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Abstract

Hypoxiaand necrosis are fundamental features of glioblastoma (GBM) and their emergence is critical
for the rapid biological progression of this fatal tumor; yet, underlying mechanisms are poorly
understood. We have suggested that vaso-occlusion following intravascular thrombosis could initiate
or propagate hypoxia and necrosis in GBM. Tissue factor (TF), the main cellular initiator of
coagulation, is overexpressed in GBMs and likely favors a thrombotic microenvironment. Epidermal
growth factor receptor (EGFR) amplification and PTEN loss are two common genetic alterations
seen in GBM but not in lower-grade astrocytomas that could be responsible for TF up-regulation.
The most frequent EGFR mutation in GBM involves deletion of exons 2 to 7, resulting in the
expression of a constitutively active receptor, EGFRVIII. Here, we show that overexpression of EGFR
or EGFRvIII in human glioma cells causes increased basal TF expression and that stimulation of
EGFR by its ligand, EGF, leads to a marked dose-dependent up-regulation of TF. In all cases,
increased TF expression led to accelerated plasma coagulation in vitro. EGFR-mediated TF
expression depended most strongly on activator protein-1 (AP-1) transcriptional activity and was
associated with c-Jun NH,-terminal kinase (JNK) and JunD activation. Restoration of PTEN
expression in PTEN-deficient GBM cells diminished EGFR-induced TF expression by inhibiting
JunD/AP-1 transcriptional activity. PTEN mediated this effect by antagonizing phosphatidylinositol
3-kinase activity, which in turn attenuated both Akt and JNK activities. These mechanisms are likely
at work in vivo, as EGFR expression was highly correlated with TF expression in human high-grade
astrocytoma specimens.
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Introduction

Glioblastoma (GBM; WHO grade 4) is the most common primary brain tumor in adults and
also the most malignant (1). It is distinguished pathologically from lower-grade astrocytomas
(grades 2 and 3) by necrosis and microvascular hyperplasia, a florid form of angiogenesis.
Although it is recognized that hypoxia associated with necrosis causes microvascular
hyperplasia in the periphery of the tumor, compelling explanations for the development of
hypoxia and necrosis in GBM have not been established. We have suggested that vascular
pathology may initiate this cascade (2). Nearly all GBMs display microscopic evidence of
intravascular thrombosis, whereas lower-grade astrocytomas rarely show this finding (3,4).
Both pathologic observations and experimental evidence suggest that hypoxia and necrosis
within GBMs could be initiated or propagated by vaso-occlusion secondary to intravascular
thrombosis in a manner that drives tumor progression (2,4,5). The development of thrombosis
may be due in part to the deregulated expression of procoagulant molecules.

One of the most highly up-regulated and potent prothrombotic factors in human cancer is tissue
factor (TF), a 47-kDa transmembrane glycoprotein receptor that is a critical regulator of tissue
homeostasis (6). A direct correlation between TF levels and tumor grade has been noted for
multiple tumor types (7), including gliomas (8). In addition to its prothrombotic function, TF
directly promotes tumor invasiveness and angiogenesis by intracellular signals through its
cytoplasmic tail, and indirectly through the activation of protease-activated receptor (PAR) 1
and PAR2 (2,9).

Two common and highly specific genetic events associated with the GBM histology are
epidermal growth factor receptor (EGFR) amplification and PTEN loss. The EGFR gene is
amplified in 40% to 50% of GBMs and this event is often accompanied by genetic alterations
(10). The most common mutant, EGFRuvIII, is formed following the deletion of exons 2 to 7,
resulting in a constitutively active transmembrane receptor that lacks a functional ligand-
binding domain (11). EGFR activation causes a variety of downstream biological processes
associated with tumor growth, invasion, and angiogenesis (12). PTEN, a tumor suppressor gene
implicated in multiple human cancers, is inactivated by mutation in 20% to 40% of GBMs and
lost through other mechanisms in a much larger percentage (13-15). In the current study, we
investigated whether EGFR or EGFRVIII caused increased TF expression by GBM cells and
explored the relationship between EGFR and PTEN signaling in this regulation. We found that
EGFR strongly induced TF expression by up-regulating JunD/activator protein-1 (AP-1)
transcriptional activity on the TF promoter and was regulated by c-Jun NH,-terminal kinase
(JNK). Reconstitution of PTEN in PTEN-deficient GBM cells attenuated EGFR-induced TF
expression by antagonizing phosphatidylinositol 3-kinase (PI3K) activity, which in turn
reduced both Akt and JNK activities. Regulation of TF expression at the AP-1 site by PTEN
was primarily due to its inhibition of JunD activity. Finally, in human high-grade astrocytomas,
we found that EGFR protein expression was highly correlated with TF expression by neoplastic
cells.

Materials and Methods

Cell lines

The human GBM cell line U87MG was cultured in DMEM with 10% fetal bovine serum.
U87MG-wt-EGFR and U87MG-EGFRuvIII cell lines (kindly provided by Frank Furnari and
Webster Cavenee, Ludwig Institute, San Diego, CA) were cultured in the same conditions. The
lentiviral vector expressing PTEN was constructed using the FUW vector as previously
described (16). The full-length COOH terminally HA-tagged human PTEN cDNA (17) was
subcloned into the EcoRlI site of FUW. The resulting PTEN-HA/FUW plasmid was used to
produce lentiviral particles using ViralPower Lentiviral Expression System (Invitrogen). Both
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cell lines were infected with either the PTEN-HA or green fluorescent protein (GFP)
lentiviruses and propagated as stable cell lines.

Reagents and chemicals

PD158780, SP600125, LY294002, and U0126 were from EMD Biosciences, Inc.; rapamycin
was from LC Laboratories; EGF was from Sigma-Aldrich; and the citrated human plasma was
from Precision Biologic. Neoplastine (Diagnostica Stago) and human plasma depleted of factor
VII (R2 Diagnostics) were used as positive and negative controls, respectively.

