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Abstract
To obtain a systems-level perspective on the topological and functional relationships among proteins
contributing to nucleotide excision repair (NER) in Saccharomyces cerevisiae, we built two models
to analyse protein-protein physical interactions. A recursive computational model based on set theory
systematically computed overlaps among protein interaction neighborhoods. A statistical model
scored computation results to detect significant overlaps which exposed protein modules and hubs
concurrently. We used these protein entities to guide the construction of a multi-resolution landscape
which showed relationships among NER, transcription, DNA replication, chromatin remodeling, and
cell cycle regulation. Literature curation was used to support the biological significance of identified
modules and hubs. The NER landscape revealed a hierarchical topology and a recurrent pattern of
kernel modules coupling a variety of proteins in structures that provide diverse functions. Our
analysis offers a computational framework that can be applied to construct landscapes for other
biological processes.

Introduction
Mounting effective defences to environmental challenges and the repair of DNA lesions are
critical cellular functions required to maintain genome stability for normal cell growth 1. DNA
repair involves a broad spectrum of cellular mechanisms affecting signaling pathways of
various biological processes such as DNA replication, cell cycle regulation, transcription 2,
and chromatin remodelling 3. Nucleotide excision repair (NER) is a cellular mechanism that
removes a wide variety of DNA lesions including the major UV-induced DNA photo-products.
Failure of NER in xeroderma pigmentosum is associated with over 1,000-fold increased
incidence rate of skin cancer 4. Much progress has been made in identifying various
components and interactions in the NER machinery 5. However, integrated views of these
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interactions at multiple levels of resolution and from a systems biology perspective are needed
for understanding the contributions of various biological processes in NER. Such views can
provide new insights into unknown protein functions and pathways involving NER and cellular
DNA damage response. It can also guide researchers to potential targets for drug therapy to
inactivate NER.

The wealth of protein interactions available in public databases provides a tremendous
opportunity, but also poses a challenge in constructing these system-level views. For example,
visualizing 1,000 interactions among 100 proteins (assuming 10 interactions/protein on the
average) often results in a fuzzy ball that is difficult to decipher topologically and functionally.
When a protein interacts with many other proteins that participate in diverse functions (e.g.,
based on the Saccharomyces Genome Database 6 (SGD, http://www.yeastgenome.org), the
master cell cycle regulator CDC28 has been found to interact with ≈250 proteins), determining
the subset of proteins that have biological relevance to a cellular mechanism of interest (e.g.
NER) is challenging.

To build a topological and functional landscape for NER, we created a set-theory-based
computational model and a statistical model to systematically analyse NER protein-protein
physical interactions in Saccharomyces cerevisiae. One approach to analyzing protein
interaction networks uses graph theory to study graphs, which are mathematical structures that
are used to model pairwise relations between objects from a certain collection. Another
approach that was used in this report is set theory, the branch of mathematics that studies sets,
which are collections of objects. The set-theory-based statistical model exploited protein
interaction overlaps to uncover protein modules (sets of proteins in which each protein interacts
with every other protein) and hubs (proteins with many interactions engaging multiple
biological processes). A kernel module was defined as a fully-connected set of proteins that
can couple with multiple proteins independently to achieve functional variance. These protein
entities were used to identify topological and functional relationships among yeast proteins
retrieved from SGD. SGD integrates protein-protein physical interactions curated from various
small-scale experiments and high-throughput studies that used diverse identification
techniques such as yeast two-hybrid, co-immunoprecipitation, and mass spectrometry.

Methods
To select NER-related genes in yeast, 34 human NER genes were obtained from a DNA repair
gene list 7 and used to search via BLAST 8 for yeast homologs against all verified open reading
frames in SGD. Because there can be multiple homologs for a given human NER protein, 121
yeast homologs (p-value <10−12) were found. Inclusion of multiple homologs offered the
potential of disclosing yeast proteins with possible roles in NER that otherwise might be
missed. In addition, one functional homolog (TFB5, 7) and ten other yeast proteins annotated
with NER functions in SGD were added, producing a total of 132 yeast NER-related proteins,
38 of which are essential. Among the remaining 94 non-essential proteins, 20 were associated
with UV-sensitivity when depleted 6,9. These results are provided in Table 1.

A recursive set-based model for computing protein interaction overlaps
Our analysis was built upon the premise that, if two proteins share many physical interaction
partners, it is likely that they also share similar functions 10 or that they operate in the same
pathway(s). Based on this premise, we constructed a set-theory based model using set
intersections to systematically find proteins that are shared among NER protein neighborhoods.
For this purpose, we defined the direct neighborhood NA of a protein A as the set of all proteins
that directly interact with A, including A itself (Fig. 1a). Using this definition, interaction
partners common to proteins A, B, and C can be computed as the intersection set NA ∩ NB ∩
NC of three neighborhoods.
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We applied recursion to find all possible intersections among 131 neighborhoods of the yeast
NER-related proteins (MRK1 was the only protein in the group of 132 homologs that did not
have physical interactions recorded in SGD as of Jan. 2007). Recursion allowed reductions in
computation costs by re-using results of the previous, non-empty intersections for the next
round of computation, into which additional neighborhoods were systematically incorporated.
The sizes of intersections became smaller as the number of neighborhoods increased.
Computation stopped when all intersections were empty or all neighborhoods had been
incorporated, whichever came first.

