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Abstract

The trillions of bacteria that naturally reside in the human gut collectively constitute the complex 

system known the gut microbiome, a vital player for the host’s homeostasis and health. However, 

there is mounting evidence that dysbiosis, a state of pathological imbalance in the gut microbiome 

is present in many disease states. In this review, we present recent insights concerning the gut 

microbiome’s contribution to the development of colorectal adenomas and the subsequent 

progression to colorectal cancer (CRC). In the United States alone, CRC is the second leading 

cause of cancer deaths. As a result, there is a high interest in identifying risk factors for adenomas, 

which are intermediate precursors to CRC. Recent research on CRC and the microbiome suggest 

that modulation of the gut bacterial composition and structure may be useful in preventing 

adenomas and CRC. We highlight the known risk factors for colorectal adenomas and the 

potential mechanisms by which microbial dysbiosis may contribute to the etiology of CRC. We 

also underscore novel findings from recent studies on the gut microbiota and colorectal adenomas 

along with current knowledge gaps. Understanding the microbiome may provide promising new 

directions towards novel diagnostic tools, biomarkers, and therapeutic interventions for CRC.
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Introduction

Globally in 2012 alone, colorectal cancer (CRC) accounted for approximately 694,000 

deaths (approx. 8.5% of total cancer deaths) and 1.36 million new cases [1]. In the United 

States, CRC is the third most commonly diagnosed cancer and the second leading cause of 

cancer deaths and will account for about 136,830 new cases and 50,310 deaths in 2014 [2]. 
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The annual economic burden of CRC in 2010 was approx. 14.1 billion dollars and this is 

expected to increase to about 17.4 billion dollars in 2020 [3]. Mortality from CRC is more 

broadly associated with metastatic disease; therefore, early detection and screening are vital.

CRC occurs in a stepwise fashion beginning with abnormal cell proliferation, and aberrant 

crypt foci leading to the development of adenomatous polyps, which are widely considered 

to be CRC precursors [4]. Colonic polyps are mostly classified on the basis of their 

properties to progress to malignancy (hyperplastic or adenomatous) as well as their structure 

including types (sessile, pedunculated, and flat), shape (tubular, villous, serrated) and size 

(small 1–5 mm, medium 5–10 mm, and large ≥ 10mm) [5]. Hyperplastic polyps are usually 

small, located in the rectum and sigmoid colon, and are generally thought to have no 

malignant potential. However, subsets of serrated hyperplastic polyps are associated with a 

risk of CRC [6]. Adenomatous polyps or adenomas account for approximately 70% of colon 

polyps and have the potential to progress to CRC over time if not screened and removed by 

colonoscopy or sigmoidoscopy [7].

In clinical settings, the number, and structure (shape, size, and type) of adenomatous polyps 

are vital indicators when predicting which patients are more prone to develop CRC based on 

polyp morphology. Thus, adenomas are important intermediates in colorectal carcinogenesis 

and identifying adenoma risk factors is important in preventing CRC. Although the specific 

etiologic agents responsible for adenomas and CRC are unknown, several genetic and 

environmental risk factors have been implicated.

Risk factors for colorectal adenomas and CRC

The role of genetic alterations in the progression of adenomas to CRC was initially 

described by Fearon and Vogelstein [2]. Genetic mutations in oncogenes (KRAS), tumor 

suppressor genes such as adenomatous polyposis coli (APC), CTNNB1 and p53, [2, 8–13], 

and alterations in pathways that revolve around chromosomal and microsatellite instability 

(MSI), mismatch repair (MMR) [14, 15], and CpG island methylation (CIMP) [16, 17] are 

key players in colorectal adenomas and CRC [18].

In addition, findings from genome-wide association studies (GWAS) support a polygenic 

model of CRC in which several common low penetrance susceptibility genes such genetic 

variants in vitamin D [19], cyclin D1, and Smad7 [20] contribute to increased risk of 

adenoma and CRC [21, 22]. Family history and age are also considered to be important CRC 

predictors as they have been associated with higher risk of adenomas and CRC. Studies 

suggest that genetic predisposition and somatic alterations in combination with 

environmental factors are responsible for CRC as a complex disease [20].