Immunohistochemistry

Archived surgically resected GBM (23 cases) and anaplastic astrocytoma (AA; 7 cases)
specimens were obtained from Emory University Hospital Department of Pathology. GBMs
were selected from patients with no previous radiation or chemotherapy. Paraffin-embedded
sections were deparaffinized and subjected to heat-induced epitope retrieval by steaming for
15 min. For TF, slides were incubated with primary antibody (1:100; American Diagnostica)
at 4°C for overnight. Avidinbiotin-peroxidase complex was used to detect the antibodies using
3,3'-diaminobenzidine (DAB) as the chromogen. For EGFR, slides were incubated with
primary antibody (1:25; ZYMED Laboratories) at room temperature for 1 h and detected with
goat anti-mouse 1gG-alkaline phosphatase conjugate (1:100; Molecular Probes) using Fast Red
(ZYMED Laboratories) as the substrate. Staining intensity of EGFR and TF in neoplastic cells
was graded on a scale of 0 (no staining) to 3+ (strong staining) without knowing EGFR gene
status or diagnosis.

Fluorescence in situ hybridization analysis of EGFR gene amplification

On the same set of histologic sections, we used the commercially available LS| EGFR
SpectrumOrange/CEP 7 SpectrumGreen dual-color probe set (Vysis, Inc., Abbott
Laboratories), which included directly labeled DNA fluorescence in situ hybridization (FISH)
probes for the EGFR gene (SpectrumOrange) and the centromere of chromosome 7
(SpectrumGreen). Nuclei were counterstained with 4',6-diamidino-2-phenylindole (Molecular
Probes). Detection of an average of >10 EGFR signals per nucleus was defined as amplification
and detection of <6 EGFR signals per nucleus was defined as nonamplified.

Protein extraction from human GBM specimens

Eleven frozen human GBM specimens (100 mg) were obtained from the brain tumor bank of
the Winship Cancer Institute. Proteins were extracted using Trizol LS reagent (Invitrogen) and
expression of EGFR and TF was determined by Western blot.

Plasmids and transfections

The human TF promoter-luciferase reporter plasmids were as described previously (18). The
constructs containing mutations in each of the Egr-1 [pTF(Egr-1m)] or Sp1 sites [pTF(Sp1m)]
have been reported previously (19). The AP-1 luciferase plasmid (pAP-1-Luc) and the control
plasmid (pLuc-MCS) were from Stratagene. The dominant-negative mutant c-Jun expression
plasmid (c-JunPN) and the control vector were provided by Micheal J. Birrer (National Cancer
Institute, Bethesda, MD). The dominant-negative mutant JunD expression plasmid (JunDPN)
and the control vector were provided by Lester Lau (University of Illinois, Chicago, IL).
Transient transfection of plasmids was carried out using Gene Porter (Gene Therapy Systems,
Inc.) and performed in triplicate. The results were calculated as the activity of firefly luciferase
relative to that of the Renilla luciferase.
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RNA interference

Small interfering RNAs (SiRNA) against INK1, JNK2, c-Jun, JunD, and rhodamine-labeled
nonsilencing siRNA were purchased from Qiagen. Seventy-two hours after transfection,
glioma cells were harvested for Western blot analysis.

Western blot

Cells were lysed in radioimmunoprecipitation assay buffer supplemented with 1 mmol/L
phenylmethylsulfonyl and the protease inhibitor cocktail (Santa Cruz Biotechnology). Lysates
were clarified by centrifugation at 10,000 x g for 10 min at 4°C. The NE-PER Nuclear and
Cytoplasmic Extraction Reagents (Pierce Biotechnology) were used to separate nuclear and
cytoplasmic proteins. Equal amounts of protein were separated on a 10% SDS-PAGE and
transferred to nitrocellulose membranes. Membranes were blocked with 5% nonfat dry milk
for 1 h and incubated with primary antibodies in 5% bovine serum albumin overnight at 4°C.
The antibodies were used against Akt, phosphorylated Akt (p-Akt; Ser473), extracellular signal-
regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2, PTEN, c-Jun, phosphorylated c-Jun
(p-c-Jun; Ser3), phosphorylated s6rp, and nuclear factor kB1 (NFxB1; Cell Signaling
Technology); TF (American Diagnostica); HA. 11 (Covance); phosphorylated INK1/2 (p-
JNK1/2),INK1/2,and JunD (ZYMED Laboratories); and INK2, histone H1, and B-actin (Santa
Cruz Biotechnology).

ELISA for interleukin-8

Interleukin-8 (IL-8) levels in serum-free medium of U87MG-EGFRvIII and U87MG-wit-
EGFR cells treated with NFkB1 siRNA were measured by ELISA (R&D Systems). A complete
description of the IL-8 analysis is found within Supplementary Materials and Methods.

Plasma clotting assay

Plasma clotting times induced by GBM cells were measured in triplicate using a MLA Electra
750 Coagulation Timer (Diamond Diagnostics, Inc.). Tumor cells grown in serum-free medium
with or without EGF stimulation for 24 h were collected and resuspended in PBS to 1 x 10%/
mL. The clotting reaction was performed as previously described (6).

