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Introduction

The vertebrate central nervous system (CNS), comprised 
of brain, spinal cord, and retina, is vascularized during 
its development to provide oxygen and nutrients to newly 
born neurons, long before they extend axons and dendrites. 
The neural tube acquires its own vascular network prior to 
birth via angiogenic sprouting from vessel networks that 
form immediately outside the CNS; the intraneural blood 
vessel network then expands as the neural tissue grows. 
In contrast, the multilayered retina is initially supplied by 
a combination of two extra-retinal vascular systems, the 
choroidal vasculature that supplies the outer retina, and  
the hyaloid arteries that supply the inner retina and lens; the 
choroidal vasculature persists, but late in mammalian devel-
opment, the hyaloid arteries are replaced with a dedicated  
intraretinal vascular system. In this review, we will provide a 
historical perspective on research into neural tube and retinal  
angiogenesis, discuss current models available to study CNS 
angiogenesis, and summarize recent progress in uncovering  
the cellular and molecular mechanisms of blood vessel 
growth and maturation in the CNS.

Description of neurovascular development

Historic perspective

The process of CNS vascularization was first studied in the 
fetal chick brain and both rat and rabbit cerebral cortex with 
a combination of India ink perfusion and electron micros-
copy to reveal the structure of patent blood vessels [1–3]. 
In combination with conventional histological techniques, 
these studies revealed that blood vessels first form a peri-
neural vascular plexus (PNVP), and then invade and branch 
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within the neural tube in stereotypical patterns. Subsequent 
electron microscopy studies of spinal cord vascularization 
in the developing mouse embryo demonstrated interactions 
between endothelial cells and neural cells, and suggested 
that both cell types contribute to the blood–brain barrier 
(BBB) [4].

Following on from the pioneering studies, subsequent 
research into the mechanisms of CNS vascularization used 
antibody-based and embryological techniques to trace the 
behavior of developing blood vessels in the neural tube. 
Initially, the QH1 antibody, which recognizes quail angio-
blasts and endothelial cells [5], was used to analyze avian 
vascularization [6]. QH1 staining allowed researchers to 
follow the fate of quail endothelial cells after transplan-
tation into chick hosts and provided strong evidence that 
the CNS was vascularized by angiogenic sprouting [7–9]. 
More recently, staining for QH1 and in situ hybridization 
have been combined with neural tube electroporation to 
selectively manipulate one side of the avian neural tube, 
with the contra-lateral side serving as an internal control 
[10, 11].

Since the discovery of QH1, additional vascular markers 
have become available that facilitate the study of brain and 
retinal angiogenesis in other vertebrates, including mouse. 
Accordingly, immunohistochemical, immunofluorescent, 
and immunoblotting techniques are now commonly com-
bined with traditional methods to study the molecular and 
cellular mechanisms of vessel growth in the CNS. In partic-
ular, immunological techniques have been used to compare 
CNS angiogenesis in normal development and after genetic 
modification of candidate vascular growth and patterning 
factors.

Not long after the discovery of brain vascularization 
through angiogenic vessel ingression, it was shown that a 
comparable mechanism also operates in the mammalian ret-
ina, with angiogenic vessel ingression from the optic nerve 
vasculature [12, 13]. Currently, the perinatal mouse retina 
is the most widely studied model system for studying CNS 
vascularization (reviewed in [14]), followed by the mouse 
embryo hindbrain [15] (Fig.  1). The popularity of these 
models results from the genetic tractability of the mouse 
embryo, the ever-increasing availability of antibodies for 

Fig. 1   Time course of blood 
vessel ingression into the mouse 
embryo hindbrain and the peri-
natal mouse retina. a Vessels 
sprout from the PNVP into the 
hindbrain at around embryonic 
day 9.75 in the mouse and 
then grow radially towards the 
ventricular zone. Radial vessels 
do not invade the subventricu-
lar zone, but sprout laterally 
and then anastomose to form a 
subventricular vascular plexus 
by E12.5. b Cross section of an 
adult eye shows the relationship 
of retinal vessels to other ocular 
structures (top half) and the 
subdivision of the retinal vascu-
lature into three plexi, termed 
superficial (or primary plexus), 
intermediate plexus and deep 
plexus. c Retinal vascularization 
proceeds from center to periph-
ery in a radial fashion during 
the first week of life (upper 
half) and leads to an extensively 
remodeled superficial plexus 
(lower half)
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relevant mouse proteins, and the ability to perform quan-
titative studies on flat-mounted tissues. A model system 
that complements and diversifies the use of immunolabeled 
mouse tissues is the zebrafish embryo, because several fluo-
rescent transgenic reporters for endothelial cells have been 
developed for live imaging of vascular development [16, 17].  
For example, transgenic fish that link GFP or mCherry to 
vascular promoters such as kdrl (flk1) or fli1 are used exten-
sively, and can be used to study CNS vascularization in normal  
and genetically altered fish embryos.