Denoting k as the number of neighborhoods participating in the computation of intersections,
the number of distinct intersections is the number of distinct combinations resulting from
choosing k out of the 131 neighborhoods, i.e.,

Figure 1b illustrates an example with four protein neighborhoods. Because proteins are
selective in their binding and specific in their interactions with molecular targets 11, many
combinations produced empty intersections, making the proposed recursive method
computationally feasible.

A statistical model for scoring and detecting significant overlaps
To detect statistically significant neighborhood overlaps/intersections that were produced by
the computational model, we built a statistical model to score overlap results and perform tests
seeking evidence against the null hypothesis of no overlap among protein neighborhoods.
Towards this goal, let Xk be a random variable representing the number of proteins shared
among k neighborhoods (N1…Nk). Because any protein in these neighborhoods was either
included in the intersection or excluded - a binary outcome - Xk can be modeled via a binomial
distribution. To estimate the probability of protein sharing, our model took into account
neighborhood sizes and the sizes of associated non-empty intersections. As a result, the
probability of observing at least s shared proteins in an intersection of k neighborhoods is:

 where m=min(|N1,⋯|Nk|). s > 0, k ≥ 2 pk = prob. of
sharing a protein among k neighborhoods

Because an intersection cannot have more proteins than the smallest of the k participating
neighborhoods, m must be the minimum size of the k neighborhoods (Fig. 1a, a similar concept
of minimum neighborhood size has been successfully used in analyzing metabolic networks
10). Hence, p̂k can be estimated as the average proportion of shared proteins relative to the
smallest of the k neighborhoods, for all combinations of choosing k out of 131 neighborhoods.
Denoting t as the total number of non-empty intersections, si as the number of shared proteins
observed for a particular intersection i, and mi as the size of the associated smallest

neighborhood, we have:  (Derivation of this equation is explained in
Supplementary Equation 1).

To control the expected proportion of incorrect rejections among all the rejections - false
discovery rate (FDR) - made during statistical tests, we applied the Benjamini-Hochberg (BH)
procedure 12,13 on the p-values (prob(Xk ≥ s)) computed for neighborhood intersections,
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assuming the null hypothesis is true. When testing hundreds or thousands of times or more,
FDR is a less stringent criterion than FWER (family wise error rate) in including more test data
that otherwise might be missed 13.

To apply the BH procedure, p-values associated with a given k-neighborhood were first sorted
in ascending order. Then the BH equation:

was evaluated based on three parameters , a pre-chosen α level, the location (l) of a p-value in
the sorted list, and the total number (t) of p-values associated with non-empty intersections
(Table 2, column 2). For this application, because the probabilities of protein sharing among
neighborhoods were small (Table 2, column 3), it is reasonable to choose a small α of 0.001×
% = 10−5 to control the false discovery rate. Selection of small α 's has been successfully used
to increase the robustness of protein complex identification 14.

If l̂ existed, the null hypothesis was rejected for all the p-values in the sorted list that were less
than or equal to the p-value associated with l̂ (i.e., p-value1 ≤ p-value2 ≤ … p-value l̂ );
otherwise, no rejection was made. The BH procedure was repeated for all the p-values for a
given k (k = 2 … 15, shown in Table 2, column 1). We defined two scoring functions: protein

sharing scores as − log10( p – values ) and BH cutoff scores as  to facilitate
comparisons between small p-values and parameter values in the BH equation.

Finally, statistically significant results associated with rejected p-values were further reduced
when neighborhood intersections from smaller k values were subsets of those from larger k's.
For example, if a protein set {V,W} was found to be the intersections of 3 neighborhoods
( NA ∪ NB ∪ NC ) and subsequently of 4 neighborhoods ( NA ∪ NB ∪ NC ∪ NC ), the 3-
neighborhood result was redundant and discarded.

Supplementary Table 1 provides a list of significant and non-redundant overlaps, along with
their protein sharing scores and BH cutoff scores. These results were obtained from a software
prototype that we implemented for the models described above, using the C++ object-oriented
standard template library (STL) 15. STL provides container templates that support set-based
objects and operations on these objects, including intersection and membership. 131 set objects,
each representing a neighborhood, were dynamically selected from ≈35,000 physical
interactions and created in memory. The number of neighborhoods producing non-empty
intersections ranged from 2 to 15 (Table 2, column 1) and the number of non-empty
intersections varied from 1 to ≈17,500 (Table 2, column 2).

Uncovering protein modules and hubs using significant overlap results
Modules can be uncovered by exploiting the relationships among proteins in significant
neighborhood intersections and associated core proteins (Supplementary Table 1). Defined as
a fully-connected set in which every protein interacts with all other proteins in the set, a module
can be identified using the simple rules below:

A neighborhood intersection contains a subset of associated core proteins. For example,
let A, B, C be core proteins and the intersection NA ∪ NB ∪ NC of associated neighborhoods
be { A,B,C,V,W }. A, B, and C form a module because A, being in the intersection, interacts
with all core proteins, i.e., B and C; similarly, B interacts with C.
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Rule 1 holds and the intersection has one or more additional proteins/modules relative to
the core-protein set or vice versa. Continuing with the above example, {A,B,C,V} and
{A,B,C,W} constitute two larger modules because V and W are in the intersection, hence
they interact with core proteins A, B, and C. Because V and W share the same module, it
is likely that they also interact (Fig. 2). This prediction can be readily verified by querying
the membership of W in the neighborhood Nv or vice versa (i.e., W ∈ NV|V ∈ NW). Without
the V-W interaction, {A,B,C,V,W} would still form a densely connected module instead of
one that is fully-connected.

