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Abstract

Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and 

negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop 

plays an important role in tumor progression and thus, increased understanding of the pathway has 

the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) 

has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current 

treatment for HCC is less effective than those used against other cancers. We review the current 

studies of the MDM2-p53 pathway in cancer with a focus on HCC, and specifically discuss the 

impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. 

We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in 

malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 

pathway.
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Introduction

The increase in cancer burden in the world, from 12.7 million new cases in 2008 to a 

predicted 22.2 million by 2030 (1), makes cancer a critical global problem. Of all human 

cancers, hepatocellular carcinoma (HCC) is the 5th most frequently diagnosed cancer 

worldwide and is the 3rd leading cause of cancer death globally (2). HCC is commonly 

correlated with viral infection (hepatitis B and C), alcohol consumption, and aflatoxin B1 

exposure. Moreover, HCC is often accompanied by cirrhosis and hepatic insufficiency, 

which makes the treatment of HCC more difficult than for many other forms of cancer. 

Currently, surgical resection is the most commonly practiced therapy for HCC.

p53 acts as a tumor suppressor by initiating cell cycle arrest, apoptosis, and senescence in 

response to cellular stress to maintain the integrity of the genome. 50% of overall human 

tumors carry mutant p53, and many p53 mutants facilitate oncogenic functions such as 

increased proliferation, survival, and metastasis or exert a dominant-negative regulation over 

remaining wild-type (WT) p53 (3). p53 is primarily regulated by the E3 ubiquitin ligase 

MDM2 (Murine Double Minute 2; usually denoted as Mdm2 in mice and HDM2 in humans; 

MDM2 is used hereafter for simplicity). MDM2 binds p53 at its transactivation domain 

blocking p53 mediated transcriptional regulation, while simultaneously promoting its 

polyubiquitination and proteasome dependent degradation. Interestingly, p53 enhances 

MDM2 transcription through p53 specific response elements in the promoter region of 

MDM2, thus forming an auto-regulatory feedback loop, which is critical to control the 

balance of p53 and MDM2 (Figure 1). Inhibition of MDM2-p53 binding could reactivate 

p53 in cancer cells with WT p53 and may offer an effective therapeutic approach for 

millions of cancer patients (4). Furthermore, the top two risk factors of HCC are metabolic 

disease (such as fatty liver) and viral infection (such as hepatitis B and C), both of which 

cause cirrhosis prior to HCC (5,6). As one of the hallmarks of cancer (7), the changes 

observed in cancer cell metabolism and bioenergetics are current hotspots in cancer research 

(8), and the ability of p53 to regulate metabolism has also been attracting more attention 

over recent years (9). Therefore, the connection between p53 stress response and the 

disordered metabolic process leading to HCC, as the liver is the primary metabolic organ, is 

a potential avenue for development of targeted therapies against HCC. In this review we 

focus on the role of the MDM2-p53 pathway in HCC, but the basic principles discussed here 

can also be applied to other forms of cancer.

p53 misregulation in hepatocellular carcinoma

p53-mediated apoptosis depends primarily on death stimuli that target the mitochondria 

either directly or indirectly through the pro-apoptotic members of the Bcl-2 family such as 

Bax and Bak, which both exhibit reduced expression in HCC with mutated TP53 (10). 

Interestingly, the normal liver is relatively resistant to p53-mediated cell death, and the link 

between apoptosis and the translocation of p53 to the mitochondria following DNA damage 

is rarely observed (11). In cultured HCC cells, p53 activation preferentially triggers cell 

cycle arrest rather than apoptosis, and the mitochondrial dependent p53 program of 

apoptosis is also often blocked in hepatocytes (12). One potential mechanism responsible for 

this change is that p53 activation results in the enhanced expression of hepatic insulin-like 
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growth factor-binding protein-1 (IGFBP1), which antagonizes the mitochondrial p53 

program and inhibits apoptosis (13). It is clear that p53 plays a role in mitotic fidelity and 

DNA ploidy conservation in hepatocytes of both the normal and regenerative liver. In 

quiescent livers, hepatocytes exhibit higher ploidy levels in the absence of p53, and this 

phenotype is further exaggerated when the tissues undergo regeneration after partial 

hepatectomy (14). p53 not only restricts malignant transformation by triggering a cell-

autonomous program of cell-cycle arrest or apoptosis, but it also does so in a non-cell 

autonomous manner through the release of senescence associated secretory phenotype 

(SASP) to inhibit tumorigenesis by promoting a tumor suppressive microenvironment. 