Statistical analysis

Results

ANOVA was used to compare group differences. The Student’s t test was used to assess
whether differences in the values of two groups were statistically significant, with the
Bonferroni correction used for multiple simultaneous comparisons. Differences were
considered to be significant with P < 0.05. Spearman’s rank test was used to evaluate the
strength of correlation between EGFR and TF expression in human high-grade astrocytoma
samples.

wt-EGFR and EGFRuvIIl up-regulate TF expression in human GBM cells and cause accelerated
plasma coagulation

To investigate whether wt-EGFR or EGFRVIII regulates TF expression, we used a human
glioma cell line (U87MG) stably transfected to overexpress either wt-EGFR (U87MG-wit-
EGFR) or EGFRVIII (U87MG-EGFRuvIII). Under basal conditions, TF was strongly up-
regulated by U87MG-EGFRUVIII cells compared with parental U87MG or U87TMG-wt-EGFR
cells (Fig. 1A, lane 3 versus lanes 1 and 5) based on comparison of the TF:B-actin ratios
determined by densitometry. Stimulation of wt-EGFR with EGF led to its activation within 10
minutes and also caused a marked up-regulation of TF expression in a dose-dependent manner
within 24 hours (Fig. 1B). The EGFR inhibitor PD158780 strongly attenuated EGFRvIII-
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induced (Fig. 1A, lane 4) and partially reduced EGF-stimulated TF expression (Fig. 1A, lane
6 versus lane 7), indicating that the tyrosine kinase activity of EGFR was necessary for this
effect. PD158780 did not inhibit TF expression by U87MG, which expressed little, if any,
EGFR protein (Fig. 1A, lane 2).

To determine if EGFR-induced TF was biologically active as a procoagulant at the cell surface
(20), we measured the ability of glioma cell lines to induce plasma clotting in vitro. Neoplastine
served as the positive control and consistently caused clot formation within 11 to 12 seconds.
The negative control (PBS instead of tumor cells) did not cause plasma clotting within 90
seconds (data not shown). When added to plasma, cell suspensions of U87TMG-EGFRvIII
caused a significantly shortened plasma clotting time (19.3 + 1.4 seconds) compared with
parental US7MG (23.6 + 0.5 seconds) and U87MG-wt-EGFR (23.8 + 0.1 seconds; #, P < 0.01,
one-way ANOVA and confirmed by Student’s t test with the Bonferroni correction). When
this assay was performed using human plasma lacking factor VII, the natural ligand for TF,
the plasma clotting time after adding U87MG-EGFRVIII cells was significantly prolonged (>
90 seconds), strongly implicating TF-dependent mechanisms (Fig. 1C). Similarly, the addition
of EGF to wt-EGFR glioma cells caused a dose-dependent acceleration of plasma clotting that
could be reversed by the use of plasma lacking factor VII (*, P < 0.001, one-way ANOVA;
Fig. 1C; data not shown). Thus, EGFRvIII-expressing gliomas show increased basal TF
expression and wt-EGFR gliomas show a dose-dependent increase in TF on receptor activation.
In both instances, EGFR-induced TF resulted in accelerated plasma coagulation by tumor cells
in vitro.

AP-1is required for both basal and EGF-stimulated TF promoter activity

To determine whether EGFR signaling augmented TF expression through transcriptional
mechanisms, we examined TF gene promoter activity using luciferase reporter constructs. The
basal human TF promoter (—250 to +1) consists of a distal lipopolysaccharide response
element, which contains two AP-1 and one NFxB binding sites, and a more proximal serum
response region, which contains three overlapping Egr-1/Sp1 binding sites (21). We used 5'-
deletion constructs of the wild-type TF promoter [pTF(wt)] to determine which transcription
factors were most relevant to basal and EGF-stimulated TF expression by EGFR (Fig. 2A,
left). UB7TMG-EGFRVIII showed a greater basal TF promoter activity (1, P < 0.001, Student’s
t test) than parental U87MG, whereas the basal promoter activity in U87MG-wt-EGFR was
similar to U87MG (Fig. 2A, right). On EGF stimulation (50 ng/mL, 24 hours), TF promoter
activity was significantly increased in U87MG-wt-EGFR cells and similar to levels observed
in UB7TMG-EGFRVIII (#, P < 0.001). The deletion of the distal AP-1 binding sites [pTF(AP-1
del)] was associated with a markedly reduced promoter activity in all three cell lines, including
the EGF-stimulated conditions [**, P < 0.001 versus pTF(wt)]. Further deletion of the NFxB
binding site [pTF(NF«xB del)] caused additional, albeit much smaller, reductions in basal TF
promoter activity. Deletion of the promoter to —67 [pTF(vector)] resulted in the complete loss
of detectable transcriptional activity, suggesting that the proximal Sp1 and Egr-1 sites are
required. These data indicated that AP-1 is necessary for maximal basal and EGF-stimulated
TF promoter activity in GBM cells.

We next examined whether EGFR-induced expression of TF might be due to activation of
JNK, a critical upstream kinase that regulates AP-1 activity. EGFRvIII and EGF stimulation
of wt-EGFR caused increased levels of p-JNK1 expression, but not p-JNK2, indicating specific
activation of INK1 (Fig. 2B). This effect was strongly attenuated by the specific INK inhibitor
SP600125, which blocks the kinase activity of JNK and results in reduced p-JNK1 levels. Both
basal TF levels (EGFRvIII) and EGF-stimulated TF expression were greatly reduced by
SP600125, implicating JNK1 as a necessary kinase for EGFR-induced TF expression.
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The inhibitory effect of SP600125 on JNK activity was confirmed by its ability to reduce the
level of its substrate, p-JunD, on Western blots (Fig. 2C). For these experiments, we used the
p-c-JunSer’3 antibody, which detects both p-c-Jun at Ser’3 and p-JunD at Ser1®. To determine
whether the solitary p-Jun band detected in Fig. 2C represented p-c-Jun or p-JunD, we used
specific siRNA directed against c-Jun or JunD. We found that sSiRNA directed at JunD
decreased the intensity of the p-Jun band, but siRNA directed at c-Jun did not, indicating that
this band represents p-JunD (Supplementary Fig. S1A, left).