If an identified protein module is a subset of a larger module, the latter supersedes the
former, allowing construction of larger aggregates. Such aggregation reduces redundancy
and is useful to identify modules with many subunits. Supplementary Table 2 provides a
list of modules identified using the rules given above.

Hubs can be loosely defined as connectors linking proteins in adjacent neighborhoods to
provide and coordinate diverse functions. Significant neighborhood intersections and
associated core protein sets that contain a single protein/module interacting with many proteins
are hub candidates. Towards building multi-resolution views of interactions among proteins
contributing to NER, we focused on those candidates that interacted with, or were components
of, identified modules. A candidate that was a module component was selected if it interacted
with many other proteins in addition to those in its own module. An example is the RAD14
hub which interacts with RAD1, RAD10, RAD16, RAD3, RFA1, TFB1, in addition to proteins
in the module [RAD14, RAD23, RAD4, RAD7].

Not only single proteins can be hubs, modules or members of aggregates that satisfy the criteria
given above can also be hubs. For example, the [RFC2-5] module interacts with several
components of DNA replication (CTF18, CTF8, ECO1, ELG1, POL30), DNA damage
checkpoint (RAD24), and a component of chromatin remodeling (ASF1). A list of hubs along
with details on hub selections are provided in Supplementary Table 3.

Guided by the identified modules and hubs, and using literature curation to support their
biological significance, we built a multi-resolution landscape for NER, visualized via
Cytoscape 16. We focused on the topological and functional relationships among protein
modules and hubs within the NER and transcription system, and the relationships of these
protein entities with other biological processes, based on gene ontology annotations in SGD
6 (Supplementary Tables 2, 3).

Results
Relationships among modules and hubs within the NER and transcription system

Modules and hubs identified for NER and transcription were hierarchically organized. At the
top of the hierarchy was the [RAD14, RAD3, MSH2] module (magenta triangle in Fig. 3a)
which linked to three other main module groups, DNA damage sensors, the TFIIH complex,
and helicases/nucleases.

RAD14 is a hub connecting various DNA damage sensor modules—RAD14 and
the RAD23-RAD4 complex independently recognize DNA damage and recruit other NER
proteins to DNA lesions 5. RAD23, possessing a ubiquitin-like domain that interacts with the
proteasome and two sequences that bind to ubiquitin; it is thought to deliver ubiquitinated
substrates to the proteasome 17. When cells are damaged, RAD23 inhibits the ubiquitin-
mediated degradation of RAD4, resulting in RAD4's stabilization 18. Several TFIIH subunits
(SSL2, TFB1-2) also interact with RAD23.
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The [RAD14, RAD7, RAD16] module leads to a sensor subnetwork that includes ELC1 and
ABF1. In the global genome NER pathway, the [RAD7, RAD16, ELC1] module participates
in DNA damage recognition and the regulation of RAD23′s ubiquitination 19. The module was
suggested to function as both an ATPase and an E3 ligase, congruent with the observations
that RAD7 is similar to an F-Box protein, and RAD16 has a RING domain 19. In the
transcription-coupled NER pathway, the ELC1 elongation factor promotes the ubiquitination
and degradation of RNA POL 2 blocked at damage sites 20. On the other hand, the [RAD7,
RAD16, ABF1] module mediates NER 21, transcription, and chromatin remodeling via ABF1
22. ABF1 controls nucleosome positioning, keeping regions of chromatin in non-transcribed
DNA free of nucleosomes to facilitate repair 22.

RAD3 is a hub connecting all known subunits of TFIIH except TFB5—TFIIH is a
ten-subunit transcription factor with seven basal subunits (TFB1,2,4,5, RAD3, SSL1, SSL2)
and a trimer complex (TFB3-CCL1-KIN28) that phosphorylates the C-terminal domain of
RNA POL2 23. Figure 3b shows the interactions of TFIIH subunits with RAD3, which is a 5′
to 3′ helicase/ATPase involved in DNA unwinding to facilitate NER and allows transcription
initiation proteins to access DNA. SSL2 encodes a 3′ to 5′ counterpart 24. TFIIH subunits are
organized around the [RAD3, TFB3, TFB4, CCL1, SSL1] module, which acts as a kernel to
which TFB1 and KIN28 associate independently, producing two fully-connected aggregates
of six subunits. This pattern led to the definition of a kernel module as a fully-connected set
of proteins that can couple with multiple macromolecules independently to achieve functional
variance. TFB1 provides an alternate path to NER sensors RAD14 and RAD23, supplementing
the main path via RAD3. TFB1 also forms a separate module with TFB2, TFB4, and TFB5.
On the other hand, KIN28 interacts with RPO21 (the largest subunit of RNA polymerase 2)
which, in turn, interacts with NER sensors RAD14, RAD23, and RFA1.

Besides its global genome NER functions, RAD3 was also found in the transcription-coupled
NER pathway. It interacts with MET18 and RAD26. MET18 regulates TFIIH to influence
NER and transcription 25. RAD26 is a SWI2/SNF2 ATPase and is needed during transcription
for the displacement/removal of stalled RNA polymerases to allow repair proteins to access
DNA 26.

