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Aims Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C)
gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not
detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system
(UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin
ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1)
mediate degradation of truncated cMyBP-C.

Methods
and results

Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-
immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was
identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac
myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was
rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced
the protein level of WT- and M7t-cMyBP-C by .60%, but also the level of myosin heavy chains (MHCs) by
.40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC
mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing
(TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in
MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels.

Conclusion These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal
degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.
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Keywords E3 ubiquitin ligase † Sarcomere † Myosin-binding protein C † MuRF1 † Atrogin-1

1. Introduction
Familial hypertrophic cardiomyopathy (FHC) is an autosomal-
dominant disease characterized by left ventricular (LV) hypertro-
phy and myocardial disarray.1,2 It is often referred to as a sarco-
meropathy since it is associated with mutations in at least 13
genes encoding sarcomeric proteins (reviewed in Richard et al.2).

Gene modifiers also contribute to the phenotype.3,4 One of the
most frequently mutated FHC genes is MYBPC3 encoding cardiac
myosin-binding protein C (cMyBP-C).5 cMyBP-C is a major com-
ponent of the A-band of the sarcomere and interacts with
myosin, actin, and titin (for review, see Carrier6). It contains
immunoglobulin- and fibronectin-like domains and it contains at
least three phosphorylation sites in the MyBP-C motif. Most of
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the MYBPC3 mutations are frameshift and should produce C-
terminal truncated proteins.5,7,8 However, in myocardial tissue of
FHC patients, there was no trace of the truncated proteins.9 –12

Previous data have shown that truncated cMyBP-Cs and an
E344K cMyBP-C are rapidly and quantitatively degraded by the
ubiquitin-proteasome system (UPS) after gene transfer in neonatal
rat cardiac myocytes (NRCM), HeLa, or COS cells.13– 15

The UPS is the major degradation system of damaged,
misfolded, or mutated proteins in eukaryotic cells (for review,
see Ciechanover16). The signal for protein degradation is the
covalent attachment of ubiquitin, a small 76-amino acid protein,
to the target protein, which is then degraded by the 26S protea-
some complex. Polyubiquitination involves the concerted action
of three enzymes: E1 (ubiquitin-activating enzyme), E2 (ubiquitin-
conjugating enzyme), and E3 (ubiquitin ligase), the latter affording
substrate specificity. Several muscle-specific E3 ubiquitin ligases
have been identified (for review, see Mearini et al.17). Among
them, atrogin-1/MAFbx and the muscle ring finger proteins
(MuRFs) are of particular interest since they are located in the sar-
comere. Whereas MuRF1 is mainly located in the M-band but also
at the Z-band, atrogin-1 and MuRF3 are restricted to the
Z-band.18 –22 MuRF1 has also been observed in nuclei.20 The
expression of atrogin-1 and MuRF1 is up-regulated in skeletal
muscle atrophy23– 26 and in experimental heart failure,27,28 but
down-regulated in unloading-induced cardiac atrophy in rat.28

Although atrogin-1 targets calcineurin A for proteasomal degra-
dation,22 MuRF1 degrades cardiac troponin I, myosin heavy chain
(MHC), and muscle creatine kinase.29– 32 Recent data suggest
that MuRF1 may also inhibit protein translation.33 Both atrogin-1
and MuRF1 blunt the development of cardiac hypertrophy in
mice and/or in NRCM.22,34,35

In the present study, we investigated whether the E3 ubiquitin
ligases atrogin-1 or MuRF1 regulate the level of wild-type (WT)
or truncated cMyBP-C (M7t), which results from a human FHC
mutation and has been shown to be degraded by the UPS in
NRCM.14 To address this question, adenoviral gene transfer in
NRCM and mice deficient in MuRF1 (MuRF1-KO) or overexpres-
sing MuRF1 (MuRF1-TG) were investigated. We show that
atrogin-1 and MuRF1 regulate the level of WT and/or
M7t-truncated cMyBP-C via different mechanisms.