Suppression of JunD by siRNA substantially reduced EGFR-induced TF expression
(Supplementary Fig. S1A, right), whereas suppression of c-Jun did not (Supplementary Fig.
S1B, left), further implicating JunD in TF transcription. These findings were also supported
by cotransfecting U87MG-wt-EGFR or U87MG-EGFRvVIII cells with the TF promoter-
luciferase reporter [pTF(wt)] together with either a dominant-negative mutant c-Jun (c-
JunPN) or a dominant-negative mutant JunD (JunDPN) expression plasmid. JunDPN was
capable of significantly reducing luciferase signals compared with vector controls (*, P <0.001,
Student’s t test; Supplementary Fig. S1B, right), whereas expression of ¢-JunPN caused only
a modest reduction (data not shown). We also found that knocking down JNK1 but not JINK2
by siRNA significantly reduced EGFR-induced TF expression (Fig. 2D; Supplementary Fig.
S1C, left).

Because the TF promoter also contains a NF«B site that could mediate the effects of EGFR
activity, we investigated the effect of its sSiRNA knockdown on TF expression. We found that
knockdown of NFxB1 (p105/p50) did not inhibit EGFRvIII-induced or EGF-stimulated TF
expression (Supplementary Fig. S1C, right). The effect of targeted siRNA against NFkB1
activity was confirmed by showing reduced expression of IL-8, a traditional target of NFxB-
directed transcription (22). IL-8 levels in serum-free medium were significantly lower after
silencing NFkB1 in both U87MG-EGFRvIII and U87MG-wt-EGFR (Supplementary Fig. S2).
Combined, these results show that AP-1 is required for EGFR-induced TF expression and that
AP-1 activity is regulated by INK1 following EGFR stimulation. JunD is activated by JNK1
and has a major role in mediating increased AP-1 transcriptional activity.

Restoration of PTEN inhibits both basal and EGF-stimulated TF expression

PTEN loss is a genetic signature of GBM (23). To examine whether PTEN influences the
EGFR-mediated expression of TF, we restored PTEN in PTEN-null U87MG-wt-EGFR and
U87MG-EGFRvVIII cells using a HA-tagged lentiviral expression vector. Infection with GFP-
expressing lentivirus was used as a negative control. Restoration of PTEN inhibited Akt
phosphorylation and also caused a marked reduction of basal TF protein expression by
U87MG-EGFRvVIII (Fig. 3A, left). It also attenuated TF expression following EGF stimulation
of US7TMG-wt-EGFR cells (Fig. 3A, right). To determine whether the effect of PTEN on TF
expression was due to transcriptional activation of the TF gene, we performed dual-luciferase
reporter assays. Lenti-PTEN-HA infection of U87MG-EGFRvIII (Fig. 3B, left) and US7TMG-
wt-EGFR (Fig. 3B, right) glioma cells caused a marked reduction in basal and EGF-stimulated
TF promoter activity compared with lenti-GFP-transfected controls (*, P < 0.001 versus GFP-
infected cells; #, P < 0.001 versus GFP-infected cells under EGF stimulation, Student’s t test).

PTEN was recently shown to inhibit JINK through its antagonizing effect on PI3K (24). To
determine the relative contribution of PI3K and JNK to the inhibition of EGFR-mediated TF
promoter activity, we used the specific PI3K inhibitor LY 294002 and the specific JINK inhibitor
SP600125 in dual-luciferase assays. Both the basal (Fig. 3C, left) and EGF-stimulated (Fig.
3C, right) TF promoter activities were dramatically inhibited by LY294002 and SP600125,
suggesting that both PI13K and JNK are important regulators of this response (*, P < 0.001,
one-way ANOVA, confirmed by Student’s t test with the Bonferroni correction).
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PTEN antagonizes EGFR-induced AP-1 transcriptional activity

To determine if the effects of PTEN on EGFR-induced TF transcription were due to specific
regulation of AP-1 activity, we used lenti-PTEN-HA-infected U87MG-EGFRvIII and
U87MG-wt-EGFR cells with a luciferase reporter plasmid that contained AP-1 enhancer
elements. PTEN substantially reduced cellular AP-1 transcriptional activity in both the basal
state for EGFRVIII (*, P < 0.005 versus GFP-infected cells) and under EGF stimulation for
wt-EGFR (#, P < 0.005 versus GFP-infected cells with EGF stimulation; Fig. 4A and B). We
then investigated which of the Jun family member(s) of the AP-1 complex were most affected
by PTEN. On Western blotting of separated nuclear and cytoplasmic proteins, we found that
PTEN decreased the level of nuclear p-JNK1 and p-JunD levels in U87MG-EGFRuvIII cells
(Fig. 4C). In EGF-stimulated U87MG-wt-EGFR cells, PTEN reduced the nuclear levels of p-
JNK1 and p-JunD levels but did not reduce p-c-Jun levels (Fig. 4D). Thus, PTEN inhibits
cellular AP-1 activity mainly through down-regulation of JNK1 and JunD activities.

EGFR-induced TF expression through AP-1 activation is signaled via the PI3K and mitogen-
activated protein kinase/ERK1/2 pathways

Mitogen-activated protein kinase (MAPK) and PI3K are two major downstream signaling
pathways of receptor tyrosine kinases, including EGFR (25). To examine the roles of these
pathways in the EGFR-mediated up-regulation of TF, we used the PI3K inhibitor LY 294002,
the MAPK/ERKZ1/2 inhibitor U0126, and the mammalian target of rapamycin (mMTOR)
inhibitor rapamycin. We found that LY 294002 and rapamycin strongly reduced basal TF
expression by U87MG-EGFRvIII and also attenuated EGF-stimulated TF in U87MG-wt-
EGFR cells (Fig. 5A and B). U0126 also reduced TF expression but less potently. We also
found that LY 294002 reduced the levels of p-INK1/2 in both U87MG-EGFRvIIl and U87TMG-
wt-EGFR cells, consistent with previous reports that PI3K stimulates JNK activity (Fig. 5C
and D; ref. 24). Interestingly, mTOR inhibition by rapamycin led to a moderate increase in p-
JNK1/2 levels in UB7TMG-EGFRUVIII (Fig. 5C), whereas it reduced p-JNK1/2 in U87MG-wt-
EGFR cells under EGF stimulation (Fig. 5D). Mechanisms that account for this difference
between EGFRVIII and wt-EGFR require further study. The increased p-JNK observed in
U87MG-EGFRuvIII cells following rapamycin could be due to the loss of negative feedback
regulation of mMTOR on EGFR, leading to enhanced JNK activity (24). p-JunD levels were
greatly reduced by all three inhibitors indicating both INK-dependent and JNK-independent
regulation of JunD activity (Fig. 5C and D).

