexanone derived nitrone decreased the yield and provided minimal diastereoselectivity (17).

The nitrone *N*-benzyl protecting group was varied, using the cyclopentyl core as a model. Several substituted benzyl nitrones were examined, with the tolyl group providing the

Chem Commun (Camb). Author manuscript; available in PMC 2013 August 07.

(1)

highest yield (14). A chiral nitrone derived from (*S*)- α -methyl benzylamine was synthesized and tested,¹¹ but chirality transfer was poor (18).

The acetone-derived nitrone provided the enediamide **19** rather than the isomeric α' carbamoyl enamide. In this case and other examples reported with diminished yields, competing reactions producing unknown byproducts account for the mass balance. The cyclohexenone-derived nitrone displayed unique reactivity wherein the chloride byproduct was incorporated yielding *cis*- β' -chloro- α' -carbamoyl enamide **20**.

Both the enediamide and α' -carbamoyl enamide products are resistant to hydrolysis and survive acidic or basic aqueous workup; however, after extensive screening of conditions, basic hydrolysis was realized upon treatment with freshly prepared sodium benzylthiolate in MeOH. Subjecting the enamide **3** to these conditions cleanly provided the Cbz-protected α -amino ketone **21** in 85% yield (**A**, Scheme 4). Enediamide product **7** was also hydrolyzed upon thiolate exposure and subsequent acidic workup. In this case, partial tranesterification occurred providing the methoxy-carbamyl protected α -amino ketone as a minor product (**B**, Scheme 4). A one-pot procedure taking nitrone starting material directly to the Cbz-protected α -amino ketone **21** was also realized by treating the crude reaction product from the [3,3]- α -amination with NaSBn/MeOH. This sequence resulted in a yield of 69%, significantly higher than the analogous two-step process (**C**, Scheme 4).

The enamide in both product classes provides opportunities for further α -functionalization. Exposure of enamide **3** to Br₂ provided hemiaminal oxazolidinone **23** from bromination-debenzylation (**D**, Scheme 4).

In conclusion, we have developed an α -amination of keto-nitrones *via* multiheteroatom-[3,3]-rearrangement. This reaction provides enediamide or α' -carbamoyl enamide products based on the enolizable sites on the substrates employed. Upon basic hydrolysis, carbonyl functionality may be revealed providing a new method for carbonyl α -amination. Ongoing studies in our laboratory are focused on extending this method to aldo-nitrones and development of an asymmetric variant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Notes and references

- For reviews on electrophilic α-amination see: Boche G. Helmchen G, Hoffmann RW, Mulzer J, Schaumann E. Stereoselective Synthesis. 1996; vol. 9StuttgartThieme:5133–5157. Greck C, Genet JP. Synlett. 1997:741. Ciganek E. Org. React. 2009:1–36. Genet JP, Greck C, Lavergne D. Ricci A. Modern Amination Methods. 2000; ch. 3Weinheim, GermanyWiley-VCH Janey JM. Angew. Chem. 2005; 117:4364. (*Angew. Chem., Int. Ed.*, 2005, 44, 4292).
- (a) Evans DA, Johnson DS. Org. Lett. 1999; 1:595. [PubMed: 10823188] (b) Juhl K, Jørgensen KA. J. Am. Chem. Soc. 2002; 124:2420. [PubMed: 11890774] (c) Marigo M, Jørgensen KA. Chem. Commun. 2006:2001.(d) Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA. Angew. Chem. 2002; 114:1868. (*Angew. Chem., Int. Ed.*, 2002, **41**, 1790); (e) Hayashi Y, Aratake S, Imai Y, Hibino K, Chen Q-Y, Yamaguchi J, Uchimaru T. Chem.–Asian J. 2008; 3:225. [PubMed: 18165948] (f) Yamashita Y, Ishitani H, Kobayashi S. Can. J. Chem. 2000; 78:666.(g) Evans DA, Nelson SG. J. Am. Chem. Soc. 1997; 119:6452.(h) List B. J. Am. Chem. Soc. 2002; 124:5656. [PubMed: 12010036] (i) Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132:1255. [PubMed: 20055386] (j) Kumaragurubaran N, Juhl K, Zhuang W, Bøgevig A, Jørgensen KA. J. Am. Chem. Soc. 2002; 124:6254. [PubMed: 12033850] (k) Bui T, Hernandez-Torres G, Milite C, Barbas CF III. Org. Lett. 2010; 12:5696. [PubMed: 21070065] (l) Bui T, Borregan M, Barbas CF III. J. Org. Chem. 2009; 74:8935.

