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Abstract
Over the past five to ten years, zero-inflated count regression models have been increasingly
applied to the analysis of dental caries indices (e.g., DMFT, dfms, etc). The main reason for that is
linked to the broad decline in children’s caries experience, such that dmf and DMF indices more
frequently generate low or even zero counts. This article specifically reviews the application of
zero-inflated Poisson and zero-inflated negative binomial regression models to dental caries, with
emphasis on the description of the models and the interpretation of fitted model results given the
study goals. The review finds that interpretations provided in the published caries research are
often imprecise or inadvertently misleading, particularly with respect to failing to discriminate
between inference for the class of susceptible persons defined by such models and inference for
the sampled population in terms of overall exposure effects. Recommendations are provided to
enhance the use as well as the interpretation and reporting of results of count regression models
when applied to epidemiological studies of dental caries.
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Dental caries, the most common disease of childhood, can be associated with severe health,
social, and economic consequences, which can persist over a lifetime. Statistical modeling
plays an important role in understanding caries risk factors and combating their
development. More than fifty years ago, Grainger and Reid [1954] observed that caries
counts are not generally approximated by a normal distribution [see also Lewsey et al.,
2000]. They recommended the negative binomial distribution for describing dental caries
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indices in populations recognizing, as did Böhning et al. [1999] decades later, that caries
counts tend to exhibit overdispersion, i.e., excess variation in them relative to the Poisson
distribution. Subsequently, researchers [e.g., Syrjälä et al., 2003; Broffit et al. 2007; Ismail
et al., 2008; Maserejian et al. 2008b; Thitasomakul et al., 2009; Wong, Lu and Lo, 2011]
have often analyzed the effects of risk factors on dental caries indices using negative
binomial regression [Hilbe, 2008].

As oral health has improved in populations over time [Campus et al. 2009 and references
therein], epidemiological investigations often find that the traditional count data models
provide poor fits to caries data. Distributions of caries counts are increasingly characterized
by a large number of zero counts, with proportions in excess of what is expected under the
Poisson and negative binomial distributions. To handle such “excess zeros”, Böhning et al.
[1999], in a paper published in the statistics literature [see Simonoff, 2003 for comment],
proposed zero-inflated Poisson (ZIP) regression for modeling the decayed, missing, and
filled teeth index (DMFT). Yet while ZIP models account for large counts of zeros, they do
not adequately account for data that have sizeable numbers of large caries counts. To
address both excess zeros and overdispersion, Lewsey and Thomson [2004] used zero-
inflated negative binomial (ZINB) regression models in examining the effect of economic
status on DMF data. In the past five years there have appeared over a dozen publications
with applications of both types of these zero-inflated (ZI) models to dental caries indices.
Their emergence warrants a review.

To help explain the recent trend in applications of ZI models to caries, consider the
following example that illustrates the potential inadequacy of traditional models for suitably
describing distributions of caries counts. Figure 1a shows a representative distribution of
caries counts with a moderately large number of zeros, as is commonly encountered in
surveys and population based studies of caries. For this distribution, the mean and variance
of the counts denoted Y are 1.2 and 1.68, respectively (calculated as E(Y) =ΣyP(y) and
Var(Y) = Σ[y − E(Y)]2P(y), respectively, where P(y) is the relative frequency of count y).
Furthermore, the frequency of zero counts is 40% while the cumulative frequency of counts
of size four or greater is 5%. A Poisson distribution cannot adequately describe the
distribution in figure 1a because all Poisson distributions have a single parameter (i.e., the
mean) to describe the distribution of counts, where their variance equals their mean. Thus,
not only does a Poisson distribution with a mean of 1.2 have a variance of 1.2, but it
additionally specifies a relative frequency of zero counts of 30% and a relative frequency for
counts of four or greater of 3.4% (as determined from its probability function), both of
which are too low to adequately describe the distribution in figure 1a. Additionally, even the
negative binomial distribution, which has a second parameter allowing for extra variation
(over-dispersion) in Y relative to the Poisson, often fails to account for large fractions of
zeros commonly observed in studies of dental caries.

To overcome these limitations, the Poisson and negative binomial models have been
extended to better incorporate the excess zeros, giving rise to ZIP and ZINB models. The
expanded capacity for describing caries count distributions is illustrated by the ZIP
distribution (defined in the appendix) with parameters ψ = 0.25 and μ = 1.60 for caries
counts Y, which perfectly describes the frequency of counts in figure 1a. The fact that this
example is constructed to give a perfect fit does not diminish the fact that ZIP models
provide expanded families of count distributions that often give much better fits than the
Poisson distribution to counts of caries indices, especially when large numbers of zeros are
present. Analogous arguments exist for the utility of the ZINB model relative to the negative
binomial model in accounting for both extra zeros and extra-Poisson variation.
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Notwithstanding their increased usage due to providing improved model fits for counts of
caries indices, analysis results based on ZIP and ZINB models may be difficult to interpret
[Mwawili et al., 2008; Solinas et al., 2009]. For a fixed set of covariate values, ZI models
constitute a mixture of a standard probability distribution for count data, typically Poisson or
negative binomial, representing a “susceptible” subpopulation of children said to be at risk
for a disease or condition (e.g., dental caries), and a subpopulation of “non-susceptible”
children with only zero counts who are considered to be not-at-risk. For a single population
(i.e., a model with no observed covariates), figure 1b gives an alternative representation of
the relative frequencies of counts for a ZIP model with parameters ψ = 0.25 and μ = 1.60. It
illustrates that a randomly selected child from the overall population is not at risk for caries
(has excess zero) with probability 0.25; otherwise, with probability 1 − ψ = 0.75 the child is
susceptible for caries and is assumed to have a caries count, a zero or otherwise, from a
Poisson distribution with a mean μ of 1.60. Note that the probability of an excess zero is
given by the length of the white bar, and the mean caries count for the susceptible subgroup
is the mean of the distribution represented by the shaded bars. The challenges that dental
researchers face in understanding ZI models are related to the fact that the composition of
the two respective subpopulations or groups in figure 1b is a theoretical and mathematical
construct such that the specific group membership of any given subject in a study with a
zero count is unknown; accordingly, these groups are referred to in the literature as latent
classes.

In fact, figures 1a and 1b display identical overall distributions for Y. Specifically, figure 1a
depicts the overall frequency distribution resulting from the mixture of the two subgroups of
figure 1b, white and shaded, without distinguishing between them. The only difference in
the figures is that figure 1a, by depicting a single overall distribution for Y, reflects the view
of Mwawili et al. [2008] that the mixture distribution model representation (figure 1b) is
only a convenient explanation for a distribution of counts with excess zeros.

Noting that oral health research employing ZI models often limit consideration to the model-
based latent class parameters ψ and μ via interpretation of regression coefficients that
describe their variation, Albert et al. [2012] argue that insufficient emphasis has been given
to the effects of caries risk factors on the overall population from which the study sample
was drawn. From this perspective, figure 1a displays the distribution for Y that has overall
mean caries count, say ν = E(Y), and the probability of a positive caries count, denoted π =
Pr(Y > 0), represented by the fraction of all subjects with counts greater than zero. In a
cross-sectional study, for example, ν is caries severity or extent and π is caries prevalence
in the sampled population. Accordingly, Albert et al. [2012] define “overall effects” as the
contrasts (i.e., differences or ratios) of values taken by ν (or π) as they vary across
subgroups defined by caries risk factors.