The most common environmental factors implicated in association with colorectal adenomas 

and CRC are lifestyle and diet. Several studies demonstrate that unhealthy diets such as 

those high in fat, alcohol, red meat, and low in fiber are associated with increased risk of 

adenomas and CRC [23]. Moreover, smoking, obesity, low physical activity [24, 25], sex 

(increased risk for males), ethnicity (predominantly in Non-Hispanic Black population [19, 

26], and lifestyle (lack of physical exercise) all contribute to the development of CRC. 

Adopting a healthy lifestyle, incorporating regular exercise and a diet high in fruits, 
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vegetables, and high-fiber foods could potentially reduce the risk of CRC. However, not all 

the results from dietary studies are consistent. A pooled study of fiber and CRC reported 

inconsistent findings in which about half of the studies showed a protective effect of fiber 

while the others did not [27]. These discrepancies could relate to the influence of the gut 

microbiota on fiber. The gut microbiota was not assessed in these studies.

Gut microbiota

The human colon hosts a very diverse and complex microbial community comprising an 

estimated 100 trillion bacteria of more than 1,000 heterogeneous species (harboring approx. 

4 million genes) along with viruses, archaea, and fungi. The collective bacterial genome 

referred to as the gut microbiome, harbors 150-fold more genes than the human genome [28, 

29]. Bacterial cells of the gut exceed the total number of host cells in the human body by 10-

fold [30]. These bacteria play key roles in modulating host metabolism such as absorption of 

indigestible carbohydrates, production of vitamins B and K, and promotion, maturation and 

development of innate and cell-mediated immunity and also help to maintain intestinal 

barrier function and appropriate immune response against pathogens [31, 32]. Under normal 

physiological conditions, the gut bacteria and the host co-exist in a state of homeostasis. 

However, the gut microbiota is increasingly associated with a variety of diseases including 

obesity, inflammatory bowel diseases, adenomas, and CRC [12, 33, 34].

Gut microbiota, adenomas, and CRC

Several studies implicate microbial dysbiosis, a pathological imbalance in the microbial 

community, in the etiology of colorectal adenomas and CRC. This is summarized in Fig. 

1A. Shen et al. used molecular fingerprinting and clone sequencing methods to characterize 

the adherent bacterial composition in normal rectal mucosal biopsies and observed that the 

gut bacterial composition of subjects with adenomas differed significantly from that of 

control subjects without adenomas [35]. They reported a higher proportion of 

Proteobacteria and lower abundance of Bacteroidetes in cases than in controls. These initial 

findings were confirmed in a follow-up study that used 16S rRNA gene amplicon 454 

pyrosequencing methods to characterize the gut bacteria. Sanapareddy et al. [36] found an 

overabundance of potential pathogens, Pseudomonas, Helicobacter, Acinetobacter and other 

genera belonging to the phylum Proteobacteria in rectal mucosal biopsies of adenoma cases 

compared to non-adenoma controls [36]. Brim et al. compared the fecal microbiota from a 

small sample group of African American patients with or without colorectal adenomas and 

noted a trend of altered microbial changes between adenoma patients and healthy controls 

[37]. In experimental models of CRC, Wei et al. observed dysbiosis associated with an 

increased abundance of Ruminococcus obeum, and Allobaculum spp. in precancerous lesions 

[38]. These findings suggest that changes in the gut adherent microbial community 

composition may play a role in the development of adenomas.

Other studies have also examined the microbiota in relation to CRC (Table 1). Marchesi et 

al. assessed the microbiota in colon tumors and matching normal tissue and observed 

bacterial dysbiosis in the tumors [39]. In particular, they noted an overabundance of 

Fusobacterium in tumors compared to matching normal tissue. Their initial findings for 
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Fusobacterium and CRC have been confirmed by others [40–45]. Furthermore, some studies 

characterized the microbiota in fecal samples from CRC subjects and healthy controls. 