MSH2 is a hub sharing helicases/ATPases and nucleases with NER—Two
modules relate MSH2 to NER, [RAD14, RAD1, RAD10, MSH2] and [RAD3, RAD2, SSL2,
MSH2]. They indicate that MSH2 connects with all known helicases and nucleases involved
in NER, although MSH2 was originally found to be required for mismatch repair 27. Through
association with the RAD14 sensor, the endonuclease RAD1-RAD10 is targeted to DNA
damage sites 28.

Relationships of NER-transcription modules and hubs with other biological processes
Protein modules and hubs identified for NER and transcription also interact with many proteins
involved in three major biological processes - DNA replication, chromatin structure and
remodeling, and cell cycle regulation - and one miscellaneous category. Figure 4 provides a
high-level view of these relationships. More detailed views are expanded in Figure 5. Functions
in the miscellaneous category (the last column of Fig. 4b) include ubiquitin-dependent protein
catabolism (RPN6), actin cytoskeleton organization (VPS1), nuclear import of cargo proteins
(KAP95), mRNA export from nucleus (YRA1), and GTP biosynthesis (IMD3).

Relationships with DNA replication—HPR5, MSH2, POL30, SMT3 (Fig. 4a) along with
RFA1-3 are multi-function junction hubs bridging NER and transcription to DNA replication.
From these hubs emerge four main functional groups (Fig. 5a and Supplementary Table 2), the
RFA group, the DNA polymerase group, the POL30 group and the RFC group.
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RFA1 and RFA2 form a kernel that interacts with the DNA damage checkpoint proteins LCD1
and MEC1, and with MSH2, MSH6 and DNA2. The MSH2-MSH6 complex senses and
corrects DNA replication errors 27 caused by mis-incorporation or by misalignment/slippage.
DNA2, a DNA replication factor with ATPase, nuclease, and helicase activities 6, is thought
to be involved in DNA double-strand break and post-replication repair 29.

The DNA polymerase group is required for DNA synthesis and includes subunits of POLδ
([CDC2, HYS2, POL32] module), POLε ([DPB2-4, POL2] module), and POLσ (TRF5).

POL30/PCNA confers processivity to DNA polymerases δ and ε during DNA replication 30.
Along with these polymerases, POL30 participates in DNA synthesis for NER after excision
of DNA lesions 31. On the other hand, in the absence of DNA damage, sumo-modified PCNA
(SMT3 is a protein of the SUMO family 6) preferentially binds the HPR5 helicase. This binding
disrupts RAD51 nucleoprotein filaments to inhibit the RAD52-dependent recombinational
pathway, thereby preventing undesired recombination of replicating chromosomes in normal
cells 32. Interactions between PCNA and RAD27/FEN1 stimulate FEN1's nuclease activity
on flap substrates in the presence of RFC and ATP 33.

RFC loads the sliding clamp PCNA onto DNA. Similar to RFA1-2, the RFC2-5 subunits form
a kernel module to which associate RFC1 and other proteins - RAD24, ECO1, the CTF8-
CTF18-DCC1 complex, ASF1, and ELG1. Three of these proteins replace RFC1 to produce
alternative RFC complexes. Specifically, the [RAD24, RFC2-5] module is a complex that loads
the 9-1-1 sliding clamp at sites of damage to mediate DNA damage checkpoints 34. The [CTF8,
CTF18, RFC2-5] module participates in the establishment of sister chromatid cohesion 34. In
the [ELG1, RFC2-5] module, ELG1 functions redundantly with RAD24 in response to DNA
damage and in activating the checkpoint kinase RAD53 during S phase 35. Finally, RFC
recruits the nucleosome assembly/disassembly factor ASF1 to DNA, and together they affect
the completion of DNA synthesis upon DNA damage 36.

Relationships with chromatin remodeling—The functions of chromatin remodeling in
NER and transcription (Fig. 5b) are organized around the casein kinase II holoenzyme.
Subunits of this kinase (CKA1-2, CKB1-2) couple with various histones and other proteins,
linking chromatin remodeling to NER via ABF1, to transcription regulation via SPT15 and
CHD1, and to DNA replication via ASF1.

SPT15 is a TATA binding protein and a component of the RNA POL 1 core factor, of TFIID
and TFIIIB, all of which are required for transcription by RNA POL 1, 2, and 3 respectively,
as summarized in SGD. Identified as a hub, SPT15 is in the intersection of six NER-
transcription related protein neighborhoods - CKA2, MOT1, STH1, RAD23, TFB2, TFB4
(Supplementary Table 1). MOT1 is a SWI2/SNF2 ATPase and a transcription regulator that
displaces SPT15 from DNA 37. STH1 is an ATPase component of the RSC chromatin
remodeling complex with functions in transcription regulation 6 and chromosome segregation
38. SPT15 also interacts with several histones (HTB1-2, HTA2), a GTPase involved in actin
cytoskeleton organization and vacuolar transport (VPS1) 6, an assembly factor of the INO80
complex (RVB1) 6, and ASF1. ASF1 participates in the assembly of chromatin during DNA
replication, the disassembly and re-assembly of chromatin for the activation/repression of gene
transcription, and the repair of DNA damage 39.

Relationships with cell cycle regulation—The CDC28-CLB2 complex is a master hub
that coordinates a variety of cell cycle-dependent kinases (Fig. 5c), regulating the functions of
many cell cycle-linked proteins that have relationships with NER and transcription.
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The [CAK1, CDC28, KIN28, CDC37] module represents a kinase cascade that starts with the
cyclin-dependent kinase-activating kinase CAK1, leading to the phosphorylation of CDC28
and KIN28 40. Defective KIN28 was reported to impair transcription-coupled but not global
genome NER 41. On the other hand, CDC37, a co-chaperone of the heat shock protein HSP82,
plays a critical role in regulating cyclin-dependent kinases through stress-activated MAPKKK
cascades (summarized in SGD).