Although epidemiological investigations of risk factors on caries often report on the ZI
model parameters ψ and μ and the corresponding subpopulations in figure 1b that they
characterize [Gilthorpe et al. 2009], ZI models can be used for investigating overall effects
on the caries count Y because ν and π, which we refer to as the population oral health
parameters, have known relationships to ψ and μ [Lambert, 1992; Böhning et al., 1999;
Albert et al., 2012]. Specifically, caries prevalence π and caries severity ν are related to the
ZIP (or ZINB) model parameters as follows:

and ν = μ(1 − ψ). Thus, the ZI model parameters ψ and μ provide only indirect information
on the population oral health parameters π and ν. As long as ψ > 0, the prevalence π is
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always less than the probability of not being an excess zero, 1 − ψ. Further, ν ≤ μ so that
caries severity in the overall population cannot be greater than the mean count of the
susceptible population. Applying these mathematical relationships to the example in figure
1b where ψ = 0.25 and μ = 1.60, prevalence is calculated as π = 0.60 and severity is ν =
1.20 (as noted above) for the overall population represented by figure 1a. Analogous
arguments can be made when π denotes caries incidence and ν is mean increment in a
longitudinal study.

The motivation for reviewing the usage and reporting of ZI models in the dental caries
literature is the belief that drawing well articulated and valid conclusions from ZI models
relies on an understanding of the differences between the ZI model parameters and the
population oral health parameters, a distinction made two decades ago with an illustration
from manufacturing by Lambert [1992] and later for dental caries by Böhning et al. [1999]
and Albert et al. [2012]. This article reviews the caries literature for details of applications of
ZI models to dental caries counts and assesses, with respect to stated study goals, the quality
of interpretations given to the numerical results of these analyses. Finally, recommendations
for improved usage and reporting of ZI models are provided.

Materials and Methods
Overall effects in ZI models

The aims of the literature review require consideration of how the presence of excess zeros
in caries counts should be taken into account in statistical analysis, interpretation and
reporting when interest is in the overall effects of risk factors on caries prevalence (or
incidence) π and severity (or mean increment) ν. “Overall effects” refer to the effects of risk
factors on caries indices in the overall population represented by the study participants, and
not in the effects within a subset of the overall population defined by an unobserved variable
assumed to define subgroups (latent classes) that partition that population [Albert et al.,
2012]. For simplicity, consider a single dichotomous covariate, xi = 0 or 1, appearing in each
ZI model component for the i-th child. The probability of an excess zero is typically
modeled by a logistic regression, which is expressed in its probability form by

(1)

and the mean caries count for at-risk children are modeled via a log linear model
(equivalently, a generalized linear model with log link function) by

(2)

The regression coefficient γ1 in (1) represents the log odds ratio of having an excess zero or
being in the not-at-risk group for the effect of xi = 1 relative to xi = 0. The coefficient β1
represents the log of the incidence rate ratio (IRR) for the effect of xi = 1 relative to xi = 0 in
the at-risk group, i.e., ln[μi(xi = 1)/μi(xi = 0)]. Often γ1 and β1 are not of primary interest
[Albert et al., 2012]. Rather, their importance lies in their relationship to prevalence and
severity in the overall population. Substitution of (1) and (2) into νi(xi) = μi(xi)[1 − ψi(xi)]
gives the overall mean severity
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Then, the ratio of means, νi(xi = 1)/νi(xi = 0), or IRR for the overall effect of xi on caries
severity is:

(3)

Thus, a ratio factor on the right-hand-side of equation (3), which depends on the excess zero
model parameters from equation (1), multiplies the IRR for the at-risk latent class (exp(β1))
to produce the overall IRR giving the effect of xi on caries severity in the overall population.
Equation (3) generalizes for a continuous covariate (see appendix).

The signs of β1 and γ1 impact the direction of the bias when the at-risk latent class IRR is
used to estimate the IRR for caries severity in the overall population. First, if γ1 < 0 (i.e.,
negative sign) then the ratio factor in equation (3) will be greater than 1.0 and, thus, exp(β1)
will underestimate the IRR for caries severity in the overall population. On the other hand, if
γ1 > 0 (i.e., positive sign) then the ratio factor in equation will be less than 1.0 and exp(β1)
will overestimate the IRR for caries severity in the overall population.

Second, whether β1 and γ1 have consistent trends (i.e., opposite signs, one positive and the
other negative) or inconsistent trends (same signs, both positive or both negative) usually
determines the direction of the bias in relation to the null value of no covariate effect. The
scenario of consistent trends is where a covariate decreases (increases) the probability of an
excess zero and increases (decreases) the at-risk class mean. The less common scenario of
inconsistent trends is where a covariate decreases (increases) the probability of an excess
zero and decreases (increases) the at-risk class mean. Considering equation (3), and that β1 <
0 implies exp(β1) < 1 while β1 > 0 implies exp(β1) > 1, the impact of consistent trends and
inconsistent trends in samples sufficiently large for estimates to reflect the relationship of
parameters is as follows:

1. When a covariate has consistent trends in the two ZI model parts (opposite signs),
the at-risk latent class IRR will in most cases be biased towards the null hypothesis
of no effect in the sense that the IRR (latent) is closer to 1.0 than IRR (severity).

2. When a covariate has inconsistent trends in the two ZI model parts (same sign), the
at-risk latent class IRR will in most cases be biased away from the null hypothesis
of no effect in the sense that the IRR (latent) is farther from 1.0 (in either direction)
than IRR (severity).

Exceptions to these rules sometimes occur when the IRR (latent) and IRR (severity) have
different directions (one has a value less than one, while the other has a value greater than
one), but violations to these laws appear to be rare, and when the occur they are often
inconsequential with both IRRs being close to 1.0; see online supplementary appendix for
further discussion and real life examples where exception to these rules occurred less than
2% of the time.

To illustrate the first scenario (consistent trends), suppose γ0 = −1.099, β0 = 0.470, γ1 = −
1.099, and β1 = 0.223, corresponding to {ψ1 = 0.25, μ1 = 1.60} for the group with xi = 0
(figure 1b), and {ψ2 = 0.10, μ2 = 2.00} for the group with xi = 1 (figure 1c). Then the IRR
for the at-risk latent class is exp(0.223) = 1.25 (which also equals μ2/μ1), while the IRR for
the overall population calculated from equation (3) or by [μ2(1 − ψ2)]/[μ1(1 − ψ1)] equals
1.50. In this case, the IRR (latent) underestimates the IRR (severity) and is biased towards
the null.
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To illustrate the second scenario (inconsistent trends), suppose γ0 = −1.099, β0 = 0.470, γ1
= 0.693, and β1 = 0.223, corresponding to {ψ1 = 0.25, μ1 = 1.60} for the group with xi = 0
(figure 1b), and {ψ2 = 0.40, μ2 = 2.00} for the group with xi = 1 (figure 1d). Then the IRR
for the at-risk latent class shown in figure 1b is μ3/μ1 = 1.25 while the IRR for the overall
population is [μ3(1 − ψ3)]/[μ1(1 − ψ1)] = 1.0. In this case, the IRR (latent) overestimates
the IRR (severity) and is biased away from the null. The general point is that some bias
generally occurs when exponentiated β-coefficients, which are IRRs for the at-risk latent
class, are falsely interpreted as IRRs for the overall population.