2. Methods
An expanded material and methods section is given in the Supplemen-
tary material online.

All experiments involving animals were conform to the Guide for
the Care and Use of Laboratory Animals published by the National
Institute of Health (NIH) (Publication No. 85-23, revised 1985) and
were approved by the University of North Carolina Institutional
Animal Care Advisory Committee and the Regierungspräsidium
Tübingen, Germany.

2.1 MuRF1-KO and MuRF1-TG mice
MuRF1-KO and MuRF1-TG mice have been described previously.33,36

LV mass index was calculated from echocardiography measurements
performed with a Vevo 660 ultrasound system (VisualSonics Inc.)
equipped with a 30 MHz transducer as described previously.35

2.2 Generation of recombinant adenoviruses
Each adenovirus was constructed in the same way and encodes the
protein of interest plus the EGFP in a bicistronic manner under the
control of independent CMV promoters (Figure 1A). The adenovirus
encoding myc-tagged human full-length cMyBP-C (myc-WT-cMyBP-
C), human C-terminal truncated cMyBP-C (myc-M7t-cMyBP-C), and
mouse MuRF1 (myc-MuRF1) were generated previously.14,37 The ade-
novirus encoding 6-myc-tagged mouse atrogin-1 (myc6-atrogin-1) was
constructed with the Ad-Easy system.38 In brief, mouse atrogin-1
cDNA24 was PCR-amplified and subcloned into BglII and XbaI sites
of pAdTrack-CMV. The pAdTrack vector bearing atrogin-1 was elec-
troporated into Escherichia coli BJ5183-AD-1 (Stratagene) to produce
adenoviral DNA through recombination. This DNA was transfected
into 293A cells and viral plaques expressing atrogin-1 were selected
and amplified in 293A cells using standard adenoviral techniques.

2.3 Immunofluorescence analysis
NRCM were fixed and proceeded for immunofluorescence as described
previously.39,40 See Supplementary material online for details.

2.4 Western blot analysis
Total cardiac proteins were extracted from mouse ventricles or from
myocyte lysates as described previously.40,41 See Supplementary
material online for details.

2.5 Chymotrypsin-like activity assay
The chymotrypsin-like activity of the proteasome was assessed in ventri-
cular cytosolic lysates using the synthetic peptide substrate SLLVY linked
to the fluorogenic reporter aminomethylcoumarin (Calbiochem) as
described previously.42 See Supplementary material online for details.

2.6 Statistical analysis
Data are expressed as mean+ SEM. Statistical analyses were per-
formed using the unpaired Student’s t-test with the commercial soft-
ware GraphPad Prism4. A value of P , 0.05 was considered
statistically significant.

3. Results

3.1 Atrogin-1 specifically targets
truncated M7t-cMyBP-C for proteasomal
degradation in cardiac myocytes
We previously showed that myc-M7t-truncated cMyBP-C is rapidly
degraded by the UPS after gene transfer in NRCM.14 Treatment of
myc-M7t-infected NRCM with different proteasome inhibitors
stabilized myc-M7t levels and revealed higher MW myc-positive
bands (Figure 1B), suggesting polyubiquitination and degradation
of myc-M7t by the UPS. The localization of exogenous proteins
was determined by immunofluorescence (Figure 1C). Myc-WT-
cMyBP-C was incorporated into the A-band of the sarcomere as
shown by the alternation of myc and Z-band-titin stainings
(Figure 1C). In contrast, myc-M7t-cMyBP-C, which lacks the
myosin-interacting domains (Figure 1A), was located in the
Z-band of the sarcomere as shown by the co-localization of
myc and Z-band-titin stainings, and also formed some aggregates
(Figure 1C). Atrogin-1 was localized in both the nucleus and the
Z-band of the sarcomere, where it showed alternation with
cMyBP-C. The localization of both myc-M7t and atrogin-1 at the