Ablation of the p53-dependent senescence program in hepatic stellate cells under chronic 

liver damage increases liver fibrosis and cirrhosis, which are associated with reduced 

survival; furthermore, loss of p53 enhances the transformation of adjacent epithelial cells 

into hepatocellular carcinoma (15). In conclusion, p53 plays important and unique roles in 

normal liver cells and HCC, and it is important to further explore the alterations and 

mechanisms behind this regulation.

Alterations in the MDM2-p53 pathway in HCC

Alterations in the MDM2-p53 pathway are common in HCC (16–18), and single base 

substitutions in TP53 occur in approximately 25% of HCC suggesting a relevant role for p53 

in HCC (19). Mutations of TP53 in HCC occur primarily in the DNA binding domain of p53 

resulting in a lower affinity to bind the sequence-specific response elements of its target 

genes, which also decreases p53-mediated induction of MDM2. Consequently, the 

misregulation of MDM2 results in elevated levels of mutant p53 in many tumors cells or 

tissues (20). MDM2-p53 regulation in the liver appears to differ from other tissues as it is 

reported that in MDM2 null mice, liver was the only tissue where accumulation of mutant 

p53 R172H was not detected (21). It is unknown why MDM2 null mice do not express 

mutant p53 (p53R172H) in the liver; however, several possible mechanisms could 

contribute to this effect. First, numerous studies including the study by Terzian et al have 

demonstrated that p53 expression levels in the liver are typically much lower than that of 

other tissues. Tissues such as spleen, thymus, bone marrow and small intestine are 

commonly utilized in the study of mouse p53 because of the readily detectable p53 levels. 

Second, the regulation of p53 by MDM2 may be different in liver tissue compared to other 

tissues. For instance, liver is considered a radiation insensitive tissue compared to other 

tissues, in which radiation induces strong p53 response. It has also been theorized that the 

MDM2-p53 feedback loop functions differently in liver tissue than in other tissues, and this 

difference may contribute to the subdued p53 (or p53R172H in this case) accumulation in 

the absence of MDM2. Furthermore, unlike in other tissues p53 appears to be insensitive to 

the high levels of aneuploidy that accumulate in the liver. Such “abnormal” characteristics 

of p53 make the liver a unique tissue in terms of p53 regulation, and further studies of the 

mechanisms behind this tissue specificity are needed to fully understand the complex role of 

mutant p53 in HCC.

Stresses associated with in vitro or in vivo systems may also affect the feedback control of 

the MDM2-p53 loop and its function. In HCC, this loop can be affected at multiple levels 

(22): (1) frequent p53 mutations occur in aflatoxin-induced HCC (>50%); (2) frequent p53 
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mutations occur in 20–40% of HCC not associated with aflatoxin exposure; (3) micro 

deletions of p14ARF (alternative reading frame product of CDKN2A locus, p19Arf in 

mouse) occur in 15–20% of HCC with WT p53 but rarely occur in HCC with mutant p53; 

(4) increased MDM2 expression has been observed in HCC; (5) the vast majority of HCC 

overexpress gankyrin, which inhibits both retinoblastoma protein (Rb)-checkpoint and p53-

checkpoint functions; (6) WT p53 can be inhibited in trans by p53 mutants under conditions 

of high mutant p53 expression (23). Under normal conditions when key sites in MDM2 and 

p53 are not phosphorylated (24,25), an increase in MDM2 expression leads to the direct 

inhibition of p53 transcriptional activity and facilitates tumorigenic cell growth through the 

evasion of cell-cycle checkpoint control. Specific hotspots in MDM2 and p53 are associated 

with environmental carcinogen exposure and the development of HCC. For example, the 

309T>G polymorphism (single-nucleotide polymorphism (SNP) 309, rs2279744), which is 

located in the intronic p53-responsive promoter of the MDM2 gene, has the effect of 

increasing MDM2 protein levels and has been shown to be associated with the early onset of 

HCC in patients with chronic HCV infection (26). Yoon et al. evaluated the association of 

MDM2 and p53 polymorphisms with the early onset of HCC in Korean patients with 

chronic hepatitis B virus (HBV) infection. This study found that not only is the MDM2 SNP 

309, but also the p53 codon 72 R>P polymorphism is associated with the development of 

HCC in Korean patients with chronic HBV infection (27). Somatic mutations of R>S at the 

third base in codon 249 of p53 have also been shown to relate to HBV hepatitis B infection, 

and exposure to aflatoxin B1 (28). These HCC associated alterations provide potential 

targets for earlier detection of multiple cancers, and more specifically, may also help doctors 

to more accurately diagnose HCC patients in the clinic.