The at-risk latent class IRR is equivalent to the IRR (severity) for the overall population
when γ1 = 0 in (1) in which case the ratio term on the right-hand-side of (3) cancels out.
Thus, when the probability of an ‘excess zero’ does not depend on xi, exp(β1) is the IRR for
the overall population and its interpretation is the same as in Poisson regression and negative
binomial regression. Generally, however, estimates of IRRs based on equation (3) that
appropriately adjust for the zero-inflation parameters (e.g., γ0 and γ1) provide valid
inference for the overall effect of the risk factor on the population oral health parameters.

The general results for the relationship between trends and bias for ZI models (1. and 2.
above) also apply to ZI models with multiple covariates. However, we wish to caution the
reader that for models having multiple covariates appearing in both model parts (for μi and
ψi) the IRR-severity for a covariate will depend upon the values of other covariates.
Specifically, in a ZI model with three covariates, the IRR (severity) for a dichotomous factor
xi3 is:

(4)

If xi1 and xi2 are also dichotomous (in this example), there will be four different values for
IRR (severity), one for each combination of xi1 and xi2. A single covariate-adjusted IRR
(severity) for the effect of xi3 may be obtained by inserting mean values for xi1 and xi2
(whether they are dichotomous or continuous) into equation (4). Simplification of equation
(4) occurs only if some of the covariates are omitted from the excess zero part of the model,
or otherwise have their γ– coefficients equal to zero. For example, if xi3 does not appear in
the excess zeros model (equivalently, γ3 = 0), then exp(β3) from a ZI model with three
covariates is the IRR for both the at-risk latent class and the overall population relating the
risk factor to caries severity, all other covariates being held fixed. The online supplementary
material contains a detailed illustration with real-life data involving two dichotomous
covariates and one categorical factor.

In addition to the bias arising from mis-intepreting an exponentiated β-term as a population
IRR (severity) for caries increment, a second concern is that a variance estimate for an at-
risk latent class IRR is likely to underestimate the corresponding variance estimate for the
IRR in the overall population since an estimate of the variance for the latter should
additionally account for uncertainty associated with estimating γ0 and γ1 in (3). The delta
method for a scalar function of a random vector may be used to compute the large sample
variances of the IRR estimates corresponding to equation (3) or equation (4) conditioning on
means or specific covariate values [Albert et al. 2012].

Hurdle models
Hurdle models [Mullahy, 1986; Cameron and Trivedi, 1998] are briefly mentioned, as they
are occasionally used or cited in epidemiological studies of dental caries. The hurdle model
approach, like the ZI model approach, is a two-part count regression method that deals with
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the phenomenon of excess zeros in the data. However, hurdle models are distinct from ZI
models. The first component of a hurdle model, typically logistic regression, addresses the
probability of a zero count (as opposed to an “excess zero”) so that it pertains to prevalence
(or incidence) in the overall population, as it targets all zero counts. The second part of a
hurdle model is for the mean count among subjects with any caries, i.e., E(Yi|Yi > 0). It
exceeds the unconditional mean E(Yi) that is the increment for the overall population, and it
is distinct from the mean μi for the at-risk latent class in a ZI model. As shown in figures 1b,
1c and 1d, zeros can occur in either part of a ZI model, whereas in hurdle models they are
only modeled in the first part. Thus interpretations for ZI model results are incorrect when
they are based on language pertaining to hurdle models.

Methodology for review of published articles
The authors sought to identify and review all published research articles in the dental
literature that used ZIP or ZINB models to analyze caries experience, using ISI Web of
Knowledge V5.4 and PubMed as search engines. The authors were the reviewers - a bio-
statistician (JP), an oral health researcher (JS) and two biostatistics students (DL and MK
working jointly) both holding graduate research assistantships in oral health. Each reviewer
evaluated all the identified papers according to five criteria labeled “A” through “E” in
Table 1, each which involved categorical classifications. First (“A”), did the article present
caries applications using ZIP models, ZINB models, or both? Second (“B”), did the article
assess model goodness of fit, or otherwise provide some rationale for model choice?
Assigned ratings were (i) “test” if a statistical test of goodness-of-fit, likelihood ratio
statistics or information criterion statistics (e.g., AIC, BIC,) were presented, (ii) “graph” if a
graph displaying model fitted values with observed frequencies was provided, (iii) “not
shown” if authors claimed to have examined goodness-of-fit but did not report results of
their evaluation; and (iv) “none” if the article did not mention an assessment of goodness of
fit for the study data. Third (“C”), did the reported ZI model(s) include covariates in both
excess zeros and at-risk model parts: yes, no, or indeterminable?

The fourth and fifth assessments aimed to determine whether the interpretations of results
from ZI models provided in the article were appropriate for the reported numerical results.
The fourth criterion “D” was whether the article presented numerical results for overall
exposure effects (“overall”) pertaining to the overall population from which the data were
selected, e.g., equation (3), or whether results presented were based on estimated regression
coefficients γ1 and β1 (or their exponentiated forms) corresponding to the two latent classes
(“LC”) of the ZI model; The fifth and final criterion “E” assessed the quality of
interpretations of reported numerical results from fitting ZI models; in particular, was
language used to describe overall exposure effects or latent class-specific effects?
Additionally, we noted where articles inappropriately used language pertaining to hurdle
models (Mullahy, 1986). The reviewers discussed their initial evaluations as a group to
reconcile differences and reach consensus.

Finally, examples of problematic interpretations in the reviewed articles were listed.
Specifically, for articles with ZI models that included covariates in the excess zeros part, we
assigned to interpretations the following classifications: (i) incorrect - when regression
coefficients or effects for the probability of an excess zero were falsely attributed to be
effects on prevalence; (ii) misleading - when risk factor effects on mean caries counts in the
at-risk group were mis-attributed (or could easily be mis-interpreted) as overall effects on
severity; for example, when ‘severity’ is used without an appropriate qualifying phrase
alluding to the ‘susceptible’ or at-risk subgroup for which the inference actually applies; (iii)
imprecise - when results of estimated latent class effects were used directly as the basis for
making unsubstantiated claims, or statements of a speculative nature, regarding overall
effects on prevalence π or severity ν.
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Results
We identified fifteen refereed papers published through 2011 that used ZIP or ZINB models
to analyze dental caries in children or adults, either in cross-sectional or longitudinal
observational studies (Table 1). As in the cross-sectional studies that analyzed caries indices,
statistical models for independent observations were applied in the longitudinal studies for
caries increments. One exception is the article by Broadbent et al. [2008] that employs
longitudinal data models for repeated measures of DMFS counts from a life trajectory
perspective. Some of the fourteen articles that used statistical methods for independent
observations adjusted variance estimation for clustering in the study design.

Among the fifteen papers, six applied ZINB (but not ZIP) models to caries outcomes, three
applied ZIP (but not ZINB) models, and six applied both ZIP and ZINB models. Most
articles analyzed multiple outcomes. Seven articles assessed goodness-of-fit of the chosen
model(s) by reporting results from either statistical tests, information criteria or graphs; four
papers made the claim to have inspected their data for model selection without showing the
results of their assessment; and the remaining four did not report any assessment of fit for ZI
models applied to their caries outcomes. However, in this latter group, each article made a
general statement that the ZI model was chosen to address excess zeros in caries data.