[PubMed: 19950878] (m) Cheng L, Liu L, Wang D, Chen Y-J. Org. Lett. 2009; 11:3874. [PubMed: 19708700] (n) Qian Z-Q, Zhou F, Du T-P, Wang B-L, Zhou J. Chem. Commun. 2009:6753.

- 3. Berger A, Wehrstedt KD. J. Loss Prev. Process Ind. 2010; 23:734.
- 4. (a) Berman AM, Johnson JS. J. Am. Chem. Soc. 2004; 126:5680. [PubMed: 15125656] (b) Berman AM, Johnson JS. J. Org. Chem. 2006; 71:219. [PubMed: 16388639]
- (a) Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38:3133. [PubMed: 19847347] (b) Nubbemeyer U. Synthesis. 2003:961.
- (a) House HO, Richey FA. J. Org. Chem. 1969; 34:1430.(b) Cummins CH, Coates RM. J. Org. Chem. 1983; 48:2070.(c) Beshara CS, Hall A, Jenkins RL, Jones KL, Jones TC, Killeen NM, Taylor PH, Thomas SP, Tomkinson NCO. Org. Lett. 2005; 7:5729. [PubMed: 16321033] (d) Hall A, Hugent EP, Jones KL, Jones TC, Killeen NM, Yau SC, Tomkinson NCO. Synlett. 2007:293.(e) Reis LV, Lobo AM, Prahhakar S, Duarte MP. Eur. J. Org. Chem. 2003:190.(f) Hofelmeier R, Blechert S. Angew. Chem., Int. Ed. Engl. 1982; 21:370.(g) Almeida PS, Lobo AM, Prabhakar S. Heterocycles. 1989; 28:653.(h) Porzelle A, Woodrow MD, Tomkinson NCO. Org. Lett. 2010; 12:1492. [PubMed: 20199033]
- (a) Abramovitch DA, Abramovitch RA, Benecke H. Heterocycles. 1985; 23:25.(b) Lantos I, Zhang W-Y. Tetrahedron Lett. 1994; 35:5977.
- 8. Pfeiffer JY, Beauchemin AM. J. Org. Chem. 2009; 74:8381. [PubMed: 19791735]
- 9. See Supporting Information for nitrone scope and characterization data.
- (a) Osipov S, Artyushin O, Kolomiets A, Bruneau C, Dixneuf P. Synlett. 2000:1031.(b) Karimova N, Vorobyeva D, Shchetnikov G, Osipov S. Russ. Chem. Bull. 2010; 59:107.
- 11. Breuning M, Hauser T, Tanzer E-M. Org. Lett. 2009; 11:4032. [PubMed: 19691351]

Malinowski et al.

\$watermark-text

\$watermark-text

\$watermark-text

Scheme 2. Initial result and proposed mechanism.

Malinowski et al.

Scheme 3. Divergent reactivity with aryl nitrone.

Scheme 4. Secondary transformations.

Table 1

Aryl nitrone scope^{*a*,*b*,*c*}

^{*a*}All reactions: $[1]_0 = 0.1$ M.

^bYields of isolated products.

^cSee Supporting Information for more details.

^{*a*}All reactions: $[1]_0 = 0.1$ M.

 b Yields of isolated products; dr determined by ¹H NMR spectroscopy.

Malinowski et al.

^CSee Supporting Information for more details.

\$watermark-text