Sobhani et al. examined fecal samples from CRC patients and controls and found that 

bacterial dysbiosis was associated with CRC and was characterized by an increased 

abundance of Prevotella [46]. Bacterial dysbiosis associated with CRC has been reported to 

have relative decreased abundance of obligate anaerobes, increased potential pathogenic 

bacteria, and reduction in proportions of beneficial butyrate-producing bacteria [45, 47–49]. 

Zackular et al. demonstrated that changes in the gut microbiota associated with 

inflammation and tumorigenesis directly contribute to colorectal cancer [50]. In 

experimental models, they transferred the fecal microbiota of tumor bearing mice to germ 

free mice and showed that the microbiota from the tumor bearing mice (donor) promoted 

tumorigenesis in recipient animals with twice as many colon tumors than mice given healthy 

microbiota. Similar to the donor microbiota, the microbiota of recipient mice was 

characterized by elevated abundance of Akkermansia, Odoribacter, and Bacteroides. Their 

observations suggest that the gut microbiota may be amenable to manipulation with 

antibiotics or probiotics to prevent the development of adenomas and CRC.

The overall consensus from these studies is that a combination of the expansion of 

procarcinogenic bacteria concomitant with the reduction of tolerogenic commensals such as 

Faecalibacterium prausnitzii [51] or spore-forming Clostridium clusters IV and XIV [52] 

may link bacterial dysbiosis to the risk of adenomas and CRC. However, it is difficult to 

discern from human studies whether gut bacterial dysbiosis is a cause or consequence of 

adenomas and CRC.

Specific gut bacteria, adenoma, and CRC

Overall, the mechanisms by which the gut microbiota influences adenoma and CRC 

development remain to be fully established. Moreover, the contribution of specific bacterial 

signatures and potential mechanisms are not yet elucidated. Potential mechanisms include 

promotion of chronic inflammation, DNA damage, and production of bioactive carcinogenic 

metabolites. We describe current reports on some specific bacteria.

Fusobacterium nucleatum: Various studies suggest that overabundance of Fusobacterium 

spp. is a common feature of CRC that may contribute to disease progression from adenoma 

to cancer. However, it is not clear whether Fusobacterium spp. is a cause or consequence of 

adenomas and CRC [53]. Two recent experimental studies provide further mechanistic 

insights into the relationship between F. nucleatum and colorectal neoplasia. Rubinstein et 

al. [54] observed that binding of F. nucleatum via its FadA adhesion molecule to E-cadherin 

leads to activation of β-catenin signaling to induce pro-oncogenic and inflammatory 

pathways (Fig. 1B. I). The second study by Kostic et al. showed that Fusobacterium 

modulates the tumor immune microenvironment to promote inflammation and tumorigenesis 

[43]. In the APC min mouse model of CRC, they showed that Fusobacterium increases 

infiltration of myeloid cells such as CD11b positive T cells, macrophages, and dendritic 

cells to induce an NF-κB-driven pro-inflammatory response to promote CRC. In a 

companion human study, increased FadA expression (> 10–100 times) correlated with 

elevated expression of oncogenic and inflammatory genes in CRC subjects. While these 
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findings support a role for Fusobacterium spp. and FadA in colorectal carcinogenesis, it is 

too early to determine their potential as a CRC biomarker or their utility as potential 

diagnostic and therapeutic targets. Thus, additional studies are needed.

Streptococcus gallolyticus (formerly S. bovis): DNA from S. gallolyticus is present in about 

20–50% of colon tumors compared to less than 5% in the normal colon [55]. It has also been 

associated with increased colonization of collagen-rich surfaces of colorectal adenomas and 

tumors [56]. It is thought that S. gallolyticus may contribute to neoplastic transformation in 

the colon via invasion through a breach in the epithelial barrier or virulence factors, which 

ultimately enhance inflammation and tumorigenesis [55, 56].