Eight articles reported analysis results from ZIP or ZINB models that included covariates in
the zero-inflation part of the model in addition to the model for the mean count for the at-
risk population. Each of these papers summarized latent class-specific covariate effects with
estimated regression coefficients or exponentiated regression coefficients corresponding to a
model specification for the probability of an excess zero, ψ, and the mean μ caries index for
the susceptible class. Three of the eight articles gave appropriate interpretations for these
latent class effects in most instances. For example, in their abstract, Lewsey and Thomson
[2004] state “Being in the high-SES group during childhood was associated with a greater
probability of being caries-free by age 18 years, over and above that which would be
expected from the negative binomial process. Low childhood SES also had the largest
coefficient in the modelling of the negative binomial process…” Next, Solinas et al. [2009]
give interpretations that are appropriate for the results of the two ZI model parts presented
from an analysis of Italian 4-year-olds in the National Pathfinder Survey. Consider the
sentence in the abstract “The father’s educational level was significant in both parts of the
ZINB regression model (P < 0.05), implying that the degree of caries experience increases in
children whose fathers have a low level of education, while the excess of caries-free children
decreases.” Similarly, Campus et al. [2009] who analyze data from the same study as
Solinas et al. [2009] use appropriate language in their abstract such as “the probability of
being an extra zero” and “caries experience” when describing results from the zero-inflation
and negative binomial parts of the ZINB model, respectively. Note that “caries experience”,
as used in these quotations, has a general meaning that must be understood in the specific
modelling context as applying to the at-risk population and not to the overall population.

The difficulty of interpreting results from ZI models often resulted in imprecise, misleading
or incorrect inferences. The difficulty arises because interpretations for ZI models involving
“excess zeros” and “caries experience” may be cumbersome and quite often at odds with
interpretations dental researchers wish to make regarding overall effects relating to
prevalence (or incidence) and severity (or increment). The last column of Table 1 shows the
types of interpretations made in the reviewed articles, which can be contrasted with the
column next to it that shows the types of numerical results presented. Discrepancies, which
are bolded in the last column, indicate errors of interpretation, of which a selection is listed
in Table 2. For example, Lewsey and Thomson [2004] make a statement where latent class
effects are incorrectly interpreted as overall effects for caries severity and prevalence (Table
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2). To investigate the resulting bias of their estimates we examined detailed comparisons of
IRR estimates for effects in the at-risk latent class versus the IRR estimates for effects in the
overall population for the covariates reported in Table 1 of Lewsey and Thomson (2004). As
anticipated, the latent class estimates tended to underestimate the “overall” IRR estimates in
the sense of having values closer to 1.0. Therefore it is suggested that the latent class
estimates not be considered as substitutes or proxies for properly computed “overall”
estimates of severity. Additional computations and accompanying text are provided in the
on-line Supplementary Material to this article.

Furthermore, while Solinas et al. [2009] do not report overall exposure effects, a sentence in
the article’s abstract could be interpreted by readers that inferences are made for prevalence
and severity (Table 2). Similarly, a statement in Campus et al. [2009] linking reported
results of a ZINB model for dmfs to caries severity (i.e. ν) is not substantiated by the
authors, nor is it qualified by restricting interpretation to the at-risk population. The five
other articles that include covariates in both parts of the ZI model have multiple instances of
interpreting results for the latent classes of the two model components as overall exposure
effects using language of ”prevalence” or ”severity” that is imprecise, misleading or
incorrect (Table 2).

The remaining seven articles do not report model results for the excess zero part of the ZI
model (Table 1). The first of three papers to analyze dental caries in children participating in
the Detroit Dental Health Project, Lim et al. [2008] modeled caries count indices using
ZINB models where the model for the excess zeros, as indicated in a footnote to their Table
6, contained only an intercept term. The interpretations applied to the results are appropriate
since, as discussed in the methods section, the exclusion of covariates from the excess-zero
part of the model permits direct inference for the prevalence and caries increment in the
sampled overall population. Ismail et al. [2009] and Sanders et al. [2008] interpret IRRs as
overall effects for the population of children in the Detroit study, which would be
appropriate assuming that covariates were not included in the excess zeros part of the model;
however, like Javali and Pandit [2010], Nelson et al. [2010] and Broadbent et al. [2008,
2011] they do not explicitly state that the intercept-only model was used for excess zeros. In
particular, Javali and Pandit [2010] only present estimated regression coefficients for the
mean caries process of the at-risk latent class. Nelson et al. [2010] do not report any
regression coefficient estimates from their ZIP and ZINB models. Rather, they report the
“percent increase in mean” for the outcomes when comparing two groups, using language
applicable to overall exposure effects. They do not fully describe the maximum likelihood
estimation procedures they employed, and it is not clear whether statistical methodology for
estimating overall effects when both model parts contain covariates [e.g., Albert et al., 2012]
was used.

Conclusions and Recommendations
With the emergence of zero-inflated count regression models in caries research, authors
have made imprecise, misleading and incorrect interpretations of results based on them.
Eight of 15 (53%) caries articles reviewed reported ZI models that included covariates in the
excess zero model part, which led to problems in interpretations. In five of these eight (63%)
articles, authors gave multiple misleading or incorrect interpretations for regression
coefficients corresponding to the ZI model’s latent class parameters ψ and μ by interpreting
them as overall effects for caries prevalence π and severity ν. The other three articles in this
group did not consistently use the terminology of ‘susceptible’ and ‘non-susceptible’ for the
at-risk and not-at-risk subgroups, and contained instances of imprecise or misleading
interpretations for overall effects given to analytic results for them. While the remaining
seven articles did not have any similar concerns with interpretations, only one of them [Lim
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et al. 2008] clearly specified the ZI model being used by stating that it included only an
intercept term for the excess zeros part. In totality, these results support the premise
underlying this review that the effects corresponding to the regression coefficients in the two
model parts are not typically the parameters of interest, but rather caries researchers usually
aim, sometimes unsuccessfully, to study overall effects [Albert et al., 2012].

A research goal of studying overall effects of risk factors on caries indices leads to several
recommendations regarding model choice for caries counts exhibiting extra-Poisson
dispersion and/or excess zeros: 1) for some populations with high caries rates (e.g., children
in developing countries) a negative binomial regression model [Hilbe, 2008] may provide a
reasonable approach; 2) otherwise, in the presence of excess zeros, one could consider use
of a ZI model with only an intercept in the zero-inflation part of the model; 3) else one could
omit the subset of covariates that are of primary interest from the zero-inflation part of the
model as this will simplify calculations and interpretations of their effects. However, the
researcher should be aware that omitting covariates from the excess zeros part of the model
without proper justification could result in bias. When model reduction in the excess zeros
part is not warranted such that the primary exposure variables of interest are in both model
parts, a fourth approach is to estimate prevalence (or incidence) and severity (or increment)
for the overall population as discussed in this article and elsewhere [Lambert 1992; Albert et
al. 2012]. Model choice should always be justified with a statistical assessment or, at least,
with a graphical display of differences between observed and fitted counts.