Mechanisms of targeting the MDM2-p53 pathway in HCC

The following section addresses the specific mechanisms that are known to facilitate HCC 

development by altering the MDM2-p53 pathway, which may also be applicable to other 

forms of cancer (Figure 2). Our lab has previously shown that p53 can be stabilized by 

disruption of ribosome biogenesis, as several ribosomal proteins (RPs) that bind to MDM2 

are released from the nucleolus when ribosome biogenesis is inhibited (29). In the 

regenerating rat liver after partial hepatectomy, there is also evidence that a down-regulation 

of rRNA synthesis can stabilize p53 through the inactivation of MDM2-mediated p53 

degradation by the binding of RPs released from the nucleolus (30). Hepatitis B virus X-

protein (HBx), which binds to p53 and localizes it to the cytoplasm, has been shown to play 

an important role in the development of HCC. Doxorubicin treatment has been shown to 

increase p53 levels in cells containing HBx protein; additionally, doxorubicin treatment 

restores p53-mediated transcriptional activity by reducing MDM2 levels and increasing the 

nuclear accumulation of p53 (31). Similarly, inactivation of the tumor suppressor KLF6 has 

been reported to occur in response to hepatitis C virus (HCV) infection and KLF6 

expression has been shown to inversely correlate with HCC prognosis (32). KLF6 is a 

member of the Krüppel-like C2H2 zinc finger family, which has been shown to be involved 

with cell cycle regulation, signal transduction, and cell differentiation. Mirko et al. reported 

that reduced KLF6 expression causes MDM2 to increase along with p53 reduction, and this 

imbalance in the MDM2-p53 pathway is further associated with decreased survival in 

Meng et al. Page 4

Cancer Res. Author manuscript; available in PMC 2015 December 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patients with surgically resected HCC; conversely, overexpression of KLF6 leads to reduced 

MDM2 expression and a corresponding increase in p53 expression in HCC cell lines (33). 

Cho-Rok et al. found that the Enigma LIM domain protein, which is involved in signal 

transduction through protein kinases, can increase MDM2 ubiquitin ligase activity and p53 

degradation (34). Furthermore, Enigma can be stimulated by serum response factor (SRF), 

which is also overexpressed in HCC and leads to further MDM2 stabilization and p53 

degradation (34,35). Min et al. showed that one p53 target gene, phosphatase of regenerating 

liver 1 (PRL-1), that is overexpressed in a variety of cancers through an unknown 

mechanism, strongly down-regulated p53 levels and inhibited p53-mediated apoptosis by 

inducing MDM2 phosphorylation through Akt signaling, which forms another feedback loop 

contributing to HCC development (36). Inhibitor of growth 1 (ING1) has been reported as a 

type II tumor suppressor that affects cell function by altering chromatin structure and 

regulating transcription (37). Zhu et al. found that ING1 acts as a tumor suppressor by 

inhibiting hepatoma cell proliferation through the induction of apoptosis and cell cycle 

arrest. These tumor suppressor functions are likely mediated by two possible mechanisms: 

an increase in p14ARF expression to inhibit MDM2, or an increase in p53 acetylation and 

activation (38). It has been demonstrated that iron status influences p53 activity by down-

regulating MDM2 expression and that this decrease in MDM2 expression plays a protective 

role in HCC development (39). Interestingly, there is a potential feedback loop between p53 

activation and iron concentration because p53 has been shown to contribute to growth arrest 

by reducing iron uptake and intracellular iron concentration through interaction with iron-

responsive element-binding proteins (IRPs) (40). Sirtuin-3 (Sirt3) is a member of the 

mammalian sirtuin family that is localized to the mitochondria and contributes to the control 

of metabolic activity and is further associated with the deregulation of cancer cell 

metabolism, commonly referred to as the Warburg effect (41,42). Sirt3 protein expression is 

shown to be down-regulated in human HCC tissue; furthermore, overexpression of Sirt3 

inhibited HCC cell growth and induced apoptosis in HepG2 and HuH-7 cell lines by up-

regulating p53 protein activity (43). As summarized in Figure 2, the balance between 

MDM2 and p53 is disrupted in HCC. Each of the factors shown performs a unique role in 

facilitating cancer development, but dysfunctional p53 is consistently shown to be the core 

contributor to the development of HCC. More systematic and comprehensive studies are 

needed to provide a better understanding of these mechanisms and other currently unknown 

mechanisms that contribute to HCC development through the manipulation of p53.