Enterotoxigenic Bacteroides fragilis (ETBF): Other bacteria possessing virulence traits such 

as ETBF are pro-oncogenic and may remodel the microbiota as a whole to promote mucosal 

immune responses and epithelial changes, which promote colorectal adenomas and cancer. 

ETBF produces a toxin known as fragilysin (B. fragilis toxin; BFT) which activates the 

Wnt/β-catenin signaling pathway to increase cell proliferation [57]. BFT also activates NF-

kB to induce production of inflammatory mediators. This leads to mucosal inflammation 

and, ultimately, colorectal carcinogenesis [58, 59]. ETBF was shown to promote 

tumorigenesis in a study by Wu et al. in which they colonized the APC min model of 

intestinal neoplasia with a pig isolate of ETBF. They observed a marked increase in colon 

adenoma and tumor formation in mice colonized with ETBF compared to control mice [60]. 

The enhanced tumorigenesis by ETBF could occur via activation of Stat3, induction of 

IL-17 [61] and DNA damage [62]. These observations support a link between bacterial 

antigens, virulence factors and colon adenomas and CRC.

Enterococcus faecalis: In experimental models, certain strains of E. faecalis have been 

associated with CRC and colitis- associated CRC. Some strains promote release of 

extracellular superoxide in host cells. The superoxide is converted by hydrogen peroxide 

could induce DNA damage [63], chromosome instability [64], and cancer in germfree 

Interleukin-10 (IL-10−/−) mice (Fig. 1B. III) [65, 66].

Escherichia coli: DNA damage induced by genotoxic E. coli strains could result in CRC-

initiating lesions. E. coli possessing the polyketide synthase (pks) Genotoxic Island, which 

encodes the enzymatic machinery to make Colibactin may also promote CRC via induction 

of DNA double strand breaks (Fig. 1B. I) [67]. Arthur et al. recently showed that deletion of 

pks from a strain of E. coli results in reduced DNA damage, tumor numbers, and tumor 

invasion, but not inflammation in mono-associated IL10−/− mice treated with azoxymethane 

(AOM) [68]. A few human studies suggest that E. coli harboring the pks is more common in 

CRC and inflammatory bowel disease patients [68, 69]. Thus, these findings lend strong 

support to the contribution of genotoxic E. coli in colorectal cancer.

Acidovorax: Acidovorax spp., an acid degrading member of the phylum Proteobacteria is 

also associated with increased risk of adenomas [36]. Acidovorax may promote colon 

neoplasia through increased metabolism of nitro-aromatic compounds [70] in the gut as well 

as induction of local inflammation by its flagellar proteins [71, 72].
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In addition to DNA damage and superoxide release, activation of inflammation is a common 

theme across these studies. Further research is needed to identify additional mechanisms by 

which bacteria and their virulence factors promote colorectal carcinogenesis. While 

monoassociation studies involving individual bacteria provide useful mechanistic insights, 

they may not fully represent the complex interactions between gut bacterial communities 

and adenomas and CRC.

Bacteria metabolites, adenomas, and CRC

The colonic microbiota influences a wide range of metabolic processes and functions that 

may lead to beneficial or detrimental effects within the human colon. Metabolites produced 

by colonic microbiota might play a critical role in the progression of adenomas to CRC, 

though limited information about the function of most of the gut bacteria and their 

metabolites is known to date. Certain gut bacteria produce short chain fatty acids (SCFAs) 

such as butyrate, which can serve as an energy source for colonic epithelial cells. Wang and 

colleagues observed a reduction in butyrate-producing bacteria in feces of CRC patients 

suggesting that microbial metabolites may contribute to the etiology of CRC [73]. A few 

members of the Clostridium cluster IX, XI, and XVIa are capable of metabolizing primary 

bile acids into secondary bile acids [74]. Secondary bile acids such as deoxycholic acid 

(DCA) might contribute to CRC progression (Fig. 1B. IV) by interacting with host 

metabolism and immunity [75–78].