For completeness we point out that where count distributions present with small maximum
counts, alternatives to employing ZIP or ZINB models may be more appropriate. These
alternative procedures are based on mixtures of distributions involving the binomial
distribution, including the beta-binomial model (for overdispersion), zero-inflated binomial
model (ZIB, for excess zeros) and the zero-inflated beta-binomial model (ZIBB, for both
overdispersion and excess zeros) [e.g., Cheung 2006; Albert et al. 2012]. Gilthorpe et al.
[2009] discuss that a model based on the Poisson or negative binomial distributions could
inappropriately use long tails to describe the bounded distribution of counts, resulting in a
poor fit for counts at the upper limit. A poor fit of the ZIP or ZINB model is less likely when
the mean count is small relative to the maximum count. We did not find any applications of
ZIB or ZIBB models in the caries literature, nor did we identify any caries indices analyzed
in the papers reviewed in Table 1 where the maximum count was sufficiently small to
question the use of ZIP or ZINB models.

The results of this review lead to several recommendations regarding the implementation,
interpretation and reporting of results based on ZIP and ZINB models in caries research: 1)
select a model, such as one described in the previous paragraph, based on model fit and in
consideration of whether interpretation of its parameters facilitates addressing the research
questions of interest (e.g., inferences for overall effects versus latent classes versus hurdle
model interpretations); 2) clearly and completely describe the statistical models used,
following Lim et al. [2008] for example, by stating for ZI models whether and which
covariates were included in the zero-inflation part of the model; 3) report parameter
estimates more completely such as intercept terms when regression coefficients are reported
and over-dispersion parameter estimates in the case of negative binomial and ZINB models,
stating the software and version used for model estimation; and (4) use precise, consistent,
and clear language for interpreting results.

In particular, the importance of discriminating between inference for the overall population
versus that for the latent class of susceptible children has been emphasized. As in the case of
a single dichotomous covariate appearing to both ZI model parts, it was shown that the
estimated latent class effect contrasting the two groups μ̂2/μ̂1, or equivalently exp(β̂1), is a
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biased estimate of the overall effect ν2/ν1, which in terms of the ZI model parameters was
given in equation (3). It is also the case that the large sample variance estimator of exp(β̂1) is
not equivalent to the variance estimator corresponding to equation (3). The implication is
that caries researchers may have underestimated the variance of the overall effect by
essentially removing contributions of the excess zeros from its variability in making
exp(β1), and not (3), the basis of inference.

Our review of caries research articles using ZI models had limited scope. We were not able
to determine whether the substantive conclusions reached in the dental caries articles were
valid because standard errors of IRR-severity estimates can not be determined from
published data. In order to compute these, estimates of variances and covariances of
regression coefficients are needed. However, misinterpreting effects for the at-risk latent
class as overall effects could lead to erroneous conclusions, and, as shown in the example in
the supplementary appendix, will usually result in bias towards the null hypothesis of no
covariate effects. A second limitation is that the review did not address all statistical and
methodological issues in the caries articles, but only those directly relating to the use and
reporting of results from ZI models. Finally, the evaluation of assessment criteria involved
subjectivity as well as objectivity. Nonetheless, this article concludes that the increasing use
of zero-inflated count regression models in dental caries research, along with frequent
misinterpretations of their results as documented in our review, calls for greater
collaboration among statistical scientists and oral health researchers to advance the quality
of caries research utilizing these highly versatile and useful methods.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
The appendix provides further statistical detail. ZI models define a Bernoulli process where
s = 1 selects a class of subjects to be considered not-at-risk for caries (i.e., conditional on
being a member in this class, they have an observed zero with probability one), where
probability ψ, i.e., ψ = P (s = 1); this the probability of an “excess zero”. Otherwise s = 0
indicates the child is susceptible for having caries with probability 1 − ψ. Additionally, the
child’s caries count is generated from a Poisson (or negative binomial) distribution with
mean μ. The overall (or marginal) distribution of a child’s caries counts, Y, is:

where g(y|μ, s = 0) is the probability function, for example, g(y|μ, s = 0) = exp(−μ)μy/y! in
the Poisson case. Let g(y|μ) = g(y|μ, s = 0), and the marginal probability function for P (Y =
y) is:

(5)

The expression for P (Y = 0) shows that a zero count can be generated in either the excess-
zero part or the at-risk part of a ZI model. The mixture distribution in (5) has mean E(Y) =
μ(1 − π), for ZIP or ZINB. The population prevalence is π = 1 − P (Y = 0), where for the
Poisson component of the ZIP distribution g(0|μ) = exp(−μ), and for the negative binomial
part (i.e., equation (5.9) of Hilbe [2008]) of the ZINB distribution g(0|μ, α) = (1+αμ)−α−1,
where α is its over-dispersion parameter. For the ZIP distribution, the variance is var(Y) =
E(Y)(1 + ψμ), from which it is clear that the variance exceeds the mean (when ψ> 0) as in
all the figures. For ZINB, var(Y) = E(Y)[1 + μ(ψ + α)].
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Equations (1) and (2) specified the ZIP (or ZINB) model for a single covariate, and equation
(3) gaves its IRR for caries severity in the overall population. The IRR in the overall
population for a dichotomous covariate in a model with multiple covariates but with no
covariates besides itself in the excess zero part of the model is also given by equation (3). In
the specific case of a model with a single continuous covariate xi1, the ratio of means νi(xi +
1)/νi(xi), i.e., the IRR for a one unit increase of xi on mean caries increment, is:

(6)

Note that if xi = 0, giving a dichotomous covariate, equation (6) reduces to equation (3).

Preisser et al. Page 14

Caries Res. Author manuscript; available in PMC 2012 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Four representative distributions of caries counts are shown in this panel plot. Fig 1a depicts
a zero-inflated Poisson (ZIP) distribution (ψ = 0.25, μ = 1.6) as a single population. It has
mean ν = 1.2, variance 1.68 and a relative frequency of zero counts of 40%. Fig 1b depicts
the same distribution as in fig 1a but as a mixture of two sub-populations (or non-susceptible
(white bar) and susceptible (shaded bars) latent classes). Fig 1c shows a ZIP distribution (ψ
= 0.10, μ = 2.0) that is defined relative to the distribution of counts in Fig 1b through a
single dichotomous covariate in equations (1) and (2) having “consistent” trends in the two
ZIP model parts. It has overall mean ν = 1.8, variance 2.16 and a relative frequency of all
zero counts of 22%. Fig 1d shows a ZIP distribution (ψ = 0.40, μ = 2.0) that is defined
relative to fig 1b through a dichotomous covariate having “inconsistent” trends in the two
ZIP model parts. It has overall mean ν = 1.2, variance 2.16 and a relative frequency of all
zero counts of 48%.