Both ERK1/2 and JNK are MAPK family members (26). Inhibition of ERK1/2 activity by
U0126 did not greatly affect basal p-JNK1/2 levels in U87MG-EGFRuvlIII cells (Fig. 5C) and
had moderate inhibitory effects on p-JINK1/2 in U87MG-wt-EGFR cells (Fig. 5D). This
observation is consistent with the reports that activation of Ras/ERK1/2 directly up-regulates
AP-1 transcriptional activity, whereas inhibition of ERK1/2 reduces it (27). Combined, the
data suggest that EGFR-induced TF expression occurs predominantly through JNK and
regulated by both PI3K and MAPK/ERK1/2.

Human GBMs overexpress EGFR and TF compared with AAs

We investigated the expression of EGFR and TF proteins in human high-grade astrocytomas,
including 23 GBMs (WHO grade 4) and 7 AAs (WHO grade 3). The results of this analysis
are shown in Tables 1 and 2. These specimens represent a subset of brain tumors previously
investigated for the presence of intravascular thrombosis (4). Among 23 GBMs, 22 (96%)
contained microscopic intravascular thrombosis as noted by the complete occlusion of vascular
lumens by an organizing clot, in addition to the diagnostic features of necrosis and/or
microvascular hyperplasia. None of the seven AA specimens contained intravascular
thrombosis (and by definition did not contain necrosis or vascular hyperplasia). Among the
GBMs, 39% (9 of 23) showed EGFR amplification by FISH (Fig. 6A, left top and bottom).
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None of the AAs (0 of 7) showed EGFR amplification. In our analysis of EGFR expression by
immunohistochemistry, we found that 86% (6 of 7) of AA samples showed no appreciable
expression (Fig. 6A, middle top); in GBM specimens, 22% (5 of 23) showed strong (3+) and
35% (8 of 23) showed moderate (2+) EGFR staining (Fig. 6A, middle bottom; Table 1). None
of the GBMs with weak (1+) or absent (0) EGFR expression showed EGFR amplification. On
ANOVA analysis, GBMs as a group had significantly greater EGFR expression than AAs (P
< 0.001). Those GBMs with EGFR amplification had a higher protein expression of EGFR
than tumors without amplification (P < 0.001). Immunohistochemistry for TF in AAs showed
weak (1+; 6 of 7) or absent (0; 1 of 7) staining (Fig. 6A, right top), whereas 30% (7 of 23) of
GBMs showed strong (3+) TF expression and 39% (9 of 23) showed moderate (2+) expression
(Fig. 6A, right bottom; Table 2). GBMs as a group showed much greater TF protein expression
than AAs (P = 0.002). The expression of TF in EGFR-amplified GBMs was greater than that
of nonamplified GBMs, but this difference did not achieve statistical significance on ANOVA
analysis (P = 0.22). When all high-grade astrocytoma specimens (GBMs and AAS) were
considered, there was a strong positive correlation between the expression of EGFR and TF
(p = 0.5, Spearman’s rank test). Thus, human GBMs show greater EGFR protein expression
than AA and this is associated with both a higher expression of TF and a higher frequency of
intravascular thrombosis.

To further support the above findings, proteins extracted from another 11 frozen human GBM
specimens were analyzed for EGFR and TF protein expression by Western blot. The five GBMs
with the strongest EGFR expression also showed the strongest TF expression (Fig. 6B). The

six GBM specimens with the least EGFR expression showed only weak to moderate TF protein
levels. EGFR:actin and TF:actin expression ratios were obtained for each specimen following
densitometry of protein bands (Fig. 6B). Comparison of these ratios among specimens showed
a strong positive correlation between EGFR and TF expression (p = 0.8, Spearman’s rank test).

Discussion

Once astrocytomas have progressed to GBM, they show accelerated growth and rapid
progression to death (3,28). Mechanisms responsible for the abrupt onset of explosive growth
are still being defined but are likely related to the development of necrosis and angiogenesis
(microvascular hyperplasia), which are two defining features of GBM histology and powerful
predictors of poor prognosis (2,3,5). Necrosis and the ensuing hypoxia-induced angiogenesis
could be initiated or propagated by intravascular thrombosis (2,6). Nearly all GBM specimens
(grade 4) show microscopic intravascular thrombosis within tissue specimens, but lower-grade
astrocytomas (grades 2 and 3) that lack necrosis only rarely do. Importantly, those grade 3
tumors that lack necrosis but show intravascular thrombosis have aggressive clinical courses,
similar to GBM, suggesting that thrombosis may initiate an aggressive growth phase (4).