Two other cell cycle-regulated kinases, IPL1 and SAK1, participate in two signaling pathways
leading to NER-transcription functions, as shown in the left panel of Figure 5c. The pathway
with the Aurora kinase IPL1 - a regulator of kinetochore-microtubule attachments 42 - includes
RVS167, which uses its SH3 binding domain to mediate the regulation of actin cytoskeleton
and cell viability following stress 43. The other pathway involves SAK1, an activator of the
SNF1-SNF4 kinase complex that participates in cellular response to stress and transcription
regulation 44. This pathway also includes the transcription elongation factor ELC1 which
inhibits the degradation of SNF4 45.

Three subunits of TFIIH - SSL1, TFB1, TFB4 - interact with CDC27 (Fig. 4a), an essential
component of the anaphase promoting complex (APC). In the identified module [CDC28,
CDC5, APC9, CDC16, CDC27], the latter three proteins are core units of APC that cooperates
with the Polo-like kinase CDC5 to regulate exit from mitosis 46. Another TFIIH subunit, SSL2,
interacts with the kinase PKC1 activating a MAP kinase cascade - BCK1, MKK1 (highly
sensitive to UV 9), MKK2, and SLT2 - for the regulation of cell growth and cell wall integrity
6.

Discussion
Navigating the landscape—The tremendous power of yeast genetics has enabled
determination of the contribution to cell survival of nearly every non-essential gene after
challenge with UV 9. High-throughput and detailed analyses of protein-protein physical
interactions have generated large databases (e.g., SGD, BIOGRID) that can be mined to clarify
the topology and architecture of important biological processes such as DNA repair. The
landscape of protein-protein interactions determined here using computational and statistical
methods provides a systematic view of the organization of the NER system that protects against
a ubiquitous environmental carcinogen (solar UV radiation causes over one million new cases
of skin cancer in the U.S. yearly). Because the biochemistry of DNA repair, replication and
transcription is highly conserved from yeast to man, this interactome landscape based on yeast
protein-protein physical interaction data also provides a detailed working model of the human
NER system.

The network of protein interactions that defines the NER landscape was determined
automatically through computational and statistical analyses. We applied set theory instead of
graph theory to analyse protein interaction overlaps. Set theory offered some advantages. It
permitted the use of recursive techniques that incrementally incorporate protein
neighborhoods. Rather than being confined to two neighborhoods imposed by adjacency
matrices, recursion enables systematic computation of overlaps for as many neighborhoods as
needed until no overlap is found.

The notion of measuring topological overlaps between direct neighbors (one hop) of two genes
was defined via adjacency matrices and applied in a graph theory setting 10. This measure was
extended using a set theory interpretation to accommodate more distant neighbours (two or
more hops) 47, and direct neighbors of multiple genes (instead of two genes) 48. While the
latter approach was applied to predict genes related to target genes, the former two approaches
computed topological overlap measures which were subsequently fed into hierarchical
clustering algorithms to find modules. In contrast, we directly computed overlaps among one-
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hop neighborhoods of multiple proteins, statistically scored the results, and used the significant
overlaps to reveal both protein modules and hubs, without requiring clustering algorithms.
However, with recursion, computer memory usage increases with the number of
neighborhoods. When this number is large (e.g., for the entire yeast interactome), parallel
algorithms to partition computation workloads across machines will be needed.

We applied the graph theory algorithm 10 to identify modules among the core list of NER
proteins with results comparable to those obtained using the set-theory-based approach. Both
methods identify the large TFIIH and RFC modules and the smaller DNA polymerase and
chromatin remodelling modules. Both methods of analysis also require manual curation to
further group the various modules into a topological landscape with biological meaning.

The core elements of NER as represented in Figure 3 are highly interconnected to accomplish
the individual steps of NER, leading to excision of an oligonucleotide containing the DNA
photoproduct 5. The system of protein interactions is consistent with all known steps of damage
excision in S. cerevisiae and humans with one notable exception. While MSH2 is known to
contribute to cell survival after UV in yeast, its contribution in mammalian cells has not been
established. The [RAD7, RAD16, ELC1, ABF1] subnetwork that was not included in the initial
list of human NER genes appears to couple recognition of DNA damage by the RAD14-RAD4-
RAD23 complex to regulation of RNA transcription and protein ubiquitination, thereby
spreading the cellular response to DNA damage to other biological processes beyond NER
(Fig. 5). RAD16 is homologous to human HLTF (alias HIP116) which has a domain that may
bind stalled replication forks 49.

Inclusion of multiple yeast homologs of human NER proteins was useful in revealing a larger
subset of related proteins. For example, the human Cockayne syndrome ERCC6 (alias CSB)
protein had 16 yeast homologs (Table 1). Although RAD26 was the main homolog, many other
homologs (e.g., CHD1, INO80, ISW1-2, MOT1, RAD16, STH1) were components of
identified modules and hubs that had helicase and chromatin remodeling functions associated
with NER and transcription.