Description of CNS vascularization: hindbrain and retina 
models

The vascularization of the mouse embryo hindbrain is initi-
ated around embryonic day (E) 9.5, when a few vascular 
sprouts emerge from the PNVP and invade the hindbrain 
parenchyma (Fig. 1a, left-hand side; e.g., [18]). At E10.25, 
these radially growing vessels begin to sprout at near right 
angles and extend parallel to the hindbrain surface that faces 
the fourth ventricle (Fig.  1a, right-hand side). As sprouts 
from neighboring radial vessels meet and anastomose, the 
subventricular vascular plexus (SVP) is formed (Fig.  1a, 
right-hand side) [15, 18]. This vascular fusion process is 
promoted by yolk sac-derived tissue macrophages, which 
interact with endothelial tip cells and thereby act as bridge 
cells between neighboring vessel sprouts [18]. By E12.5, 
an extensive vascular network has been established in the 
hindbrain, consisting of radial vessels originating from the 
perineural plexus and the SVP that is placed orthogonally 
to the radial vessels [15]. Following on from these early 
stages, sprouting and fusion moves to deeper brain layers, 
but the precise events that drive this process are not yet 
understood.

Vascularization of the avian neural tube occurs in a simi-
lar manner [1, 9, 10]. At the limb level, the PNVP forms 
between Hamburger Hamilton (HH) stages 16 and 24 
(E2.5–4.5) in the quail, with ingression beginning at HH 
stages 22–24 (E4–4.5). The ingression points are not exact, 
but cluster around a ventral and more lateral point on each 
side of the midline [10]. The ingressing vessels migrate dor-
sally or medially until they reach the subventricular zone, 
where they branch at right angles, extend, and anastomose 
to enable circulation [1, 4]. Early work suggested that brain 
vascularization in the chick does not involve angioblastic 
single cell precursors [19]. However, QH1 labels single, 
ramified cells in the quail dorsal neural tube that interact 
with nascent vessels [9]. These cells were originally pro-
posed to be angioblasts, but were subsequently shown to be 
macrophages that interact with vascular endothelium [20] 
and likely correspond to the tissue macrophages that pro-
mote the fusion of neighboring vessel sprouts in the mouse 
embryo hindbrain [18].

In contrast to the hindbrain and neural tube, the retina is 
vascularized only after birth in rodents to give rise to a sys-
tem of three vascular plexi that are interconnected (Fig. 1b; 
reviewed in [14]). Vascularization begins on the day of birth, 
when vessel sprouts emerge from the optic nerve head and 
spread radially over the retina, guided by a template of astro-
cytes (Fig. 1c), with blood vessels and astrocytes forming 
co-patterned networks [21–23]. During the process of radial 
expansion, the primary plexus undergoes arteriovenous dif-
ferentiation (Fig. 1c; reviewed by [14]). After the first week 
of life, vessel sprouts emerge from this primary retinal ves-
sel plexus to dive into the inner retinal layers at near right 
angles and form the deep plexus in week two and then the 
intermediate plexus in week three after birth (Fig. 1b, lower 
half; reviewed by [14]). While the contribution of astrocytes 
to primary plexus formation has been extensively studied, 
the cellular scaffolds that guide vessel sprouting into the 
deeper retinal layers are still poorly defined. As observed 
in the hindbrain, vascular anastomosis of retinal blood ves-
sels is promoted by macrophages [18, 24–26]. Retinal mac-
rophages also contribute to subsequent vascular remodeling 
in the retina. Thus, the decrease in initial vascular network 
complexity is compensated for by pruning of fewer vessel 
segments at later developmental stages in Csf1op/op mutants 
with defective macrophage recruitment, or Pu1−/− mutants 
lacking macrophages [18]. Consequently, the adult retinal 
vasculature reaches normal complexity in Csf1op/op mutants 
that survive to adulthood [24].