A strong relationship between human malignancy and abnormal blood clotting is well
established but underlying mechanisms are not (3,5). One of the most highly up-regulated
prothrombotic factors in human malignancy is TF, the primary cellular initiator of plasma
coagulation (29,30). In astrocytomas, TF levels correlate with tumor grade and are highest in
GBM. Indeed, publicly available data sets of gene expression7 show that TF is strongly up-
regulated in GBM specimens compared with lower-grade astrocytomas (31-33). Previous
reports have indicated that oncogenic events could trigger TF overexpression and coagulopathy
(34). In light of this, we investigated two genetic alterations specific to the GBM histology that
are rare in lower-grade astrocytomas—EGFR amplification and rearrangement and PTEN loss
—to define their roles in regulating TF expression (11). We found that EGFR activation was
associated with marked increases in TF expression by human GBM cells, both in constitutively

7http://www.oncomine.org
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active EGFRvIII-expressing cells and in EGF-stimulated wt-EGFR-expressing cells. In all
cases, increased TF was associated with accelerated plasma coagulation dependent on the
interaction of TF with factor VII.

These findings are supported by our investigations on human high-grade astrocytoma resection
specimens. GBMs, which almost uniformly contain microscopic evidence of intravascular
thrombosis, showed a higher frequency of EGFR amplification and a greater level of EGFR
protein expression than AAs, and this EGFR up-regulation was strongly associated with the
increased expression of TF. Thus, the expression of EGFR and TF proteins and the presence
of intravascular thrombosis are tightly linked to the GBM histology. Although causality cannot
be shown by our correlative analysis of human specimens, we have speculated that during the
progression of astrocytomas, a prothrombotic microenvironment created by neoplastic TF
expression could readily account for the presence of thrombosis in the setting of vascular
leakiness.

The TF promoter contains multiple binding sites for transcriptional regulation, including three
proximal overlapping Sp1/Egr-1 sites as well as two AP-1 and one NF«B sites located more
distally. We have previously shown that Egr-1 sites are important for the hypoxic up-regulation
of TF in GBM (19). Experiments using truncated mutants of the TF promoter in the present
study indicate that the AP-1 binding site is the most critical for EGFR-induced TF up-regulation
under normoxic conditions. AP-1 is not a single transcription factor but instead represents a
series of related dimeric complexes of Fos and Jun family proteins that are regulated by the
upstream kinase JNK1/2 (35). Our results show that INK1 is more important than JNK2 in the
regulation of AP-1 activation following EGFR stimulation but that JNK-independent
mechanisms of AP-1 activity are also relevant. JNK1 activates AP-1 by phosphorylating Jun
family members, including c-Jun, JunB, and JunD (36). The increased AP-1 transcriptional
activity that follows EGFR stimulation is due primarily to the phosphorylation of JunD by
JNKZ1. In support of this, the knockdown of JunD, but not c-Jun, by sSiRNA markedly attenuated
EGFR-induced TF expression.

EGFR activation leads to a host of downstream intracellular signaling events, including
activation of PI3BK/AKt/mTOR (25). PI3K has been recently shown to stimulate JINK
independently of Akt activation (24). Because PTEN loss is a frequent genetic event in GBM
and its lipid phosphatase activity antagonizes the effects of PI3K (37), we explored its role in
the regulation of EGFR-induced TF expression. Restoration of PTEN into EGFR-expressing,
PTEN-null glioma cells caused a substantial reduction in EGFR-induced TF expression. This
effect was mediated at the transcriptional level, as both p-JNK1 levels and the subsequent
activation of AP-1 transcription were reduced by PTEN restoration. Importantly, we found that
PTEN suppressed AP-1 activation primarily by inhibiting p-JunD, representing the first
demonstration that PTEN is capable of modulating JunD/AP-1 activity in GBM cells.

Inaddition to JNK, the MAPK family includes ERK1/2 and p38 (38). These signaling pathways
also intersect with EGFR activation and could potentially be relevant to TF up-regulation. We
found that the inhibition of ERK1/2 with U0126 significantly reduced TF expression by EGFR.
Similarly, the inhibition of mTOR by rapamycin reduced EGFR-induced TF expression. These
inhibitors also greatly reduced p-JunD levels, suggesting a final common pathway of AP-1
transcriptional regulation.

Together, our studies provide new evidence that oncogenic mechanisms are sufficient for the
up-regulation of TF expression by GBM cells, independently of hypoxia. This is an important
finding as it establishes that mutation may be the first event leading to thrombosis and that the
ensuing hypoxia and necrosis may amplify the effect. A prothrombotic environment caused
by elevated TF could potentially lead to the emergence of necrosis, hypoxia-induced
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angiogenesis, and peripheral tumor growth (5,6). Moreover, TF promotes tumor progression
by intracellular signaling through its cytoplasmic tail and by activation of PARs (9,39). Our
findings reinforce the need to investigate the role of TF in GBM progression in vivo and to
define therapeutic modalities that could antagonize these mechanisms.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

wt-EGFR and EGFRvIII up-regulate TF in human GBM cells and accelerate plasma
coagulation. A, Western blot of cell lysates from U87MG, U87MG-EGFRuvlII, and US7TMG-
wt-EGFR cells shows higher basal TF expression by U87MG-EGFRvIII cells (lane 3) than
U87MG (lane 1) and US7MG-wt-EGFR cells (lane 5). PD158780, a specific EGFR inhibitor,
significantly reduced EGFRvIII-induced (lane 4) and EGF-stimulated (lane 7 versus lane 6)
TF expression. Lane 2, no inhibitory effect on TF expression was seen by U87MG cells, which
showed little EGFR protein levels. Ratios (*) indicate the relative intensities of TF bands
normalized to the corresponding B-actin bands. Increased p-Akt levels were observed on
U87MG-EGFRuvIII and EGF-stimulated U87MG-wt-EGFR cells. The effect of PD158780 on
EGFR activity was confirmed by the inhibition of p-Akt levels on both cell lines. B, Western
blot of cell lysates from U87MG-wt-EGFR cells following stimulation with EGF (10 or 50 ng/
mL). Receptor activation (p-EGFR) was noted within 10 min. A dose-dependent up-regulation
of TF expression was noted within 24 h. Total EGFR levels were not changed on EGF
stimulation. C, the addition of U87MG-EGFRvIII glioma cells to human plasma caused a
significantly shortened clotting time (19.3 £ 1.42 s) compared with U87MG (23.6 + 0.53 s)
and US7MG-wt-EGFR (23.8 £ 0.15 s). #, P < 0.01. No significant difference was noted in
clotting times with U87MG and U87MG-wt-EGFR. Using plasma lacking factor VII (FVII),
the clotting time after adding U87MG-EGFRuVIII cells was significantly prolonged (broken
black column, >90 s). Neoplastine was used as the positive control and consistently caused
plasma clotting in 11 to 12 s. Stimulation of U87MG-wt-EGFR cells with EGF at 10 or 50 ng/
mL for 24 h caused a significant and dose-dependent acceleration of plasma clotting. *, P <
0.001 versus non-EGF treated.
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Figure 2.