The NER landscape also provides insights into various related pathways and helps formulate
new hypotheses. For example, a pathway related to cell cycle regulation (Fig. 5c, left panel)
includes IPL1, which was reported to phosphorylate RVS167. This protein binds SYF1, a
homolog of the human XPA binding protein XAB2. Together with the interaction between
XAB2 and the Cockayne protein CSB 50, these data suggest a signaling cascade initiated from
CDC28-CLB2 leading to transcription-coupled NER. RFC2-5 interacts with CTF18 to form a
cohesin-loading complex. As UV light induces homologous recombination between cohesed
daughter chromatids (sister chromatid exchange) will be of interest to determine whether
cohesin loading influences NER. Another example of this type derives from the interaction
between the TFIIH module and Cdc27, a member of the anaphase-promoting complex which
ubiquitylates proteins to regulate mitosis (Fig. 4a). A key word search using ubiquitin, TFIIH
and repair discovered a paper by Nouspikel and Hanawalt 51 describing how levels of the E1
ubiquitin-loading factor may interact with TFIIH to reduce NER in terminally differentiated
cells. The value of the computational model was realized, as the presence of protein interactions
pointed to a novel biological interaction.

In summary, we demonstrated the application of a set-theory based recursive approach to
analyse protein interaction networks and construct a topological and functional landscape for
NER. The landscape integrated different pathways manifested through modules and hubs to
provide systems-level views of the relationships among NER, transcription, and other
biological processes. We took advantage of set theory operations provided by the GNU C++
object-oriented standard template library 15 to build a prototype for both the computational
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and statistical models. With increasing numbers of protein interactions from large-scale
experiments, systematic computationally-driven methods that can automatically identify
biologically relevant protein entities will facilitate the analysis of cellular mechanisms in
response to DNA damage and other forms of stress.
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Acknowledgements
We thank Keziban Űnsal-Kaçmaz and Marila Cordeiro-Stone for helpful discussions and ideas and Dan Reed for
initial support of this work. Nancy Tran was supported by the Leon and Bertha Goldberg Fellowship. Funding was
also provided by PHS grants (ES014635, ES011391, ES010126, CA081343, GM070335, CA074015) and NSF grants
to the National Center for Supercomputing Applications (CA SCI-0525308 and CSA SCI-0438712).

References
1. Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae.

Science 2002;297:552–557. [PubMed: 12142524]
2. Friedberg, EC., et al. DNA Repair and Mutagenesis. Vol. 2nd ed. ASM Press; Washington, D.C.: 2006.
3. Ataian Y, Krebs JE. Five repair pathways in one context: chromatin modification during DNA repair.

Biochem. Cell Biol 2006;84:490–504. [PubMed: 16936822]
4. Kraemer KH, Lee MM, Scotto J. DNA repair protects against cutaneous and internal neoplasia:

evidence from xeroderma pigmentosum. Carcinogenesis 1984;5:511–514. [PubMed: 6705149]
5. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA

repair and the DNA damage checkpoints. Annu. Rev. Biochem 2004;73:39–85. [PubMed: 15189136]
6. Hong, EL., et al. Saccharomyces Genome Database. 2007. http:://www.yeastgenome.org,

ftp://ftp.yeastgenome.org/yeast
7. Wood RD, Mitchell M, Lindahl T. Human DNA repair genes. Mutat. Res 2005;577:275–283.

[PubMed: 15922366]
8. Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 1997;25:3389–3402. [PubMed: 9254694]
9. Begley TJ, Rosenbach AS, Ideker T, Samson LD. Damage recovery pathways in Saccharomyces

cerevisiae revealed by genomic phenotyping and interactome mapping. Mol Cancer Res 2002;1:103–
112. [PubMed: 12496357]

10. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity
in metabolic networks. Science 2002;297:1551–1555. [PubMed: 12202830]

11. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev
2000;14:1027–1047. [PubMed: 10809663]

12. Benjamini Y, Hochberg Y. Controlling the false discovery rate -- a practical and powerful approach
to multiple testing. J. Roy. Stat. Soc., Ser. B 1995;57:289–300.

13. McLachlan, GJ.; Do, K-A.; Ambroise, C. Analyzing microarray gene expression data. Wiley-
Interscience; Hoboken, N.J.: 2004.

14. Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. PNAS
2003;100:12123–12128. [PubMed: 14517352]

15. Stepanov A, Lee M. The Standard Template Library. HPLab. Tech. Report 1995;95
16. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular interaction

networks. Genome Res 2003;13:2498–2504. [PubMed: 14597658]
17. Chen L, Madura K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol

Cell Biol 2002;22:4902–4913. [PubMed: 12052895]
18. Ng JM, et al. A novel regulation mechanism of DNA repair by damage-induced and RAD23-

dependent stabilization of xeroderma pigmentosum group C protein. Genes Dev 2003;17:1630–1645.
[PubMed: 12815074]

Tran et al. Page 10

Cell Biochem Biophys. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://http:://www.yeastgenome.org
ftp://ftp.yeastgenome.org/yeast


19. Ramsey KL, et al. The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase
activity for nucleotide excision repair. Mol Cell Biol 2004;24:6362–6378. [PubMed: 15226437]

20. Ribar B, Prakash L, Prakash S. Requirement of ELC1 for RNA polymerase II polyubiquitylation and
degradation in response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 2006;26:3999–
4005. [PubMed: 16705154]

