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Abstract
Augmenting cancer treatment by protein and gene delivery continues to gain momentum based on
success in animal models. The primary hurdle of fully exploiting the arsenal of molecular targets and
therapeutic transgenes continues to be efficient delivery. Vectors based on adeno-associated virus
(AAV) are of particular interest as they are capable of inducing transgene expression in a broad range
of tissues for a relatively long time without stimulation of a cell-mediated immune response. Perhaps
the most important attribute of AAV vectors is their safety profile in phase I clinical trials ranging
from CF to Parkinson’s disease. The utility of AAV vectors as a gene delivery agent in cancer therapy
is showing promise in preclinical studies. In this review, we will focus on the basic biology of AAV
as well as recent progress in the use of this vector in cancer gene therapy.

Keywords
adeno-associated virus vector

Gene therapy was initially designed for treatment of genetic diseases. To date more than 400
gene therapy clinical trials have been conducted worldwide, over half of them related to cancer
therapy. One attractive viral vector for gene therapy is adeno-associated virus (AAV). Although
there have been fewer studies examining AAV vectors for cancer gene therapy than other viral
vectors, numerous advantages of AAV make it an ideal vehicle for the delivery of genes. These
desirable traits include its abilities to infect both dividing and nondividing cells, to transduce
a broad range of tissues in vivo such as brain, liver, muscle, lung, retina, and cardiac muscle,
and to initiate long-term gene expression in these tissues. Furthermore, wild-type AAV does
not cause any known disease and does not stimulate a cell-mediated immune response.1 Among
the serotypes of AAV, only AAV-2 vectors are now being used for clinical gene transfer for
cystic fibrosis, hemophilia, and Canavan’s disease.2 Here, we review the biology of AAV,
recent progress on recombinant AAV vectors (rAAV), and the status of rAAV as cancer gene
therapy vectors.
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Biology of AAV
AAV is a single-stranded DNA parvovirus with a genome of 4700 nucleotides. As a member
of the dependovirus subfamily, AAV is reliant on another virus such as adenovirus or herpes
simplex virus to complete its life cycle. In the absence of this helper virus, AAV can establish
latency by integrating site specifically into the human chromosome 19 AAVS1 site.3

The genome of AAV contains two open reading frames (ORF) and palindromic inverted
terminal repeat elements (ITR) that flank the two ends of the genome. These ITR are the
minimal cis-acting elements necessary for the integration and/or rescue of the AAV genome
during the latent stage of its life cycle as well as for the replication of the viral genome and its
subsequent packaging into the capsid shell. In addition, only these 145 base ITRs are required
in cis to generate recombinant AAV; all other viral sequences are supplied in trans.4

The proteins responsible for replication (rep) are encoded by the left ORF, while the right ORF
encodes for the structural proteins of the capsid (Cap). The three capsid proteins (Vp1, Vp2,
and Vp3) are generated from a single gene from which translation is initiated at different start
codons. As a result, these structural proteins have identical C-termini, but possess unique N-
termini. The Cap proteins differ in both size and their distribution in the capsid. Vp1 is the
largest with a molecular weight of 87 kDa, while Vp2 and Vp3 have molecular weights of 73
and 62 kDa, respectively.5 Vp3 is the most abundant protein comprising nearly 80% of the
total protein in intact capsids, while Vp1 and Vp2 each represent 10%.4,6,7

AAV infection involves a multistep process beginning with virus binding to the cell surface,
followed by viral uptake, intracellular trafficking, nuclear localization, uncoating, and second-
strand DNA synthesis.8–13 AAV2 initiates infection by binding to its primary receptor,
heparan sulfate proteoglycans (HSPG).8 Recent work has mapped the heparin-binding site in
the AAV2 capsid to two amino acids (a.a. 585 and 588) which appear to play a significant role
in binding HSPG.14,15 αvβ5 integrin and fibroblast growth factor receptor 1 (FGFR1) have
been recognized as coreceptors for AAV2 infection.9–11 FGFR1 probably functions to
enhance the viral attachment process,10,11 while the role of αvβ5 integrin may involve viral
endocytosis, mediated mainly by clathrin-coated pits.11,13,16 In addition, AAV2 binding to
the cell surface via αvβ5 integrin may activate Rac1, which induces the stimulation of
phosphoinositol-3 kinase (PI3K), culminating in the rearrangements of microfilaments and
microtubules that support trafficking of AAV2 to the nucleus after endocytosis.16