AP-1 is required for both basal and EGF-stimulated TF promoter activity. A, left, schematic of
human TF promoter and luciferase constructs. pTF(wt), wild-type TF promoter; pTF(AP-1
del), 5'-deletion of AP-1 binding sites (red boxes); pTF(NFxB del), 5'-deletion of NFxB (green
circle) binding sites; pTF(Egr-1/Sp1m), Spl binding sites (yellow bars) are mutated; pTF
(Egr-1m/Spl), Egr-1 binding sites (blue circles) are mutated; pTF(vector), 5’-deletion of all
the transcriptional binding sites. Right, U87MG-EGFRvIII showed higher basal TF promoter
activity compared with U87MG and U87MG-wt-EGFR by dual-luciferase assay. ¥, P <0.001.
On EGF stimulation (50 ng/mL, 24 h), TF promoter activity was significantly increased in
U87MG-wt-EGFR cells. #, P < 0.001 versus non—-EGF-treated wt-EGFR cells. 5’-Deletion of
the AP-1 binding sites from the wild-type promoter reduced promoter activity in all three cell
lines under both basal and EGF-stimulated conditions. **, P < 0.001 versus pTF(wt). Deletion
of NF«B binding sites [pTF(Egr-1/Sp1)] caused additional, but smaller, reduction in basal
TF promoter activity. Further mutation of Sp1 binding sites or deletion of all the transcriptional
binding sites resulted in the complete loss of detectable TF promoter activity. B, Western blot
of cell lysates of U87MG-wt-EGFR shows increased levels of p-JNK1, but not p-JNK2,
following EGF stimulation. This effect was attenuated by SP600125, a specific JNK inhibitor.
Total INK levels were not affected by SP600125. C, Western blot of cell lysates from U87MG,
U87MG-EGFRuvIII, and U7MG-wt-EGFR shows that basal levels and EGF-stimulated TF
expression are greatly reduced by SP600125. The inhibitory effect of SP600125 on JNK1
activity was confirmed by its ability to reduce p-JunD levels. Total levels of JunD and c-Jun
were not affected by SP600125. D, Western blot of cell lysates from U87MG-EGFRvIII and
U87MG-wt-EGFR cells following transfection with JINK1 siRNA for 72 h. siRNA knockdown
of JNK1 significantly inhibited EGFRvIII-induced and EGF-stimulated (wt-EGFR) TF
expression. S-actin, loading control.
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Figure 3.

Restoration of PTEN attenuates EGFR-induced TF expression. A, left, Western blot of
U87MG-EGFRuVIII cell lysates following lentiviral infection of PTEN-HA or GFP shows
reduced expression of TF in PTEN-HA—infected cells; right, Western blot of cell lysates from
U87MG-wt-EGFR cells following lentiviral infection of PTEN-HA or GFP shows reduced TF
expression under both basal and EGF-stimulated (50 ng/mL, 24 h) conditions. B, left, dual-
luciferase assay of wild-type TF promoter [pTF(wt)] activity in UB7MG-EGFRVIII cells shows
that lentiviral infection of PTEN-HA reduces promoter activity compared with GFP-infected
cells. *, P < 0.001. Right, dual-luciferase assay of wild-type TF promoter [pTF(wt)] activity
in US7MG-wt-EGFR cells infected with lenti-PTEN-HA shows reduced TF promoter activity
under both basal (*, P < 0.001) and EGF-stimulated (#, P < 0.001) conditions compared with
GFP-infected cells. C, left, dual-luciferase assay of wild-type TF promoter [pTF(wt)] activity
in U87MG-EGFRuvIII cells shows that inhibitors of PI3K (LY 294002, 10 umol/L) and/or INK
(SP600125, 10 umol/L) significantly reduce TF promoter activity compared with the controls
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(DMSO treated). *, P < 0.001. Right, dual-luciferase assay of wild-type TF promoter [pTF
(wt)] activity in UB7MG-wt-EGFR cells shows that inhibition of PI3K (LY?294002, 10 umol/
L) and/or JNK (SP600125, 10 pmol/L) activity significantly reduced TF promoter activity in
EGF-stimulated cells (50 ng/mL) compared with the control [DMSO + EGF (50 ng/mL)
treated]. *, P < 0.005.
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Figure 4.