Due to the increasing availability of useful markers, pre-
cise genetic mutations in proteins regulating blood vessel 
growth, the planar orientation of sprouting blood vessels 
and the proximity of the emerging vessel plexus to the tissue 
surface, both the mouse hindbrain and retina models allow 
excellent visualization of vessel growth. It is therefore not 
surprising that these CNS regions have replaced the rat and 
rabbit cortex as preferred models to study CNS vasculari-
zation. However, not all vertebrates have a retinal vascula-
ture [13, 27], and certain aspects of vessel patterning may 
be unique to the cortex. Accordingly, one study provided 
evidence that cell autonomous programs regulated by Hox 
genes lead ventral sprouts to colonize dorsal areas of the 
telencephalon, rather than sprouting from the dorsal PNVP 
[28].

An emerging model of neurovascular development 
is the zebrafish, which is particularly amenable to rapid 
genetic manipulation and longitudinal live imaging [17]. 
Two recent studies have described the process of hindbrain  
vascularization in the zebrafish embryo [29, 30]. The spa-
tial relationship of vessel ingression sites and rhombomere 
boundaries in the zebrafish hindbrain suggests neurovascular  
cross-talk [30] that appears to be conserved in other verte-
brates, although this is less well studied. In this context, it 
is interesting that rhombomere boundaries in the chick are 
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extracellular spaces rich in growth factor-binding proteo-
glycans [31, 32].

Cellular behaviors and interactions in neurovascular 
development

Like elsewhere in the body, blood vessels in the CNS are 
comprised of endothelial cells that are invested with mural 
cells. Although common to other vascular beds, some of the 
underlying principles that govern cellular interactions of 
endothelial cells amongst each other and with mural cells 
were first elucidated using the retina and hindbrain models, 
such as the tip cell-stalk cell paradigm (reviewed in [33]).

Endothelial tip cells respond to signals by initiating 
migration, while endothelial stalk cells follow behind the tip 
cell and respond to signals with proliferation and lumen for-
mation to form the main body of new vascular sprouts. Initial 
experiments linked tip cell and stalk cell behaviors to signals 
provided by the vascular endothelial growth factor VEGF-A 
(referred to as VEGF in the remainder of this review) [15, 
34]. Subsequent studies showed that VEGF interacts with 
the delta like 4 (DLL4)/notch pathway to regulate tip cell 
vs. stalk cell number [35–37]. Studies of chimeric embryoid 
bodies and developing retinal vessels suggested that tip cell 
and stalk cells do not remain fixed, but switch phenotypes 
over time [38]. Accordingly, the tip and stalk cell phenotypes 
are plastic states of functional specialization.

Consistent with a key role for VEGF in tip cell induction 
in the retina and hindbrain in vivo, a high level of VEGFR2 
and low level of VEGFR1 relative to neighboring endothe-
lial cells promotes tip cell behavior in chimeric embryoid 
bodies [38]. Recent work identified additional regulators  
of vessel sprouting and tip cell behavior, for example BMP 
signaling [39–41] and SEMA3E signaling through PLXND1 
(discussed in more detail below) [42]. Several tip cell mark-
ers have also been identified via expression analysis, and 
their function in CNS angiogenesis is presently being char-
acterized [43, 44].

In addition to the general principles of angiogenesis 
described above, specialized cellular interactions between 
endothelial and non-endothelial CNS cells create a unique 
structure called the neurovascular unit. In this structure, 
endothelial cells form firm junctions with each other and 
interact with other cell types to create the BBB; this barrier 
maintains CNS homeostasis and is also thought to regulate 
CNS blood flow and synaptic activity [45, 46]. A hallmark 
of CNS vessels is the expression of the glucose transporter 
GLUT1. Mutations in the GLUT1 gene that lead to GLUT1 
deficiency cause a rare autosomal dominant disorder char-
acterized by a low cerebrospinal fluid glucose concentration 
due to reduced transport across the BBB [47].

In addition to endothelial cells, the neurovascular unit 
contains pericytes, astrocytes, oligodendrocytes, and 

microglia. Two recent studies showed that loss of peri-
cytes in the CNS elevates endothelial transcytosis [48, 49]. 
Accordingly, pericyte-endothelial interactions are necessary 
to maintain the BBB by preventing exchange across the 
endothelium, complementing the role of tight intra-endothe-
lial cell junctions in preventing paracellular exchange. The 
molecular cross-talk among the cell types of the neurovas-
cular unit is only partially characterized, but is regulated by 
TGFβ, PDGF, BMP, and integrins; accordingly, disruption 
of these signaling axes perturbs the BBB [48–53].