Potential of the MDM2-p53 pathway in the diagnosis and prognosis of 

hepatocellular carcinoma

The connections between the MDM2-p53 loop and HCC development suggest that a better 

understanding of this pathway could be a valuable tool for the diagnosis of malignancies or 

prognoses for HCC patients (44). Specifically, serum concentrations of p53 could be a 

convenient and useful non-invasive screening test for HCC. There is a reported correlation 

between high levels of p53 expression in aggressive HCC phenotype to both early 

recurrences of HCC and poor clinical outcomes (45). A case-controlled study demonstrated 

that the levels of anti-p53 antibodies triggered by accumulation of mutant p53 were also 

associated with increased malignancy, which indicates that serum p53 protein levels and 
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antibody concentration may be used as early serological markers in the diagnosis of HCC 

(46–48). Moreover, the levels of p53 and MDM2 in HCC tissue were shown to be 

significantly higher than those in the adjacent hepatic tissues. Zhang et al. demonstrated that 

p53 and MDM2 are overexpressed in all 181 pairs of HCC tissues compared to the adjacent 

hepatic tissues in their study (49). Patients with a low pathologic grade HCC had a higher 

tendency to express p53 in tumor cells than the patients with high pathologic grade HCC; 

similarly, decreased MDM2 expression in HCC was also shown to be a predictor of better 

survival of patients after tumor resection (49). These studies indicate that p53 and MDM2 

expression levels could be useful indicators for predicting the prognosis of HCC. Currently, 

the approaches utilized in the early diagnosis of HCC are limited. The observed alterations 

in the MDM2-p53 pathway may provide more effective and accurate methods to diagnose 

early stage HCC, which would enable earlier surgical resections for patients and 

significantly improve the clinical outcomes even in the absence of a novel targeted therapy 

against the pathway.

Therapeutic avenues of targeting the MDM2-p53 pathway in malignant 

tumors

The critical role of p53 in tumor development and progression has made p53 an exciting 

target for anti-cancer drug design (50). Therapies that focus on restoring p53 function in 

tumors have been shown to be deleterious to cancer cells that express both mutant and WT 

p53 (12). The main strategies for the treatment of these cancers aim to deliver exogenous 

therapeutic WT p53 or to restore WT p53 function from inactivation by using the following 

methods: (1) chemotherapy and radiotherapy, (2) overexpression of ADP-ribosylation factor 

proteins that block p53 degradation pathways, (3) disruption of the MDM2-p53 interaction, 

and (4) introduction of molecules that stabilize the active conformation of the p53 protein 

(51). In order to investigate the importance of the MDM2-p53 loop in radiation-induced cell 

death in HCC, Koom et al. used two HCC cell lines expressing different levels of MDM2 

and two adenoviral vectors containing WT or MDM2 binding deficient human p53. The 

study demonstrated that the anti-tumor effect was the highest for WT p53 plus radiotherapy 

(RT) in the low-level MDM2 cells, whereas the tumor suppressor effect is mimicked by 

overexpressing MDM2 binding deficient p53 in the MDM2-overexpressing cells (52). The 

study also demonstrated that disrupting binding between p53 and MDM2 can effectively kill 

tumor cells that overexpress MDM2. Specifically, exogenous WT p53 induces not only 

apoptosis, but also causes a down regulation of genes involved in angiogenesis, which 

makes tumors more sensitive to chemotherapy (53). Xue et al. used RNA interference 

(RNAi) to conditionally regulate endogenous p53 expression in a mouse model of liver 

carcinoma to determine whether brief reactivation of endogenous p53 in p53-deficient 

tumors can produce complete tumor regression. Interestingly, the primary cellular response 

to p53 reactivation was not apoptosis, but involved the induction of a cellular senescence 

program that was associated with differentiation and the up-regulation of inflammatory 

cytokines (12). This study illustrated how the cellular senescence program can act together 

with the innate immune system to potently limit tumor growth, and also proved p53 loss is 

required for the maintenance of mouse liver carcinomas.
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Activation of WT p53 in tumors through manipulation of the MDM2-p53 pathway could be 

achieved by four main techniques: (1) using mimetics of a negative regulator of MDM2, 

such as p14ARF (54); (2) by reducing MDM2 levels with antisense oligonucleotides or 

small interfering RNA (siRNA) (55); (3) blocking the interaction between MDM2 and p53 

with small molecules, synthetic peptides or monoclonal antibodies; and (4) blocking the 