In order for AAV to continue its lifecycle, it must be released from the endosome. Low
endosomal pH appears to be necessary for this,11,17 and the phospholipase A2 (PLA2) domain
located in the VP1 unique region may also play a role.18 Following escape from the endosome,
AAV rapidly travels to the cell nucleus and accumulates perinuclearly beginning within 30
minutes after the onset of endocytosis. Within 2 hours, viral particles can be detected in the
cell nucleus, suggesting that the AAV particle enters the nucleus prior to uncoating.11,19
Interestingly, the majority of the intracellular virus remains in a stable perinuclear
compartment.20,21 Perinuclear accumulation appears to be problematic for both permissive
and nonpermissive cells, suggesting that the process of nuclear entry may also affect vector
transduction in certain cell types.22

After receptor binding, internalization, and nuclear entry, AAV virions uncoat and release a
single-stranded DNA template, which must be converted to a duplex intermediate before
transcription can ensue. The efficiency of forming the complementary strand can significantly
impact vector transduction.23,24 Defects in any or all of the stages of viral infection discussed
above can influence the resulting transduction profiles of recombinant AAV in different cell
types.
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AAV serotypes
Until recently, the majority of the research conducted using AAV-based vectors employed
serotype 2. Vectors based on AAV2 have been the most studied and are currently used in
clinical trials for some inherited diseases.2,25–28 Preliminary data from these patients has
further emphasized the safety of AAV for human applications. Stable and efficient transgene
delivery by AAV2 has been demonstrated to correct diseases in animal models. For example,
AAV2 vectors delivering genes encoding antiangiogeneic proteins, neurotrophic factors, or
proteins with retinal specific functions have shown promise for the rescue of retinal
degeneration in various animal models.29–37 Attempts to correct the factor IX deficiency of
hemophilia B by delivery of an AAV2 vector encoding FIX to muscle, liver, and lung in
different animal models resulted in sustained FIX expression lasting for the lifetime of the
animal.38–45

To date eight additional primate serotypes of AAV have been identified,46–52 the majority of
which have been isolated as contaminants of adenoviral cultures. AAV5, however, was isolated
from a condylomatous lesion,53 while both AAV7 and 8 were cloned from rhesus monkey
tissues.48 With the exception of AAV6, which differs from AAV1 by only six amino acids,
all serotypes show a significantly different amino-acid sequence in the capsid proteins.48,54
Neutralizing antibody assays have revealed complete crossneutralizing antibody response
between AAV1 and AAV6, and only partial crossreaction between AAV2 and AAV3 (Li and
Samulski, unpublished data).48,52 No evidence of crossreacting neutralizing antibody was
seen between any of the other serotypes. Recently, the receptors for other serotypes have been
identified. AAV-4 and AAV-5 use α2–3 O-linked and N-linked sialic acid for cell binding,
respectively,55 and the PDGF receptor was also found to play a critical role in AAV5 infection.
56 The cellular receptors for serotypes 1, 6–9 have yet to be determined.

Many in vivo studies have clearly demonstrated that the various AAV serotypes display
different tissue or cell tropisms. AAV-1 and AAV-7 are the serotypes most efficient for the
transduction of skeletal muscle.48,51,57 AAV-3 is superior for the transduction of
megakaryocytes.58 AAV-5 and AAV-6 infect apical airway cells efficiently.59,60 AAV-2,
AAV-4, and AAV-5 transduce different types of cells in the central nervous system.61 AAV-8
and AAV-5 can transduce liver cells better than AAV-2.48,62 AAV-4 was found to transduce
rat retina most efficiently, followed by AAV-5 and AAV-1.63,64 Further work on AAV
serotypes should result in the identification of all domains involved in receptor binding and
trafficking. This information will be useful in the development of AAV retargeting vectors.

By using different AAV serotypes in muscle and liver, higher gene expression levels of FIX
were observed than with AAV2 FIX vectors.65,66 The tropism of AAV serotypes has been
tested in the CNS, and disease phenotype has been corrected or improved in the animal models
of brain disorders, such as Parkinson’s disease,61,67–73 lysosomal storage diseases,74,75 or
seizures.76,77 In addition, AAV efficiently transduces the rodent heart suggesting that it may
be useful to treat heart diseases.78–84

Recent progress in AAV vector development
The expansion of the field of AAV-based gene therapy has been driven by continuing research
of the biology of this unique parvovirus.4,85,86 Here, we will review progress in improving
gene delivery by modification of the capsid as well as strategies employed to increase transgene
expression.
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Modification of AAV capsid to change tropism
The tropism of AAV has been limited to particular cell types but can be expanded to include
other cell types through modification of the capsid to target specific cells or enhance AAV
transduction. Three approaches have been used to modify AAV virions: receptor targeting,
mixed capsids in the shell of the virion, or marker rescue to produce recombinant virus.