21. Yu S, Owen-Hughes T, Friedberg EC, Waters R, Reed SH. The yeast Rad7/Rad16/Abf1 complex
generates superhelical torsion in DNA that is required for nucleotide excision repair. DNA Repair
(Amst) 2004;3:277–287. [PubMed: 15177043]

22. Venditti P, Costanzo G, Negri R, Camilloni G. ABFI contributes to the chromatin organization of
Saccharomyces cerevisiae ARS1 B-domain. Biochim Biophys Acta 1994;1219:677–689. [PubMed:
7948025]

23. Keogh MC, Cho EJ, Podolny V, Buratowski S. Kin28 is found within TFIIH and a Kin28-Ccl1-Tfb3
trimer complex with differential sensitivities to T-loop phosphorylation. Mol Cell Biol
2002;22:1288–1297. [PubMed: 11839796]

24. Feaver WJ, et al. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA
repair. Cell 1993;75:1379–1387. [PubMed: 8269516]

25. Lauder S, et al. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II
transcription. Mol Cell Biol 1996;16:6783–6793. [PubMed: 8943333]

26. Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol 2002;3:21–
29. [PubMed: 11823795]

27. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem 2005;74:681–710. [PubMed:
15952900]

28. Guzder SN, Sommers CH, Prakash L, Prakash S. Complex formation with damage recognition protein
Rad14 is essential for Saccharomyces cerevisiae Rad1-Rad10 nuclease to perform its function in
nucleotide excision repair in vivo. Mol Cell Biol 2006;26:1135–1141. [PubMed: 16428464]

29. Budd ME, Campbell JL. The pattern of sensitivity of yeast dna2 mutants to DNA damaging agents
suggests a role in DSB and postreplication repair pathways. Mutat Res 2000;459:173–186. [PubMed:
10812329]

30. Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM. Mutations in yeast proliferating cell nuclear
antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon.
Mol Cell Biol 1997;17:6367–6378. [PubMed: 9343398]

31. Shivji MK, Podust VN, Hubscher U, Wood RD. Nucleotide excision repair DNA synthesis by DNA
polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 1995;34:5011–5017.
[PubMed: 7711023]

32. Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to
prevent recombination during S phase. Nature 2005;436:428–433. [PubMed: 15931174]

33. Li X, Li J, Harrington J, Lieber MR, Burgers PM. Lagging strand DNA synthesis at the eukaryotic
replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J
Biol Chem 1995;270:22109–22112. [PubMed: 7673186]

34. Majka J, Burgers PM. The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic
Acid Res Mol Biol 2004;78:227–260. [PubMed: 15210332]

35. Bellaoui M, et al. Elg1 forms an alternative RFC complex important for DNA replication and genome
integrity. Embo J 2003;22:4304–4313. [PubMed: 12912927]

36. Franco AA, Lam WM, Burgers PM, Kaufman PD. Histone deposition protein Asf1 maintains DNA
replisome integrity and interacts with replication factor C. Genes Dev 2005;19:1365–1375. [PubMed:
15901673]

37. Sprouse RO, Brenowitz M, Auble DT. Snf2/Swi2-related ATPase Mot1 drives displacement of
TATA-binding protein by gripping DNA. Embo J 2006;25:1492–1504. [PubMed: 16541100]

38. Hsu JM, Huang J, Meluh PB, Laurent BC. The yeast RSC chromatin-remodeling complex is required
for kinetochore function in chromosome segregation. Mol Cell Biol 2003;23:3202–3215. [PubMed:
12697820]

39. Tyler JK, et al. The RCAF complex mediates chromatin assembly during DNA replication and repair.
Nature 1999;402:555–560. [PubMed: 10591219]

Tran et al. Page 11

Cell Biochem Biophys. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



40. Espinoza FH, et al. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol Cell Biol
1998;18:6365–6373. [PubMed: 9774652]

41. Tijsterman M, Tasseron-de Jong JG, Verhage RA, Brouwer J. Defective Kin28, a subunit of yeast
TFIIH, impairs transcription-coupled but not global genome nucleotide excision repair. Mutat Res
1998;409:181–188. [PubMed: 9875293]

42. Cheeseman IM, et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora
kinase Ipl1p. Cell 2002;111:163–172. [PubMed: 12408861]

43. Bauer F, Urdaci M, Aigle M, Crouzet M. Alteration of a yeast SH3 protein leads to conditional
viability with defects in cytoskeletal and budding patterns. Mol Cell Biol 1993;13:5070–5084.
[PubMed: 8336735]

44. Nath N, McCartney RR, Schmidt MC. Yeast Pak1 kinase associates with and activates Snf1. Mol
Cell Biol 2003;23:3909–3917. [PubMed: 12748292]

45. Hyman LE, et al. Binding to Elongin C inhibits degradation of interacting proteins in yeast. J Biol
Chem 2002;277:15586–15591. [PubMed: 11864988]

46. Zachariae W, Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting
complex. Genes Dev 1999;13:2039–2058. [PubMed: 10465783]

47. Yip AM, Horvath S. The generalized topological overlap matrix for detecting modules in gene
networks. Biocomp 2006:451–457.