Few human studies have evaluated the metabolome and microbiota in relation to adenomas 

or CRC. Findings from a recent study suggests that there is a correlation between bacterial 

dysbiosis, the metabolome, and colorectal adenomas [79]. More studies are needed to fully 

explore the relationship between the microbiota, metabolome, adenomas, and CRC.

Summary and conclusions

Although gut bacterial dysbiosis is increasingly recognized as a phenomenon in colorectal 

carcinogenesis, host-bacterial interactions still remain to be fully elucidated. In studying the 

gut microbiota and adenomas or CRC, it is unclear whether sampling the mucosa or the 

luminal content is the most appropriate. Bacteria in the lumen are transient and may be more 

influenced by diet while the adherent mucosal bacteria are considered residents and may be 

more relevant to CRC because of their close contact with the host mucosa and immune cells. 

To date, there is no clear consensus. Studies suggest that bacteria communities in the feces 

differ from the mucosa [80, 81]. Findings from two studies that compared the microbiota in 

mucosa, rectal swabs, and feces of the same patients were inconclusive [82, 83]. Additional 

studies are needed to further define the best sampling location so as to enhance uniformity 

and reproducibility among studies.

The role of the gut microbiota in the progression from adenomas to CRC is undoubtedly 

multifactorial and can affect the various stages of the neoplastic process. Microbial 

dysbiosis, induction of mucosal inflammation, and production of reactive metabolites are all 

processes that might act in concert to set the colonic mucosa on the initial stage of the 

adenoma-carcinoma process. Further research in experimental animal models is necessary to 

better understand the mechanisms that underlay the association between the gut 
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microorganisms and CRC. The intestinal microbiota represents an enormous reservoir for 

the discovery of novel signatures that could be potentially useful as biomarkers and 

predictors for adenomas and CRC. Manipulation of the gut microbiota to restore normal 

physiologic balance might be beneficial in preventing colon adenomas and CRC. 

Furthermore, beneficial or “friendly” bacteria that have been specifically engineered to 

provide desired inflammatory responses and epigenetic expression could have the potential 

to be useful therapeutically in CRC.

In conclusion, the advances in microbiome research provides an opportunity to elucidate the 

exact connections between the host gut microbiome and the onset of CRC, which will 

hopefully lead to safer and more efficacious treatments in the near future.
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Figure 1. 
A. Schematic diagram of colonic microbiota and adenomas progression to CRC.

Shifts in the balance of host-microbial symbiotic relationships derail the state of homeostasis 

(normal physiology) in the human gut. Dysbiosis, an imbalance of microbial population 

dynamics, is characterized by decreased beneficial commensals/symbionts, overexpression 

of pathogenic microbiota such as genotoxic bacteria, invasive and inflammation triggering 

microbiota, procarcinogenic bacteria and cancer enhancing bacterial antigens and 

metabolites. Consequences of the microbial dysbiosis lead to the chronic inflammation after 

damaging the host defenses (natural barrier) can further drive to the enhancement of small 

adenomas to adenocarcinoma by multistep processes.

B. Proposed mechanisms of specific bacteria and CRC.

The human gut microbiome drives CRC via several mechanisms. Some of the reported 

mechanisms of specific bacteria for the development of CRC are highlighted here.

A. E. coli, Gram-negative facultative anaerobic bacterium, considered as one of the 

potential etiological agents of CRC due to its genotoxins such as Colibactin, and 

cytolethal distending toxin (CDT). These products could induce DNA damage and 
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influence the progression of CRC due to genomic instability from MSI, MMR, and 

mutations.

B. F. nucleatum, Gram-negative anaerobic bacterium, has been linked to CRC 

progression but the exact underlying mechanisms are still unknown. A potential F. 

nucleatum-driven CRC mechanism is its invasion into epithelial cells and 

activation of oncogenic and inflammatory responses through its unique FadA 

adhesin. Active FadA binds to E-cadherin, mediating Fusobacterium attachment 

and invasion into the epithelial cells. This activates β-catenin signaling, leading to 

increased activation of inflammatory genes (NF-κB) and secretion of cytokines 

interleukin-6 (IL-6), IL-8, and IL-18, and oncogenes and drives to adenoma to 

adenocarcinoma.