PTEN antagonizes EGFR-induced TF expression by down-regulating AP-1 activity. A, dual-
luciferase assay of AP-1 activity in U87TMG-EGFRVIII cells shows that lentiviral infection of
PTEN-HA causes asignificant reduction of reporter activity compared with GFP-infected cells.
*, P <0.005. B, dual-luciferase assay of AP-1 activity in U87MG-wt-EGFR cells shows that
lentiviral infection of PTEN-HA reduces reporter activity under basal and EGF-stimulated
conditions compared with GFP-infected cells. *, P < 0.005 versus GFP-infected cells; #, P <
0.001 versus EGF-stimulated (50 ng/mL) GFP cells. C, Western blot of nuclear and
cytoplasmic compartments of U87MG-EGFRuvlIII cells infected with PTEN-HA or GFP reveals
a reduced expression of nuclear p-JNK1 and p-JunD levels in PTEN-HA~-infected cells
compared with GFP-infected cells. No differences were noted in the expression of total
JNK1/2, c-Jun, or JunD. Histone H1, loading control for nuclear protein. D, Western blot of
nuclear and cytoplasmic compartments of U87MG-wt-EGFR cells infected with PTEN-HA or
GFP under basal (0 h) or EGF-stimulated conditions (50 ng/mL, 1 and 24 h) shows decreased
expression of nuclear p-JNK1 and p-JunD levels in PTEN-HA—infected cells compared with
GFP-infected cells following EGF stimulation. Total JNK, c-Jun, and JunD levels were not
affected by EGF. Histone H1, loading controls for nuclear protein.
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Figure 5.

EGFR-induced TF expression through AP-1 activation is signaled via the PI3K/Akt/mTOR
and MAPK/ERK1/2 pathways. A, Western blot of cell lysates from U87MG-EGFRvIII
gliomas. B, Western blot of cell lysates from U87MG-wt-EGFR gliomas under basal and EGF-
stimulated conditions. Inhibition of PI3K (LY294002), MAPK/ERK1/2 (U0126), and mTOR
(Rapamycin) caused reduced basal TF in U87MG-EGFRuvIII (A) and reduced EGF-stimulated
TF in US7TMG-wt-EGFR gliomas (B). All the inhibitors were used at 10 umol/L for 24 h. -
actin, loading controls. C, Western blot of cell lysates from U87MG-EGFRvIII gliomas shows
that inhibition of PI3K (LY294002) and MAPK/ERK1/2 (U0126) reduced expression of p-
JNK1/2. Inhibition of mTOR by rapamycin led to a moderate increase of p-JNK1/2. Basal p-
JunD levels were reduced by all three inhibitors. D, Western blot of cell lysates from U87MG-
wt-EGFR gliomas shows that EGF-stimulated p-JNK1/2 and p-JunD levels were attenuated
by all three inhibitors. g-actin, loading control.
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Figure 6.

Analysis of EGFR and TF expression in human AA and GBM samples. A, FISH analysis of
EGFR gene status and immunohistochemical (IHC) analysis of EGFR and TF protein in human
GBM and AA specimens. Left, representative fluorescence images showing the EGFR
(orange) and chromosome 7 centromeric (green) signals in interphase GBM cells. Left top,
GBM specimen that is nonamplified for EGFR shows roughly equal numbers of EGFR and
centromeric signals per nuclei (typically two EGFR signals per nuclei). Left bottom, GBM with
EGFR gene amplification shows greatly increased signals for EGFR compared with
centromeric signal (>10 EGFR signals per nucleus). Middle, immunohistochemical analysis
of EGFR protein expression in human AA and GBM specimens using Fast Red for detection.
Insets, negative controls (without primary antibodies). Middle top, representative image of AA,
showing a lack of EGFR staining (scored as 0 in a 0—-3+ scale). Middle bottom, representative
image of EGFR staining in GBM, showing strong cytoplasmic and cell surface
immunoreactivity on neoplastic cells (3+, red). Right, immunohistochemical analysis of TF
protein expression in AA and GBM specimens using DAB (brown) for detection. Right top,
representative image of AA, showing weak cytoplasmic TF expression (1+, brown) in scattered
tumor cells. Right bottom, GBM specimen showing strong cytoplasmic TF staining (3+,
brown) in nearly all tumor cells. B, Western blot analysis of EGFR and TF protein expression
in 11 human GBM samples. Lanes 1, 2, 4, 8, and 9, five GBM samples with moderate to strong
EGFR protein expression also showed the highest TF expression. The six other samples with
lower EGFR protein expression showed modest to mild TF expression. There was a strong
positive correlation between EGFR and TF protein expression in these specimens based on a
comparison of the EGFR:f-actin and TF:B-actin ratios, determined following densitometry
(p = 0.8, Spearman’s rank test). g-actin, loading control.
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Table 1

Immunohistochemical analysis of EGFR protein expression in human GBM and AA specimens
Score GBM/EGFRA™" (n = 9)GBM/EGFR ™ (n = 14)AA (n = 7)
0 0 (0%) 7 (50%) 6 (86%)
+ 0 (0%) 3 (21%) 0 (0%)
-+ 5 (56%) 3 (21%) 1 (14%)
+H+ 4 (44%) 1 (8%) 0 (0%)
P

GBM vs AA <0.001

GBM/EGFRA™* vs GBM/EGFRA™"

<0.001
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NOTE: 0, no staining; +, weak staining; ++, moderate staining; +++, strong staining; EGFRAMP* EGFR gene amplified; EGFRAMP~, EGFR gene

nonamplified.

Analyzed by one-way ANOVA based on the scores of each group.
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Table 2
Immunohistochemical analysis of TF protein expression in human GBM and AA specimens
Score GBM/EGFRA™" (n = 9)GBM/EGFRA™" (n = 14)AA (n = 7)
0 0 (0%) 1(8%) 1 (14%)
+ 1 (11%) 5 (36%) 6 (86%)
-+ 5 (56%) 4 (28%) 0 (0%)
-t 3 (33%) 4 (28%) 0 (0%)
P
GBM vs AA 0.002
GBM/EGFRA™* vs GBM/EGFRA™”__ N.S. (P =0.22)
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NOTE: 0, no staining; +, weak staining; ++, moderate staining; +++, strong staining; EGFRAMP* EGFR gene amplified; EGFRAMP~, EGFR gene

nonamplified.

Abbreviation: N.S., not significant.

*
Analyzed by one-way ANOVA based on the scores of each group.
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