Key signals regulating CNS angiogenesis

Although many signaling pathways contribute to vascular 
development in general, we focus here on key pathways that 
are critical for the cross-talk between the nervous and vascu-
lar systems to regulate blood vessel patterning in the CNS.

VEGF

Several neural cell types produce VEGF, and neuroglial 
VEGF is required for the ingression of blood vessels into 
the developing neural tube and retinal vascularization across 
different vertebrate species (e.g., [10, 29, 54–57]). VEGF 
is differentially spliced to produce isoforms with a differ-
ential affinity for the surrounding extracellular matrix [58], 
and their bioavailability is further regulated by proteolytic 
mechanisms [59, 60]. Amongst these isoforms, VEGF121 is 
the most diffusible, VEGF189 binds the matrix most avidly, 
and VEGF165 has intermediate properties. Cleavage of the 
VEGF189 isoforms by matrix metalloproteases leads to 
the generation of the VEGF113, which is released from the 
matrix. Whereas the human isoforms are termed VEGF121, 
VEGF165, and VEGF189, reflecting the number of amino 
acid residues in the mature protein, the corresponding mouse 
isoforms are one amino acid residue shorter and therefore 
termed VEGF120, VEGF164, and VEGF188, respectively.

In the CNS, genetic manipulations that lead to expression 
of only a single VEGF isoform do not prevent ingression, 
but affect vessel patterning and morphogenesis. Accordingly, 
hindbrain vessels in Vegfa120/120 mice expressing only the 
VEGF120 isoform have a larger caliber and branch infre-
quently, while vessels in Vegfa188/188 mice expressing only 
VEGF188 are thin and over-branched [15]. In the quail  
in the neural tube, the localized over-expression of matrix 
binding VEGF165 or VEGF189, but not VEGF121, also leads 
to ectopic vessel ingression at the site of over-expression,  
whilst local VEGF blockade prevents ingression [10].

In the neonatal mouse retina, a collection of the three 
VEGF isoforms is produced and displayed by an astrocytic 
network that is located beneath the expanding vascular 
plexus (e.g. [23, 61]). However, astrocyte-derived VEGF is 
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not essential for the initial vascular growth of retinal ves-
sels, but instead for the survival of nascent retinal vessels 
[62] and hypoxia-induced neovascularization in a mouse 
model of oxygen induced retinopathy [63]. While astrocyte-
derived VEGF alone is not essential for angiogenic sprout-
ing in the developing retina, the more widespread deletion 
of VEGF from the neuroretina severely perturbs retinal 
angiogenesis [55]. It is not yet known if one specific cell 
type provides an essential VEGF cue, or if multiple cell 
types provide redundant sources of VEGF.

The tyrosine kinase FLK1 (KDR, VEGFR2) is the main 
signal transducing VEGF receptor in endothelial cells in 
vitro and essential for endothelial cell survival and blood 
vessel formation, with its loss leading to embryonic lethality 
at E9.5 in the mouse (reviewed in [64]). Due to their early 
embryonic lethality, Flk1 knockout mice are not suitable to 
study the specific roles of FLK1 signaling in CNS vascu-
lar development. However, use of a function-blocking anti-
body revealed that FLK1 is essential for tip cell formation 
and vascular outgrowth in the retina [34]. FLK1 was origi-
nally thought to be a critical mediator of VEGF-A-induced 
DLL4 expression and signaling in sprouting retinal blood 
vessels; however, a recent study showed that when Flk1 is 
deleted in endothelial cells, retinal angiogenesis depends on 
the alternative VEGF family receptor tyrosine kinase FLT4 
(VEGFR3), which is best known for its role as a VEGF-C 
receptor in lymphangiogenesis [65].

Neuropilins, neuropilin-binding VEGF-A isoforms,  
and semaphorins

Neuropilin 1 (NRP1) is a non-catalytic transmembrane 
protein whose genetic loss, either globally or specifically 
in endothelial cells, severely inhibits CNS vascularization, 
as shown for mouse in the spinal cord [66], hindbrain [67], 
and forebrain [68]. In contrast, the perisomatic regions, 
located outside the CNS, are vascularized in the absence 
of NRP1, with only minor morphological defects [15]. It 
is not yet known why NRP1 is essential for CNS vasculari-
zation, but less important for some other vessel beds. Rel-
evant to CNS vascularization, NRP1 serves as a receptor for 
VEGF165 and a member of the structurally unrelated class 
3 semaphorin family termed SEMA3A (reviewed in [69]). 
Both ligands bind to distinct NRP1 domains and can there-
fore bind simultaneously, rather than competitively [70]. 
VEGF121 can also bind NRP1, but with 50-fold lower affin-
ity than VEGF165, due to the absence of an exon 7-encoded 
domain that enhances binding [71].