C. E. faecalis, has been shown to produce extracellular superoxide and hydrogen 

peroxide, which damage DNA and also further enhances chromosomal instability 

in colonic epithelial cells. Chromosomal instability, a common cause of genomic 

instability in tumors, is characterized by nucleotide additions or deletions, 

inversions, translocations, and complex rearrangements, and ultimately contributes 

to the dramatic and unstable alteration in genomic state critical for tumor initiation 

in the colorectum.

D. Gram-positive, spore forming bacteria in cluster IX of the genus Clostridium spp. 

convert primary bile acids into a secondary bile acid such as deoxycholic acid 

(DCA). DCA is widely considered as a carcinogen that is associated with DNA 

damage via the production of free radicals or reactive oxygen species (ROS) and 

implicated to adenoma-inflammation-CRC through enhancing genomic instability 

and inflammation.
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Table 1

Human studies of gut bacteria and colorectal cancer

Study Sampling site Disease Findings Reference

Geng et al. 2013 Tumor/matching normal tissue of 
Chinese CRC patients

CRC Overabundance of Fusobacterium spp., 
Roseburia in tumor tissues and over-

representation of Microbacterium, 
Anoxybacillus bacteria away from tumor 

site

[45]

McCoy et al. 2013 Rectal mucosa Adenoma Fusobacterium spp., higher abundance in 
adenoma subjects.

[43]

Castellarin et al. 
2012

Tumor/matching normal tissue CRC Overabundance of Fusobacterium 
nucleatum sequences

[41]

Chen et al. 2012 Intestinal lumen, mucosa (rectal 
swabs), fecal samples, tumor/

matching normal tissue

CRC Lower bacterial diversity in tumor, altered 
microbial structures in CRC lumen 

compared to mucosa.
CRC might be due to cometabolism by 
lumen microflora and direct interaction 

between host and mucosa-associated 
microbiota.

[81]

Kostic et al. 2012 Tumor/matching normal tissue CRC Altered microbiota, high abundance of 
Fusobacterium sequences and low 

Bacteroides and Firmicutes sequences in 
tumors

[42]

Sanapareddy et al. 
2012

Rectal mucosa Adenoma Bacterial dysbiosis, altered diversity and 
increased richness

[37]

Marchesi et al. 2011 Tumor/matching normal tissue CRC Bacterial dysbiosis, high abundance of 
Fusobacterium in tumors

[40]

Shen et al. 2010 Colonic mucosa of adenoma/non- 
adenoma

Adenoma Bacterial dysbiosis, altered diversity, higher 
abundance of Proteobacteria and lower 

abundance of Bacteroides in adenoma cases

[36]

Ahn et al. 2013 Fecal sample CRC Reduced bacterial diversity in CRC cases [83]

Brim et al. 2013 Fecal sample Adenoma Microbiota changes at the sub-genus level 
but not genome/functions level in colon 

polyps.

[38]

Ohigashi et al. 2013 Fecal samples from CRC/adenoma/
non-adenoma

CRC& Adenoma Significant differences in the intestinal 
environment; altered microbiota (decreased 
particularly obligate anaerobes), decreased 

SCFAs, and elevated pH in CRC.

[48]

Ohigashi et al. 2013 Fecal sample before/after surgery CRC Marked decreased of obligate anaerobes, 
increased pathogenic bacteria, and 

reduction of short chain fatty acids detected 
after surgery for CRC

[49]

Weir et al. 2013 Fecal sample CRC Decrease butyrate producing bacteria [50]

Wu et al. 2013 Fecal sample CRC Bacterial dysbiosis, altered diversity, 
enriched Bacteroides, more abundant of 
Fusobacteriumand Campylobacter sps. 
Decreased butyrate producing bacteria

[46]

Sobhani et al. 2011 Fecal sample CRC Bacterial dysbiosis linked with elevated 
IL-17 in CRC patients

[47]
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