Preisser et al. Page 15

Caries Res. Author manuscript; available in PMC 2012 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Preisser et al. Page 16

Ta
bl

e 
1

A
rt

ic
le

s 
em

pl
oy

in
g 

Z
IP

 o
r 

Z
IN

B
 m

od
el

s 
fo

r 
ch

ild
ho

od
 d

en
ta

l c
ar

ie
s 

an
d 

as
se

ss
m

en
t o

f 
re

po
rt

in
g 

of
 m

od
el

 s
el

ec
tio

n 
(g

oo
dn

es
s-

of
-f

it)
 a

nd
 w

he
th

er
 th

e
in

te
rp

re
ta

tio
ns

 m
ad

e 
in

 th
e 

ar
tic

le
 m

at
ch

 th
e 

re
po

rt
ed

 a
na

ly
si

s 
re

su
lts

, w
he

re
 c

la
ss

if
ic

at
io

ns
 a

re
 la

te
nt

 c
la

ss
 (

L
C

),
 o

ve
ra

ll 
ef

fe
ct

s,
 o

r 
hu

rd
le

 m
od

el
 e

ff
ec

ts
;

bo
ld

ed
 e

nt
ri

es
 in

di
ca

te
 in

ap
pr

op
ri

at
e 

in
te

rp
re

ta
tio

ns
 f

or
 th

e 
an

al
ys

is
 r

es
ul

ts
 p

re
se

nt
ed

*

au
th

or
s 

&
 y

ea
r

ca
ri

es
 in

di
ce

s 
an

al
yz

ed
Z

I 
m

od
el

s 
us

ed
 (

A
)

go
od

ne
ss

 -
of

-f
it

 (
B

)*
*

co
va

ri
at

es
 in

 e
xc

es
s 

ze
ro

pa
rt

? 
(C

)†
an

al
ys

is
 r

es
ul

ts
 p

re
se

nt
ed

(D
)†

‡
in

te
rp

re
ta

ti
on

s 
gi

ve
n 

to
re

su
lt

s 
(E

)‡

L
ew

se
y 

&
 T

ho
m

so
n 

20
04

dm
fs

, D
M

FS
, D

FS
 in

cr
em

.
Z

IP
 &

 Z
IN

B
gr

ap
h

Y
es

L
C

L
C

 &
 o

ve
ra

ll

H
as

hi
m

 e
t a

l. 
20

06
dm

fs
Z

IN
B

no
ne

Y
es

L
C

ov
er

al
l

A
ro

ra
 e

t a
l. 

20
08

df
s,

 D
M

FS
Z

IN
B

no
t s

ho
w

n
Y

es
L

C
ov

er
al

l &
 h

ur
dl

e

B
ro

ad
be

nt
 e

t a
l. 

20
08

a 
m

od
if

ie
d 

D
M

FS
Z

IP
te

st
In

de
te

rm
in

ab
le

ov
er

al
l

ov
er

al
l

L
im

 e
t a

l. 
20

08
d 1

s,
 d

2s
, d

2m
fs

, d
1d

2m
fs

Z
IN

B
no

ne
N

o
ov

er
al

l
ov

er
al

l

M
as

er
ej

ia
n 

et
 a

l. 
20

08
# 

ca
ri

ou
s 

te
et

h/
su

rf
ac

es
††

Z
IP

 &
 Z

IN
B

no
t s

ho
w

n
Y

es
L

C
ov

er
al

l &
 h

ur
dl

e

Sa
nd

er
s,

 L
im

, S
oh

n 
20

08
N

on
-c

av
ita

te
d 

le
si

on
s†

††
Z

IP
no

t s
ho

w
n

In
de

te
rm

in
ab

le
In

de
te

rm
in

ab
le

ov
er

al
l

C
am

pu
s 

et
 a

l. 
20

09
dm

fs
Z

IN
B

te
st

Y
es

L
C

L
C

 &
 o

ve
ra

ll

Is
m

ai
l e

t a
l. 

20
09

d3
-6

m
fs

, d
1-

6m
fs

Z
IN

B
no

ne
In

de
te

rm
in

ab
le

In
de

te
rm

in
ab

le
ov

er
al

l

So
lin

as
 e

t a
l. 

20
09

dm
fs

Z
IP

 &
 Z

IN
B

te
st

 &
 g

ra
ph

Y
es

L
C

L
C

 &
 o

ve
ra

ll

T
ra

m
in

i e
t a

l. 
20

09
D

34
M

FT
Z

IP
 &

 Z
IN

B
gr

ap
h

Y
es

L
C

ov
er

al
l

Ja
va

li 
&

 P
an

di
t 2

01
0

D
M

FT
Z

IP
 &

 Z
IN

B
te

st
 &

 g
ra

ph
‡‡

‡
In

de
te

rm
in

ab
le

In
de

te
rm

in
ab

le
ov

er
al

l

N
el

so
n 

et
 a

l. 
20

10
D

M
FT

-I
,M

; D
M

FT
Z

IP
 &

 Z
IN

B
no

t s
ho

w
n

In
de

te
rm

in
ab

le
in

de
te

rm
in

ab
le

ov
er

al
l

B
ro

ad
be

nt
 e

t a
l. 

20
11

D
M

FT
, M

T
Z

IN
B

no
ne

In
de

te
rm

in
ab

le
In

de
te

rm
in

ab
le

ov
er

al
l

C
am

pu
s 

et
 a

l. 
20

11
D

S
Z

IP
te

st
Y

es
L

C
‡‡

L
C

 &
 o

ve
ra

ll

* A
pp

ro
pr

ia
te

ne
ss

 o
f 

in
te

rp
re

ta
tio

n 
ca

nn
ot

 b
e 

as
ce

rt
ai

ne
d 

fo
r 

m
od

el
 w

ith
 in

de
te

rm
in

at
e 

sp
ec

if
ic

at
io

n;
 w

he
n 

th
e 

ex
ce

ss
 z

er
os

 m
od

el
 p

ar
t d

oe
s 

no
t c

on
ta

in
 c

ov
ar

ia
te

s,
 in

te
rp

re
ta

tio
ns

 o
f 

co
ef

fi
ci

en
ts

 in
 th

e
Po

is
so

n 
or

 n
eg

at
iv

e 
bi

no
m

ia
l p

ro
ce

ss
 a

s 
ov

er
al

l e
ff

ec
ts

 (
i.e

., 
L

am
be

rt
 1

99
2 

an
d 

A
lb

er
t e

t a
l. 

20
11

) 
ar

e 
ap

pr
op

ri
at

e.

**
G

oo
dn

es
s-

of
-f

it 
cl

as
si

fi
ca

tio
ns

 a
re

: “
te

st
” 

if
 s

ta
tis

tic
al

 te
st

(s
) 

or
 in

fo
rm

at
io

n 
cr

ite
ri

on
 (

A
IC

, B
IC

, e
tc

) 
re

po
rt

ed
; “

gr
ap

h”
 if

 g
ra

ph
ic

al
 d

is
pl

ay
(s

) 
of

 f
itt

ed
 v

al
ue

s 
w

ith
 o

bs
er

ve
d 

fr
eq

ue
nc

ie
s 

pr
ov

id
ed

; “
no

t
sh

ow
n”

 if
 a

rt
ic

le
 c

la
im

ed
 to

 h
av

e 
as

se
ss

ed
 g

oo
dn

es
s-

of
-f

it 
bu

t d
id

 n
ot

 s
ho

w
 r

es
ul

ts
;

“n
on

e”
 if

 a
rt

ic
le

 d
id

 n
ot

 r
ep

or
t a

ss
es

sm
en

t o
f 

m
od

el
 f

it 
fo

r 
th

e 
da

ta
.