G. Mearini et al.358

http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1


Figure 1 (A) Schematic representation of the adenovirus vectors containing the cDNA of interest and EGFP cDNA under the control of
distinct CMV promoters, and schematic structure of the proteins encoded by the adenovirus: human full-length cMyBP-C (myc-WT-cMyBP-C),
human C-terminally truncated cMyBP-C (myc-M7t-cMyBP-C), mouse atrogin-1 (myc6-atrogin-1), and mouse MuRF1 (myc-MuRF1). The
absence of exon 6 in myc-M7t-cMyBP-C results in a frameshift, loss of the terminal 1055 residues including the MyBP-C motif (PPP), and
additional 41 novel amino acids (black box). (B) Effect of proteasome inhibitors on the expression of myc-M7t in NRCM. NRCM were infected
with myc-M7t adenovirus in the absence (Ctr) or presence of the proteasome inhibitors MG132 (132; 1 mM), MG262 (262; 100 nM), or epox-
omicin (epo; 500 nM) for 24 h. Western blot (right panel) was stained with the anti-myc antibody and left panel shows the corresponding
Ponceau. (C) Immunofluorescence staining and confocal microscopy of NRCM 24 h after infection with adenovirus. Myocytes were double-
stained with an anti-myc antibody (green) and with the anti-titin (Z1 domain, red) or anti-cMyBP-C antibody (C0C1 domains; red). Arrowheads
show aggregates.
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Z-band suggests that atrogin-1 could interact with M7t-cMyBP-C
and mediate M7t-cMyBP-C degradation by the UPS.

To determine whether atrogin-1 interacts with M7t-cMyBP-C,
NRCM were co-infected with adenovirus encoding atrogin-1 and
M7t- or WT-cMyBP-C in the presence of the proteasome inhibitor
MG132, in order to stabilize the amount of protein. Atrogin-1 was
efficiently precipitated with the anti-atrogin-1 antibody, and both
myc-WT- and myc-M7t-cMyBP-C were co-immunoprecipitated
(Figure 2A), suggesting physical interaction between atrogin-1 and
cMyBP-C.

We then analysed whether atrogin-1 affects the levels of M7t-
and WT-cMyBP-C after infection in NRCM. Treatment with
MG132 increased the amount of ubiquitinated proteins in both
Ad-M7t- and Ad-WT-infected cells, with or without Ad-atrogin-1,
validating the inhibition of the proteasome (Figure 2B). In addition,
MG132 significantly increased the amount of both M7t-cMyBP-C
and atrogin-1, but not of WT-cMyBP-C. Strikingly, the level of
M7t-cMyBP-C was 80% lower with atrogin-1 than without
(compare lanes 1 and 3), and this was prevented by proteasome
inhibition (Figure 2B and C ). In contrast to M7t, the level of

Figure 2 Effect of atrogin-1 on the levels of WT/M7t-cMyBP-C after gene transfer in NRCM. NRCM were co-infected with myc6-atrogin-1
and with either myc-M7t-cMyBP-C or myc-WT-cMyBP-C in the presence or absence of 1 mM MG132 for 24 h. (A) Immunoprecipitation (IP) of
the NRCM lysates treated with MG132 was performed with 0.8 mg anti-atrogin-1 antibody (þ) or without antibody (2), and western blot
(WB) was revealed with anti-atrogin-1 and anti-myc antibodies. P0 and SN correspond to the crude fraction and the supernatant after IP.
(B) Western blot of cell lysates (20 mg) was stained with the anti-ubiquitin antibody that recognizes a smear of ubiquitinated proteins
(between 50 and 250 kDa), the anti-myc antibody for detection of exogenous myc-M7t-cMyBP-C (32 kDa), myc-WT-cMyBP-C (150 kDa),
and myc6-atrogin-1 (52 kDa), and the anti-GFP antibody for loading control (GFP, 29 kDa). (C) Quantification of M7t and WT-cMyBP-C
levels normalized to Ponceau in the absence (upper bars) or presence (lower bars) of MG132. Values are expressed as mean+ SEM.
***P , 0.001 vs. absence of atrogin-1, Student’s t-test. The number of experiments is indicated in the bars.
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WT-cMyBP-C was not altered with atrogin-1. GFP levels did not
significantly differ in all conditions. The mRNA levels of WT- and
M7t-cMyBP-C were not affected by atrogin-1 (see Supplementary
material online, Figure S1A). These data suggest that truncated M7t
and atrogin-1 are degraded by the UPS and that atrogin-1 targets
M7t-cMyBP-C, but not WT-cMyBP-C for proteasome-mediated
degradation.