MDM2-mediated ubiquitination of p53 (56). p14ARF inhibits MDM2-dependent 

degradation and transcriptional silencing of p53; therefore, p14ARF mimetics could be used 

to activate the p53 stress response pathway. Midgley et al. screened a series of overlapping 

synthetic peptides derived from the p14ARF protein and found that a peptide corresponding 

to the first 20 amino acids of p14ARF is sufficient to bind MDM2, which induces p53 

protein stabilization and activates p53-dependent transcriptional regulation (54). MDM2 can 

also be inhibited by antisense anti-MDM2 oligonucleotide and the in vivo antitumor activity 

of such an oligonucleotide occurs in a dose-dependent manner (55). Small molecules that 

disrupt MDM2-p53 interaction such as Nutlin-3, MI series (57,58), benzodiazepinedione 

(59), and RITA (reactivation of p53 and induction of tumor cell apoptosis) (60) can be used 

to treat cancer through increased stabilization of p53. Moreover, MDM2 E3 ubiquitin ligase 

inhibitors such as HLI98 (61), Tenovin-1/Tenovin-6 and JJ78:12 (62) can similarly disrupt 

p53-MDM2 complexes and exert an anti-tumor effect by stabilizing p53 protein. Ribosomal 

proteins, such as L11 and L23, are known to induce p53 by inhibiting MDM2-mediated p53 

degradation (63,64), which suggest that modification of the RP-MDM2-p53 pathway may 

also reduce the proliferation of tumor cells with WT p53. Better systems for the delivery of 

exogenous p53 or small peptides are being developed for more efficient transduction of 

tumor cells. It is expected that some of these small molecules will progress to clinical use, 

alone or in combination with other established therapeutic interventions, and these studies 

will inform the design of novel approaches that specifically target the MDM2-p53 pathway. 

The clinical application of MDM2-p53 modulating drugs is under intense development. 

Safety and efficacy of newly designed drugs capable of modulating either WT or mutant p53 

are now being evaluated.

Future studies and Conclusion

Future studies should focus on the regulation of metabolism by p53 especially in the 

reversible fatty liver stage, which will help to elucidate the central molecular mechanisms at 

this pre-HCC stage and potentially contribute new ideas on how clinicians may be able to 

stifle HCC in its vulnerable early stages. The effect of the MDM2-p53 loop in cancer 

progression is complex, and despite the high number of studies that have already been 

completed, it is clear that a better understanding of tumor cell specific signaling pathways 

that modulate the MDM2-p53 pathway is required for the improvement of clinical 

outcomes. In this review we have summarized the vital roles that the MDM2-p53 pathway 

plays in the development of HCC, the specific mechanisms that are known to facilitate HCC 

development by altering the MDM2-p53 pathway, and the current research initiatives aimed 

at using this knowledge in the clinic. By focusing on HCC, we hope to give a detailed 

account of the molecular mechanisms affecting the MDM2-p53 pathway and the important 

role that balanced MDM2-p53 expression plays in HCC that can be translated to other forms 

of cancers.
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Figure 1. The MDM2-p53 auto-regulatory feedback loop
MDM2 inhibits p53 by stimulating its degradation, blocking its transcriptional activity and 

promoting its nuclear export. In turn, p53 activates the expression of MDM2. DNA-damage 

induces p53 phosphorylation, which prevent the MDM2-p53 binding and leads to p53 

stabilization. Oncogenes such as c-Myc can activate p53 through p14ARF-MDM2-p53 

pathway.
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Figure 2. MDM2-p53 Pathway alterations in HCC with WT p53
In normal tissues the expression of MDM2 and p53 are balanced; whereas in HCC cells the 

balance is disrupted, where the expression of MDM2 can be high and p53 can be low. This 

imbalance can be attained through the higher expression of SRF, Enigma Lim, HBx and 

PRL-1 in combination with lower expression of KLF6, Sirt3, and ING1. Furthermore, up-

regulation of rRNA synthesis can inhibit p53 due to reduced ribosomal protein availability 

for MDM2 binding. (Larger shapes depict higher expression of the indicated proteins and 

thicker lines depict up-regulation of indicated pathways.)
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