48. Li A, Horvath S. The multi-node topological overlap measure for gene neighborhoods analysis.
Biocomp 2006:445–450.

49. Iyer LM, Babu MM, Aravind L. The HIRAN domain and recruitment of chromatin remodeling and
repair activities to damaged DNA. Cell Cycle 2006;5:775–782. [PubMed: 16627993]

50. Nakatsu Y, et al. XAB2, a novel tetratricopeptide repeat protein involved in transcription-coupled
DNA repair and transcription. J Biol Chem 2000;275:34931–34937. [PubMed: 10944529]

51. Nouspikel T, Hanawalt PC. Impaired nucleotide excision repair upon macrophage differentiation is
corrected by E1 ubiquitin-activating enzyme. Proc. Natl. Acad. Sci 2006;103:16188–93. [PubMed:
17060614]

Tran et al. Page 12

Cell Biochem Biophys. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. An example of systematic recursive computation of protein neighborhood overlaps
(a) A, B, C are the core proteins of 3 neighborhoods NA,NB,NC. Neighborhood NA is a set of 5
proteins enclosed in the green rectangle. The intersection NA⋂NB⋂NC, of the 3 neighborhoods
is a set that has a single protein interacting with all 3 core proteins. This intersection's size is
at most the size of, the smallest neighborhood. (b) Ovals represent neighborhood intersections.
Round 1 produces 6 distinct intersections of 2 neighborhoods. Round 2 uses these results to
produce 4 distinct intersections of 3 neighborhoods. The final round returns a single intersection
of 4 neighborhoods. If any of the intersections is empty, it will be discarded in all subsequent
rounds. Empty entries in the matrices represent self-intersections (on the diagonal of the first
matrix) or duplicate intersections (due to symmetry and transitivity of set intersections, e.g.,
NA⋂NB⋂NC = NB⋂NC⋂NA).
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Figure 2. An example illustrating the uncovering of protein modules and aggregates
Core protein set = {A, B, C}, neighborhood intersection set = {A, B, C, V, W}. Proteins A, B,
and C form a module because they are in both sets (rule 1). Applying rules 2 and 3 to incorporate
V and W produces two larger fully-connected modules [A, B, C, V] and [A, B, C, W]. This new
knowledge that V and W interact with A, B, and C predicts a V-W interaction, resulting in a
possibly larger aggregate [A, B, C, V, W].
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Figure 3. Relationships within the NER-transcription system and organization of TFIIH subunits
Green italics denote human homologs. (a) The NER-transcription system has a hierarchical
topology. The top level consists of the [RAD14, RAD3, MSH2] triangle which links to 3
subnetworks: DNA damage sensors that interact with RAD14, TFIIH subunits that interact
with RAD3, helicases and nucleases that interact with MSH2. (b) Highlighted in blue is a
kernel module [RAD3, TFB3, TFB4, CCL1, SSL1] that organizes interactions among TFIIH
subunits. Pink-shaded arrows show formation of two larger aggregates emerging from this
kernel. Our models did not detect modules or hubs associating with MET18 and RAD26.
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Figure 4. A high-level view of relationships among NER-transcription and other biological
processes
(a) Nodes (filled circles/ellipses) are color-coded according to biological processes as indicated
in (b). Pink nodes represent NER-transcription modules and hubs. Components of the same
module are placed within the same node (e.g. RAD14, RAD1, RAD10). All other nodes are
direct neighbors of the NER-transcription nodes and represent a hub or a module component
(e.g., SNF4 is a component of the [SAK1, SNF1, SNF4] module). (b) The first column contains
NER-transcription proteins shown in (a). Their direct neighbors participating in other
biological processes are shown in other columns.
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Figure 5. Detailed views of relationships between NER-transcription and other biological processes
Green italics denote human homologs. Color coding is the same as Fig. 4. Gray-shaded areas
highlight the [RFA1-2], [RFC2-5], and [CKA1-2, CKB1-2] kernel modules and their
interactions. (a) Relationships with DNA replication. (b) Relationships with chromatin
remodeling. In the right panel, MOT1 and VPS1 constitute a kernel around which a hierarchy
of protein interactions are structured. The STH1 and ISW1 ATPases can associate with or
without RSC3 to provide a variety of functions along two tree structures. Each tree path from
the root to an annotated leaf corresponds to a fully-connected module, e.g., [MOT1, VPS1,
RSC3, STH1, RFX1]. (c) Relationships with cell cycle regulation. The left panel shows two
signaling cascades linking cell cycle regulation with NER.
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Table 2
Summary of results for protein neighborhood intersections
The first two columns are results from the computational model; the last two columns are from the statistical model.
Computation stopped at k=16 when all intersections were empty. As the number of neighborhoods increased, the
probability of protein sharing decreased (column 3). Among the non-empty intersections shown in column 2, those
that were significant and non-redundant were counted in column 4. Note that results for k=14 were redundant and
discarded because they were subsets of the intersections found for k=15. Supplementary Table 1 provides a protein list
for column 4.

Number of
intersecting
neighbourhoods
(k)

Number of non-
empty intersections
(t)

Probability of
sharing a protein
(pk)

Number of
significant and non-
redundant
intersections

2 1812 2.8 × 10E-02 29

3 4550 1.3 × 10E-03 41

4 8571 7.6 × 10E-05 31

5 13527 4.8 × 10E-06 21

6 17287 3.0 × 10E-07 28

7 17625 1.8 × 10E-08 16

8 14265 9.6 × 10E-10 9

9 9126 4.6 × 10E-11 5

10 4581 1.9 × 10E-12 5

11 1780 6.8 × 10E-14 3

12 522 2.0 × 10E-15 2

13 110 4.7 × 10E-17 5

14 15 7.7 × 10E-19 0

15 1 6.5 × 10E-21 1
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