3.2 MuRF1 indirectly reduces exogenous
cMyBP-C levels in cardiac myocytes
Since WT-cMyBP-C is located in the A-band of the sarcomere and
therefore around MuRF1, mainly located in the M-band of the sar-
comere,20 we then investigated whether MuRF1 regulates the level
of WT-cMyBP-C.

Immunoprecipitation with the anti-MuRF1 antibody did not
work under our experimental conditions, we thus evaluated
whether MuRF1 interacts with cMyBP-C by yeast two-hybrid
screens, using an MuRF1 cDNA as a bait to screen an adult
heart cDNA library. A total of four interacting clones identified
cMyBP-C by sequencing (data not shown). The region of overlap
between the different prey clones was found in the C7–C10
domains of cMyBP-C (Figure 3A). This suggests that MuRF1 can
regulate the level of WT-cMyBP-C, but likely not of truncated
M7t, which does not contain domains C7–C10 (Figure 1A).

We then investigated whether MuRF1 regulates the level of
cMyBP-C after infection of NRCM with adenovirus encoding
MuRF1 and WT- or M7t-cMyBP-C in the presence or absence
of MG132 (Figure 3B and C ). The protein levels of M7t- and
WT-cMyBP-C were 86 and 66% lower with MuRF1 than
without, respectively (Figure 3B and C ). Of note, however, the
effect of MuRF1 on the level of both cMyBP-C isoforms was not
prevented by proteasome inhibition. Unexpectedly, MuRF1
reduced by .80% the mRNA levels of exogenous M7t- and
WT-cMyBP-C (see Supplementary material online, Figure S1B),
but not the level of endogenous GAPDH and cMyBP-C (data
not shown). MG132 markedly increased the steady-state levels
of ubiquitinated proteins in the absence of MuRF1, but only slightly
in the presence of MuRF1 (see Supplementary material online,
Figure S2). GFP levels did not significantly differ in any condition.
We then investigated whether MuRF1 could affect the expression
of MHC, which has been shown to be degraded by MuRF1.32,43

Surprisingly, the mRNA levels of a-MHC and b-MHC were mark-
edly lower in the presence of MuRF1 and were associated with
lower MHC protein amount (see Supplementary material online,
Figure S3). These data suggest that MuRF1 (i) does not directly
target exogenous cMyBP-C for proteasomal degradation and (ii)
regulates the transcription of MHC. The strong transcriptional
regulation by MuRF1 could explain the absence (or minor) effect
of MG132 on the accumulation of MHC, cMyBP-C, and ubiquiti-
nated proteins.

3.3 MuRF1 indirectly regulates the level
of cMyBP-C in mice
To investigate whether MuRF1 regulates the level of cMyBP-C in
the whole animal, we used an MuRF1-KO mouse and an
MuRF1-TG mouse that overexpress MuRF1.33,36 MuRF1-KO

mice were created by homologous recombination and insertion
of a Neo cassette in exon 2 (see Supplementary material online,
Figure S4A).33 The genotype of the animals was determined by
PCR on genomic tail DNA with primers located around the Neo
cassette (see Supplementary material online, Figure S4B). The
absence of MuRF1 in the KO was confirmed by nonsense
mRNA amplified by RT–PCR with primers located in exons 1
and 3 and by western blot analysis with an antibody directed
against the C-terminal part of MuRF1 (see Supplementary material
online, Figure S4C). MuRF1-KO mice appeared normal in all aspects
and were viable. The heart-weight-to-body-weight ratio did not
differ in 24-week-old KO and WT mice (see Supplementary
material online, Figure S4D). MuRF1-TG mice were created by
overexpression of the mouse MuRF1 cDNA under control of
the a-MHC promoter (see Supplementary material online, Figure
S4E).36 Overexpression of MuRF1 was confirmed by real-time
RT–qPCR and western blot analysis (see Supplementary material
online, Figure S4F and G). The LV mass-to-body-weight did
not differ in 8- to 12-week-old MuRF1-TG and WT mice (see
Supplementary material online, Figure S4H).