† T
he

 ta
bl

e 
en

tr
y 

is
 ‘

in
de

te
rm

in
ab

le
’ 

if
 c

ov
ar

ia
te

 e
ff

ec
t e

st
im

at
es

 f
or

 e
xc

es
s 

ze
ro

s 
ar

e 
no

t r
ep

or
te

d,
 a

nd
 th

er
e 

is
 n

o 
ex

pl
ic

it 
in

di
ca

tio
n 

as
 to

 w
he

th
er

 c
ov

ar
ia

te
s 

ar
e 

in
cl

ud
ed

 in
 th

e 
ze

ro
-i

nf
la

tio
n 

pa
rt

 o
f 

th
e

m
od

el
.

‡ N
um

er
ic

al
 r

es
ul

ts
 (

e.
g.

, e
st

im
at

es
 o

f 
re

gr
es

si
on

 c
oe

ff
ic

ie
nt

s,
 o

dd
s 

ra
tio

, i
nc

id
en

t r
at

e 
ra

tio
s 

or
 p

er
ce

nt
 m

ea
n 

ch
an

ge
) 

pr
es

en
te

d 
by

 th
e 

ar
tic

le
 a

nd
 th

e 
in

te
rp

re
ta

tio
ns

 m
ad

e 
fo

r 
th

em
 c

or
re

sp
on

d 
to

 e
ith

er
ov

er
al

l e
xp

os
ur

e 
ef

fe
ct

s,
 h

ur
dl

e 
m

od
el

 e
ff

ec
ts

, o
r 

Z
I 

m
od

el
 la

te
nt

 c
la

ss
 (

L
C

) 
ef

fe
ct

s.

††
 1

u  
an

d 
2u

 te
et

h.

Caries Res. Author manuscript; available in PMC 2012 August 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Preisser et al. Page 17
††

† in
ci

de
nc

e 
of

 n
on

ca
vi

ta
te

d 
ca

ri
ou

s 
to

ot
h 

su
rf

ac
es

 in
 p

ri
m

ar
y 

de
nt

iti
on

.

‡‡
C

oe
ff

ic
ie

nt
 e

st
im

at
es

 f
or

 th
e 

ex
tr

a 
ze

ro
s 

pa
rt

 o
f 

th
e 

Z
IP

 m
od

el
 a

re
 n

ot
 g

iv
en

 in
 th

e 
ar

tic
le

.

‡‡
‡ Fi

gu
re

s 
1 

an
d 

2 
in

 th
is

 a
rt

ic
le

 d
id

 n
ot

 in
cl

ud
e 

th
e 

co
nt

ri
bu

tio
ns

 o
f 

ex
ce

ss
 z

er
os

 to
 th

e 
Z

IP
 a

nd
 Z

IN
B

 f
itt

ed
 d

is
tr

ib
ut

io
ns

.

Caries Res. Author manuscript; available in PMC 2012 August 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Preisser et al. Page 18

Ta
bl

e 
2

Se
le

ct
ed

 e
xa

m
pl

es
 o

f 
in

co
rr

ec
t u

se
 o

f 
th

e 
la

ng
ua

ge
 o

f 
pr

ev
al

en
ce

 (
π

) 
w

he
n 

in
te

rp
re

tin
g 

re
su

lts
 f

ro
m

 th
e 

ze
ro

-i
nf

la
te

d 
pa

rt
 o

f 
a 

Z
I 

m
od

el
 a

nd
 m

is
le

ad
in

g
us

e 
of

 th
e 

la
ng

ua
ge

 o
f 

se
ve

ri
ty

 (
ν)

 w
he

n 
in

te
rp

re
tin

g 
re

su
lts

 f
ro

m
 th

e 
Po

is
so

n 
or

 n
eg

at
iv

e 
bi

no
m

ia
l p

ro
ce

ss
 o

f 
a 

Z
I 

m
od

el
.

au
th

or
s 

&
 y

ea
r

E
va

lu
at

io
n 

of
 q

uo
ta

ti
on

qu
ot

at
io

n

L
ew

se
y 

&
 T

ho
m

so
n

20
04

m
is

le
ad

in
g

“T
hu

s,
 5

-y
ea

r-
ol

d 
ch

ild
re

n 
fr

om
 lo

w
-S

E
S 

gr
ou

ps
 h

ad
, o

n 
av

er
ag

e,
 n

ea
rl

y 
fo

ur
 m

or
e 

su
rf

ac
es

 a
ff

ec
te

d 
th

an
 th

ei
r 

hi
gh

-S
E

S 
co

un
te

rp
ar

ts
, a

nd
m

ed
iu

m
-S

E
S 

ch
ild

re
n 

fe
ll 

be
tw

ee
n 

th
os

e 
tw

o 
gr

ou
ps

” 
(p

. 1
87

)

in
co

rr
ec

t
“T

he
 m

od
el

s 
re

ve
al

 s
om

e 
in

te
re

st
in

g 
di

ff
er

en
ce

s 
in

 th
e 

w
ay

 in
 w

hi
ch

 S
E

S 
w

as
 a

ss
oc

ia
te

d 
w

ith
 c

ar
ie

s 
se

ve
ri

ty
 a

nd
 p

re
va

le
nc

e 
in

 th
e 

co
ho

rt
” 

(p
.

18
8)

H
as

hi
m

 e
t a

l. 
20

06
in

co
rr

ec
t

Z
IN

B
 …

 “
al

lo
w

s 
th

e 
si

m
ul

ta
ne

ou
s 

m
od

el
lin

g 
of

 b
ot

h 
th

e 
pr

ev
al

en
ce

 a
nd

 s
ev

er
ity

 o
f 

ca
ri

es
.”

 (
p.

 2
59

)

in
co

rr
ec

t
“C

hi
ld

re
n 

fr
om

 lo
w

-i
nc

om
e 

fa
m

ili
es

 h
ad

 s
ub

st
an

tia
lly

 lo
w

er
 p

ro
ba

bi
lit

y 
of

 b
ei

ng
 c

ar
ie

s-
fr

ee
. (

p.
 2

59
)

m
is

le
ad

in
g

“M
al

es
 h

ad
 h

ig
he

r 
dm

fs
 s

co
re

s 
on

 a
ve

ra
ge

..”
 (

p.
 2

59
, r

ef
er

ri
ng

 to
 T

ab
le

 4
)

A
ro

ra
 e

t a
l. 

20
08

in
co

rr
ec

t
“t

he
 r

el
at

iv
e 

od
ds

 o
f 

ha
vi

ng
 n

o 
de

ca
ye

d 
or

 f
ill

ed
 s

ur
fa

ce
s”

 (
T

ab
le

 2
)

in
co

rr
ec

t*
“a

m
on

g 
ch

ild
re

n 
w

ith
 lo

w
 E

T
S 

ex
po

su
re

, a
n 

IQ
R

 in
cr

em
en

t i
n 

ur
in

e 
ca

dm
iu

m
 (

0.
21

 u
g/

g 
cr

ea
tin

in
e)

 is
 a

ss
oc

ia
te

d 
w

ith
 1

7%
 m

or
e 

af
fe

ct
ed

su
rf

ac
es

 in
 c

hi
ld

re
n 

w
ith

 a
ny

 d
ec

ay
ed

 o
r 

fi
lle

d 
su

rf
ac

es
”.