Both VEGF165 and SEMA3A have been implicated as 
modulators of endothelial cell behavior. However, studies 
of mouse knockouts lacking SEMA3A have shown that this 
NRP1 ligand is dispensable for normal brain vasculariza-
tion and blood vessel formation elsewhere in the developing 

mouse [72, 73]. In agreement, inactivation of semaphorin 
binding to NRP1 does not affect brain angiogenesis or vas-
cular development in the early mouse embryo. Moreover, 
co-ablation of the related neuropilin NRP2, which also 
serves as a VEGF and SEMA receptor, to abrogate all sema-
phorin signaling through NRP1 and NRP2, does not affect 
CNS vascularization [72, 74].

The above studies did not identify roles for SEMA3A in 
developmental angiogenesis, but tumor studies implicated 
SEMA3A as a modulator of pathological angiogenesis. 
Thus, SEMA3A reduces the overall vascularity of tumors 
and “normalizes” tumor vessels, in part by recruiting mye-
loid cells that stimulate vessel maturation [75]. Moreover, 
high concentrations of SEMA3A evoke vascular permeabil-
ity in the skin of adult mice by stimulating signaling through 
plexin-NRP1 complexes [76], which are better known for 
their role in neural guidance during development (reviewed 
in [69]). Whether these findings on the role of SEMA3A in 
the adult vasculature are also relevant to CNS blood vessels 
has not yet been examined.

Semaphorin signaling through NRP1 does not impair 
brain vascularization, but loss of NRP1 from endothelial 
cells causes vascular brain defects similar to those caused 
by loss of NRP1 in all cell; accordingly, it was proposed that 
VEGF-A rather than SEMA3A signaling through NRP1 is 
essential for vascular development [68]. Yet, direct evidence 
that NRP1 serves as a VEGF164 receptor in angiogenesis 
is still lacking. In this context, it is interesting to note that 
Vegfa120/120 mice lacking heparin/neuropilin binding VEGF 
isoforms have milder CNS vascular defects than mice lack-
ing NRP1 [15, 67]. This observation raises the possibility 
that NRP1 promotes brain angiogenesis through additional, 
but as yet unidentified, signaling mechanisms. In vitro, 
NRP1 interacts with a host of additional proteins, includ-
ing several growth factors and adhesion molecules [77–81]. 
Which of these interactions are physiologically relevant to 
CNS vascularization remains to be determined.

SEMA3E is the only class 3 semaphorin that does not 
bind to a neuropilin receptor, but instead binds directly to the 
plexin PLXND1 [74]. In the developing retinal vasculature,  
high VEGF levels emanating from the avascular retinal  
periphery induce PLXND1 expression in endothelial cells 
at the vascular front in a VEGFR2-dependent manner  
[82]. Loss-of-function studies further demonstrated that 
SEMA3E, derived from the neural layers of the retina, 
signals through endothelial PLXND1 to upregulate DLL4 
at the vascular front, which in turn increases endothelial 
Notch signaling to a loss of tip cells and tip cell filopodia 
[82]. Consequently, normal vascular expansion into the ret-
inal periphery is disrupted in mice lacking SEMA3E [82]. 
Even though SEMA3E does not directly bind to NRP1, 
in CNS neurons NRP1 can convert SEMA3E/PLXND1-
mediated axonal repulsion into attraction [83]. Whether 
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similar mechanisms operate in endothelial cells to modulate 
SEMA3E signaling is not known. Remarkably, SEMA3E 
normalizes VEGF-A-induced pathological vessel growth in 
a mouse model of oxygen-induced retinopathy, in which 
retinal vessels grow abnormally into the vitreous [84]. 
Thus, the intravitreal administration of SEMA3E protein 
prevented this abnormal vessel growth and instead nor-
malized vessel growth within the retina. This observation 
makes SEMA3E a potential therapeutic tool to fine tune 
VEGF-A signaling and vascular growth in the ischemic 
nervous system.

Other neurovascular signals

Several additional signaling pathways have recently been 
identified as important for CNS angiogenesis, with roles in 
blood vessel ingression and/or survival. The genetic loss of 
both WNT7a and WNT7b reduces neural tube angiogen-
esis, and utilizes the canonical Wnt/β-catenin pathway, as 
vascular-specific loss of β-catenin resulted in reduced neu-
ral tube vessels, and those that ingressed were dilated and 
hemorrhagic [85, 86]. Effectors of Wnt signaling in CNS 
angiogenesis may include the death receptors DR6 and 
TROY, which are downstream transcriptional targets of 
Wnt/β-catenin signaling that are also required for proper 
brain angiogenesis and BBB formation [87].