We then investigated whether the absence or overexpression of
MuRF1 results in alterations of the UPS in general and of cMyBP-C
levels in particular. The absence of MuRF1 did not affect the
steady-state levels of ubiquitinated proteins (Figure 4A) or the
chymotrypsin-like activity of the proteasome (Figure 4B) compared
with WT. It was also not associated with a compensatory increase
in MuRF2, MuRF3, and atrogin-1 mRNAs (Figure 4C). In MuRF1-TG
mice, the steady-state levels of ubiquitinated proteins were slightly
higher than in WT (Figure 5A), and the chymotrypsin-like activity of
the proteasome (Figure 5B) and mRNA levels of MuRF2, MuRF3
and atrogin-1 were unaltered (Figure 5C).

Importantly, the protein level of cMyBP-C was 29% higher in
MuRF1-KO (Figure 6A) and 34% lower in MuRF1-TG (Figure 6B)
than in WT littermates. This difference was even more pro-
nounced in neonatal mice, where cMyBP-C levels were 150%
higher in MURF1-KO than in WT (see Supplementary material
online, Figure S5). Similar levels of cMyBP-C mRNA were found
in MuRF1-KO or MuRF1-TG compared with respective WT litter-
mates (Figure 6C), suggesting a post-transcriptional regulation of
the expression of cMyBP-C by MuRF1 in vivo. Similar to NRCM,
MuRF1 overexpression in transgenic mice resulted in .35%
lower levels of MHC (mainly a-MHC) mRNAs and proteins (see
Supplementary material online, Figure S6). This supports the view
that MuRF1 may target an MHC-specific transcription factor. In
contrast to MHC, the protein levels of cTnI, also known to be
degraded by MuRF1,29 were not affected in MuRF1-KO or
MuRF1-TG mice (see Supplementary material online, Figure S7).

4. Discussion
We have previously shown that a truncated form of cMyBP-C
resulting from a human MYBPC3 mutation (M7t-cMyBP-C) is
rapidly and quantitatively degraded by the UPS after gene transfer
in cardiac myocytes.14 Since the diversity and specificity of the UPS
regulation lie in the E3 ubiquitin ligases, we reasoned that identify-
ing the E3 ubiquitin ligases involved in the degradation of cMyBP-C
would represent an important first step to unravel the mechanisms

Atrogin-1 and MuRF1 differently regulate cMyBP-C 361

http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1
http://cardiovascres.oxfordjournals.org/cgi/content/full/cvp348/DC1


of the UPS-mediated regulation of cMyBP-C. We examined
whether the E3 ubiquitin ligases atrogin-1 and MuRF1 affect the
level of M7t-cMyBP-C and also WT-cMyBP-C. The major findings
of the present study were: (i) atrogin-1 interacted with both
cMyBP-C isoforms and targeted truncated M7t-, but not
WT-cMyBP-C for UPS-mediated degradation in infected NRCM,
(ii) two-hybrid screens identified cMyBP-C as an interacting
partner of MuRF1, (iii) MuRF1 overexpression decreased the
protein and mRNA levels of both WT- and M7t-cMyBP-C in
NRCM, (iv) the absence of MuRF1 was associated with higher

cMyBP-C levels in mice, and (v) overexpression of MuRF1 with
lower cMyBP-C levels in mice. Our data also provide evidence
that MuRF1 regulates the transcription of MHC both in cardiac
myocytes and in mice.