 (
T

ab
le

 2
)

M
as

er
ej

ia
n 

et
 a

l. 
20

08
in

co
rr

ec
t

“d
es

pi
te

 th
e 

gr
ea

te
r 

od
ds

 o
f 

ha
vi

ng
 a

ny
 p

er
m

an
en

t d
en

tit
io

n 
ca

ri
es

 a
m

on
g 

B
os

to
n 

ch
ild

re
n,

 th
er

e 
w

as
 n

o 
st

at
is

tic
al

ly
 s

ig
ni

fi
ca

nt
 li

ne
ar

 a
ss

oc
ia

tio
n

be
tw

ee
n 

ca
ri

es
 r

at
e 

an
d 

ru
ra

l/u
rb

an
 s

et
tin

g.
” 

(p
. 1

0)

in
co

rr
ec

t
“P

-v
al

ue
s 

w
er

e 
ob

ta
in

ed
 f

ro
m

 th
e 

lo
gi

st
ic

 p
or

tio
n 

of
 th

e 
ze

ro
-i

nf
la

te
d 

m
od

el
 th

at
 r

ep
re

se
nt

s 
th

e 
pr

ob
ab

ili
ty

 o
f 

ha
vi

ng
 n

o 
ca

ri
ou

s 
pe

rm
an

en
t t

ee
th

or
 s

ur
fa

ce
s.

” 
(T

ab
le

 3
)

in
co

rr
ec

t*
“P

-v
al

ue
s 

w
er

e 
ob

ta
in

ed
 f

ro
m

 th
e 

lin
ea

r 
po

rt
io

n 
of

 th
e 

ze
ro

-i
nf

la
te

d 
m

od
el

 th
at

 r
ep

re
se

nt
s 

th
e 

pr
ob

ab
ili

ty
 o

f 
ha

vi
ng

 a
n 

ad
di

tio
na

l c
ar

io
us

 to
ot

h 
or

su
rf

ac
e,

 g
iv

en
 th

at
 th

er
e 

w
er

e 
an

y 
pe

rm
an

en
t d

en
tit

io
n 

ca
ri

es
. (

T
ab

le
 3

)

C
am

pu
s 

et
 a

l. 
20

09
im

pr
ec

is
e

“T
he

 s
oc

io
de

m
og

ra
ph

ic
 p

at
te

rn
 in

 th
e 

pr
ob

ab
ili

ty
 o

f 
be

in
g 

an
 e

xt
ra

 z
er

o 
w

as
 h

ig
hl

y 
in

fl
ue

nc
ed

 b
y 

a 
hi

gh
 e

du
ca

tio
n 

le
ve

l o
f 

th
e 

fa
th

er
, s

ug
ge

st
in

g
th

at
 th

is
 p

ar
am

et
er

 s
ho

ul
d 

af
fe

ct
 c

ar
ie

s 
se

ve
ri

ty
, a

s 
pr

ev
io

us
ly

 r
ep

or
te

d.
” 

(p
. 1

60
)

So
lin

as
 e

t a
l. 

20
09

m
is

le
ad

in
g*

*
“T

he
 a

im
 o

f 
th

is
 p

ap
er

 w
as

 to
 p

re
di

ct
 th

e 
pr

ob
ab

ili
ty

 o
f 

‘c
ar

ie
s-

fr
ee

’ 
su

bj
ec

ts
 a

nd
 th

e 
de

pe
nd

en
ce

 o
f 

dm
fs

 in
de

x 
on

 th
e 

in
fl

ue
nc

e 
of

 c
hi

ld
ho

od
so

ci
od

em
og

ra
ph

ic
 f

ac
to

rs
, t

hr
ou

gh
 th

e 
ap

pl
ic

at
io

n 
of

 r
eg

re
ss

io
n 

m
od

el
s.

” 
(a

bs
tr

ac
t)

T
ra

m
in

i e
t a

l. 
20

09
in

co
rr

ec
t

“T
he

 p
ro

ba
bi

lit
y 

of
 a

 D
M

FT
 e

qu
al

 to
 z

er
o 

w
as

 a
ss

oc
ia

te
d 

w
ith

 a
 lo

w
er

 s
ug

ar
 c

on
su

m
pt

io
n.

” 
(p

. 4
71

)

m
is

le
ad

in
g

“E
xc

ep
t f

or
 th

e 
lo

gi
st

ic
 m

od
el

, w
he

re
 th

e 
ou

tc
om

e 
va

ri
ab

le
 w

as
 d

ic
ho

to
m

iz
ed

, t
he

 o
th

er
 m

od
el

s 
[P

oi
ss

on
, Z

IP
, Z

IN
B

] 
as

se
ss

ed
 th

e 
as

so
ci

at
io

n 
of

in
de

pe
nd

en
t v

ar
ia

bl
es

 w
ith

 d
is

ea
se

 s
ev

er
ity

. (
p.

 4
69

–7
0)

C
am

pu
s 

et
 a

l. 
20

11
m

is
le

ad
in

g
“T

he
 z

er
o-

in
fl

at
ed

 r
eg

re
ss

io
n 

m
od

el
 s

ho
w

ed
 th

at
 c

ar
ie

s 
se

ve
ri

ty
 w

as
 s

ig
ni

fi
ca

nt
ly

 a
ss

oc
ia

te
d 

w
ith

 s
m

ok
in

g…
” 

(a
bs

tr
ac

t)

m
is

le
ad

in
g

“C
ar

ie
s 

se
ve

ri
ty

 w
as

 s
ig

ni
fi

ca
nt

ly
 a

ss
oc

ia
te

d 
w

ith
 s

m
ok

in
g 

>
 3

 y
ea

rs
 (

p=
0.

02
),

 d
en

ta
l c

he
ck

-u
p…

” 
(p

. 4
3)

im
pr

ec
is

e
“S

m
ok

in
g 

ha
bi

t p
at

te
rn

 (
he

av
y 

sm
ok

er
s)

, s
el

f-
sa

tis
fa

ct
io

n 
w

ith
 te

et
h 

an
d 

gu
m

s,
 f

re
qu

en
cy

 o
f 

de
nt

al
 c

he
ck

-u
p 

an
d 

gi
ng

iv
al

 s
ta

tu
s 

w
er

e 
st

at
is

tic
al

ly
si

gn
if

ic
an

t, 
in

 th
e 

pr
ob

ab
ili

ty
 to

 b
ei

ng
 a

n 
ex

tr
a 

ze
ro

. T
hi

s 
fe

at
ur

e 
sh

ow
s 

a 
re

fl
ec

tio
n 

of
 th

e 
hi

gh
er

 c
ar

ie
s 

pr
ev

al
en

ce
 in

 s
ub

je
ct

s 
w

ith
 h

ea
vy

sm
ok

in
g 

ha
bi

ts
.”

 (
p.

 4
5)

* In
co

rr
ec

t h
ur

dl
e 

m
od

el
 in

te
rp

re
ta

tio
n.

**
T

hi
s 

st
at

em
en

t i
s 

te
ch

ni
ca

lly
 c

or
re

ct
 if

 th
e 

re
ad

er
 u

nd
er

st
an

ds
 th

at
 ‘

ca
ri

es
-f

re
e’

 (
w

ith
 q

uo
ta

tio
ns

) 
m

ea
ns

 e
xc

es
s-

ze
ro

 a
nd

 N
O

T
 b

ei
ng

 w
ith

ou
t c

ar
ie

s.

Caries Res. Author manuscript; available in PMC 2012 August 21.