Several studies revealed a requirement for the orphan G pro-
tein coupled adhesion receptor GPCR124 in endothelial cells 
for proper neural tube vascularization [88–90]. Specifically,  
loss of GPCR124 in mice delays but does not completely 
prevent blood vessel ingression. Moreover, abnormal  
glomeruloid tufts and hemorrhages are associated with 
defective BBB formation in the absence of GPCR124. Inter-
estingly, GPCR 124 is downstream of TGFβ, whose loss has 
also been linked to defective CNS angiogenesis and a com-
promised neurovascular unit [91]. Finally, mouse knockout 
studies showed that αvβ8 integrin expression by neural, but 
not endothelial cells is required for normal CNS vasculari-
zation and to prevent hemorrhage at later embryonic and 
postnatal stages [51, 52, 92]. Because integrins have been 
shown to act upstream of TGFβ signaling, it appears likely 
that integrin expression in neural cells stimulates TGFβ 
signaling in endothelial cells, which initiates GPCR124 
expression for proper neurovascular development.

Neurovascular diseases

The many facets of neurovascular disease have recently 
been reviewed extensively [93]. Here, we discuss the recent 
progress in identifying the molecular and cellular mecha-
nisms of two types of brain disease, cerebral cavernous mal-
formations (CCMs) and brain cancer.

CCM

Cavernous hemangiomas in the brain consist of thin-walled, 
fragile blood vessels with poor blood flow that are known 
as CCMs. They are caused by mutations in proteins that 
are important for cerebral vascular integrity (reviewed in 
[94, 95]). Three distinct heterozygous familial mutations 
in CCM1 (KRIT1), CCM2 (MGC4607, OSM), or CCM3 
(PDCD10) predispose to CCM formation, with a second, 
somatic hit likely leading to loss of heterozygosity and dis-
ease manifestation [96]. Sporadic CCM has also been linked 
to these three genetic loci. Recent work shows that CCM1 
stabilizes endothelial cell junctions via the small GTPase 
RAP1 and that CCM1/CCM2 interactions are required for 
this junctional stabilization [97]. The reasons for the preva-
lence of these vascular malformations in CNS endothelium 
are not yet understood, but may relate to the unique proper-
ties of the BBB and neurovascular unit.

Cancer

Although cancerous brain cells emerge independently of the 
brain vasculature, the close functional relationships between 
CNS vessels and neural cells can lead to brain tumors that 
are highly vascularized and difficult to treat, primarily in 
the case of glioblastoma (reviewed in [98, 99]). Recently, 
several provocative studies provided evidence that tumor 
cells can mimic endothelial cell behavior to form vascular 
channels [100], and that tumor cells can even differentiate 
into endothelial cells that line blood vessels in glioblastoma 
[101–103]. It was further hypothesized that a tumor-initi-
ating stem/progenitor cell might be the source of tumor-
derived vascular cells ([101–103]; reviewed in [98]).

Conclusions and unanswered questions

The cellular interactions and molecular signals critical for 
CNS vascularization and the formation of the neurovascu-
lar unit are being elucidated at an accelerating speed, and 
we are beginning to appreciate the significance of defective 
vascular development for the emergence of CNS patholo-
gies. Yet, it is likely that additional signaling mechanisms 
and interactions remain to be identified before we will fully 
understand how the cross-talk of neural and vascular cells 
regulates blood vessel ingression into the CNS and the for-
mation of a fully functional BBB. Ultimately, understanding 
these signaling pathways will reveal how a defective neu-
rovascular unit impacts on CNS function during aging and 
in neurological disease. It will also benefit the development 
of new therapeutic strategies aimed at restoring or improv-
ing vascular supply to ischemic retina and brain in diseases 
such as diabetic retinopathy, age-related neurodegeneration 
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and stroke. In the mature brain, neuronal activity stimulates 
changes in blood flow that can be measured by fMRI, but 
how this flow information is sensed and leads to structural 
changes in blood vessels is largely unknown and therefore 
requires further research. Finally, the specific features of the 
tumor microenvironment that promote the differentiation 
of tumor cells into endothelium, and the functional conse-
quence of this transdifferentiation for glioblastoma remain 
to be determined.
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