The E3 ubiquitin ligases are directly or indirectly involved in the
transfer of ubiquitin moieties to the proteins, which will be further
degraded by the 26S proteasome (for review see Mearini et al.17).
Co-expression of an E3 ubiquitin ligase and its target was expected
to result in degradation of the target by the proteasome. Among
several known muscle-specific E3 ubiquitin ligases, we focussed

Figure 3 Effect of MuRF1 on the levels of WT/M7t-cMyBP-C after gene transfer in NRCM. (A) Localization of the region of overlap in the
four cMyBP-C prey clones identified by yeast two-hybrid screens with MuRF1 bait. (B) NRCM were co-infected with myc-MuRF1 and with
either myc-M7t-cMyBP-C or myc-WT-cMyBP-C in the presence or absence of 1 mM MG132 for 24 h. Western blot of cell lysates (15 mg)
stained with the anti-ubiquitin antibody, the anti-myc antibody for detection of exogenous myc-M7t-cMyBP-C (32 kDa), myc-WT-cMyBP-C
(150 kDa), and myc-MuRF1 (44 kDa), and the anti-GFP antibody for loading control (GFP, 29 kDa). (C) Quantification of M7t- and
WT-cMyBP-C levels normalized to Ponceau in the absence (upper bars) or presence (lower bars) of MG132. Values are expressed as
mean+ SEM. ***P , 0.001 vs. absence of MuRF1, Student’s t-test. The number of experiments is indicated in the bars.
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on atrogin-1 and MuRF1,19,24 both being located in the sarco-
mere.20 Our data support the view that atrogin-1 is an E3 ubiquitin
ligase for M7-cMyBP-C. First, atrogin-1 and M7t-cMyBP-C are both
located in the Z-band of the sarcomere. Thus, the principal prere-
quisite for interaction is given. Secondly, co-immunoprecipitation
assays identified M7t as an interaction partner of atrogin-1.
Thirdly, atrogin-1 reduced the level of M7t protein, but not of
M7t mRNA, and proteasome inhibition prevented this effect
after gene transfer in cells. The effect of overexpressed atrogin-1
appeared to be restricted to the truncated M7t mutant. The lack
of effect of atrogin-1 on WT-MyBP-C is apparently not due to
an inability to physically interact under the conditions of adenoviral
overexpression, but rather the consequence of different localiz-
ations in the sarcomere making a direct interaction under
normal conditions unlikely. Thus, co-immunoprecipitation of
WT-cMyBP-C with atrogin does not prove de facto interaction in
living cells.

In contrast to atrogin-1, MuRF1 reduced the levels of both WT-
and M7t-cMyBP-C in infected cells and of endogenous cMyBP-C in
the whole animal. Although this may suggest that MuRF1 is an E3
ubiquitin ligase for cMyBP-C, several results presented in this study

do not support this view. First, the yeast two-hybrid screens ident-
ified the C7–C10 domains of cMyBP-C as an MuRF1-interacting
region, but these domains are not present in M7t being down-
regulated similar to WT-cMyBP-C. Secondly, proteasome inhi-
bition did not rescue the effect of MuRF1 on WT- and
M7t-cMyBP-C levels in infected cells, in contrast to the results
obtained with atrogin-1. Thirdly, mRNA levels of exogenous
cMyBP-C were lower in the MuRF1-overexpressing myocytes. If
MuRF1 is not a major E3 ubiquitin ligase for cMyBP-C, by which
mechanisms does it regulate cMyBP-C? MuRF1 can affect gene
expression via interaction with transcriptional modulators such
as GMEB-1.20 This is supported by recent data showing that
up-regulation of MuRF1 during muscle atrophy not only reduced
the protein levels, but also the mRNA levels of MyBP-C.44

However, our data argue against transcriptional regulation of
cMyBP-C by MuRF1, because it did not affect endogenous
cMyBP-C mRNA levels neither in NRCM nor in transgenic mice,
but only reduced exogenous cMyBP-C mRNAs derived from
cDNAs in infected NRCM. MuRF1 could thus indirectly inhibit
protein translation by down-regulating factors involved in trans-
lation initiation or elongation such as shown for INT-6.33 An

Figure 4 Investigation of the UPS in MuRF1-KO mice. (A) Representative western blot stained with the anti-ubiquitin antibody, corresponding
Ponceau and steady-state level of ubiquitinated proteins (normalized to Ponceau) in ventricular tissue of 24-week-old WT and MuRF1-KO mice.
(B) Chymotrypsin-like activity of the proteasome in WT and KO ventricular tissue. (C) mRNA levels of MuRF2, MuRF3, and atrogin-1 deter-
mined by RT–qPCR with specific Taqman probes and normalized to GAPDH. Bars represent the mean+ SEM. The number of animals is indi-
cated in the bars.
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alternative mechanism could be that MuRF1 indirectly reduces the
protein level of cMyBP-C by regulating the transcription of MHC.
Indeed, the levels of MHC mRNAs were markedly lower in
MuRF1-overexpressing cells or mice, suggesting that MuRF1
degrades an MHC-specific transcription factor. Knowing that the
stoichiometry of the sarcomere proteins is tightly regulated by
co-translational and co-assembly mechanisms, lower level of
MHC is likely associated with lower amount of cMyBP-C and
vice versa. We therefore propose that the unexpected lower
level of exogenous cMyBP-C mRNAs in MuRF1-infected NRCM
is secondary to the lower transcription of MHC, in order to main-
tain the stoichiometry of the thick filament’s proteins.

Under the in vivo conditions in mice, loss or surplus of MuRF1 was
not associated by changes in other MuRFs or global chymotrypsin-

like activity, suggesting that MuRF1 does not markedly affect the
global UPS function, but rather specifically the turnover of a few
specific substrates. In contrast to previous data obtained after gene
transfer in cells,29 but in agreement with other in vivo data,36,45

cTnI was not regulated by MuRF1 in mice, suggesting that cTnI is
not a major target for MuRF1. Finally, we show that MG132
increased the level of atrogin-1 in NRCM, indicating that the E3
ligase atrogin-1 itself is a target for UPS-mediated degradation. Inter-
estingly, the level of atrogin-1 was 42% lower in MuRF1-TG than in
WT littermates (see Supplementary material online, Figure S8)
without change in the mRNA levels, suggesting that MuRF1 could
also target atrogin-1 for UPS-mediated degradation.

MuRF1 deletion or overexpression in mice did not alter the
degree of LV hypertrophy but recent findings showed dilated

Figure 5 Investigation of the UPS in MuRF1-TG mice. (A) Representative western blot stained with the anti-ubiquitin antibody, corresponding
Ponceau and steady-state level of ubiquitinated proteins (normalized to Ponceau) in ventricular tissue from 8- to 12-week-old WT and
MuRF1-TG mice. (B) Chymotrypsin-like activity of the proteasome in WT and TG ventricular tissue. (C) mRNA levels of MuRF2, MuRF3,
and atrogin-1 determined by RT–qPCR with specific Taqman probes and normalized to GAPDH. Bars represent the mean+ SEM.
*P , 0.05 vs. WT, Student’s t-test. The number of animals is indicated in the bars.
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cardiomyopathy with reduced myocyte cross-sectional area in
MuRF1-TG mice.36 The reduced level of both MHC and
cMyBP-C could contribute to this phenotype. Similar to our
data, previous experiments with another MuRF1-KO mouse
model showed no basal phenotype either, but increased sensitivity
to TAC-induced cardiac hypertrophy,46 suggesting that the defect
becomes apparent only after induction of cardiac stress.

In conclusion, our data suggest that MuRF1 plays an indirect role
in the regulation of the expression of cMyBP-C, probably by target-
ing a transcription factor specific for MHC. Moreover, the present
data suggest that atrogin-1 specifically acts as an E3 ubiquitin ligase
for truncated M7t-cMyBP-C, resulting from a human MYBPC3
mutation. Further analyses are needed to investigate whether
atrogin-1 is critical for the removal of truncated cMyBP-C
mutants in mice and to which extent this process may contribute
to the pathophysiology of FHC.

Supplementary material
Supplementary material is available at Cardiovascular Research
online.
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