Receptor targeting.—Two different strategies have been used to achieve AAV receptor
targeting: chemical cross-linked bifunctional antibodies and genetic manipulation of the capsid
gene. Two groups87,88 have exploited the use of bifunctional antibodies to target AAV2 virus
to a nonpermissive cell line. Bartlett et al described a bispecific f(ab′γ)2 antibody with
specificity for the AAV2 capsid and the surface receptor αIIbβ3 integrin. After incubation of
virus with the antibody, the viruses were able to transduce human megakaryoblast cells (DAMI
and MO7e),87 which typically are nonpermissive for AAV2 infection. Ponnazhagan et al used
a novel conjugate-based targeting method to enhance tissue-specific transduction of AAV2-
based vectors. In this approach, the high-affinity biotin–avidin interaction was utilized as a
molecular bridge to crosslink purified targeting ligands. A recombinant bispecific protein
containing sequences of human epidermal growth factor (EGF) or human fibroblast growth
factor 1α (FGF 1α) as a target cell ligand was genetically fused to core-streptavidin.
Conjugation of the bispecific targeting protein to the vector was achieved by biotinylated
rAAV-2. The incubation of virus with conjugated protein led to a significant increase of
transduction in EGF receptor-positive SKOV3.ip1 cells and FGF receptor 1 alpha-positive
M07e cells, respectively.88 The availability of high-affinity viral surface binding molecules
such as monoclonal antibodies makes the above approaches feasible when knowledge of the
three-dimensional structure of the viral surface is lacking. Limitations to the bifunctional
antibody approach include how stably and efficiently the intermediate molecule interacts with
the virus and the binding affinity of the intermediate to cell-specific receptors, which allow
virus uptake and correct intracellular trafficking.89

A second approach for receptor targeting is to genetically alter the capsid-coding region. Prior
to the elucidation of the AAV crystal structure, three strategies have been employed to
determine domains of AAV surface that can be modified:54 (a) sequence alignment of AAV2
and other parvoviruses with known crystal structure,90,91 (b) randomly insertional
mutagenesis of the entire AAV-2 capsid genome,92–94 and (c) incubation of AAV2
neutralizing serum with AAV2 capsid peptide pools to define the peptides which represent
immunogenic regions on the virion surface.95

By aligning the capsid sequences of AAV2 and CPV, Girod et al predicted six sites (amino-
acid positions 261, 381, 447, 534, 573, 587) that could tolerate the insertion of a targeting
ligand. Using the 14 amino-acid peptide L14 that included an RGD motif as a ligand, they were
able to generate rAAV with packaging efficiencies similar to wild-type AAV2. Furthermore,
one insertion mutant (at position 587) efficiently transduced tumor cell lines that express the
L14-specific integrin receptor on the surface.90 Grifman et al91 aligned the AAV2 capsid to
AAV serotypes 1, 3, 4, and 5 and demonstrated the potential insertion sites that are identical
to the findings of Girod et al.

The first attempt to target specific cells was the insertion of a single-chain antibody against
human CD34, an antigen found on the surface of hematopoietic progenitor cells, at the N-
terminal of VP1, VP2, and VP3.96 The virions made from the mixture of mutant and wild-
type capsids exhibited significantly increased infectivity for the CD34-positive human
leukemic cell line KG-1, which is refractory to wild-type rAAV infection. Wu et al92 used a
similar strategy to demonstrate particle production with the insertion of the serpin receptor
ligand at the N-terminal of VP2. This ligand-containing virus exhibited 15-fold higher
transduction for the lung epithelial cell line IB3 than wild-type AAV2, indicating that the N-
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terminus of VP2 is exposed on the surface of the virion similarly to canine parvovirus (CPV).
97,98

The identification of the regions located on the surface of the capsid and the corresponding
amino acids responsible for heparin sulfate binding is instrumental for subsequent genetic
modifications to the AAV vector. To this end, both Rabinowitz et al93 and Wu et al92 have
used a random site-directed mutagenesis approach, which has provided a wealth of information
for later structural study of AAV2.

Recently, Reid et al99 combined the two approaches of chemically crosslinked bifunctional
antibodies and genetic manipulation of the capsid gene to change the tropism of AAV2. In this
study, a peptide (Z34C) from Staphylococcus aureus protein A was inserted at position 587 of
the AAV2 capsid. Since protein A recognizes and binds to the Fc fragment and not the Fab
domain of immunoglobins, the Fab domain remains free to bind the antigen. rAAV2-Z34C
vectors coupled to antibodies against CD29 (beta(1)-integrin), CD117 (c-kit receptor), and
CXCR4 specifically transduced human hematopoietic cell lines M-07e, Jurkat, and Mec1,
respectively.

Recently, Xie et al100 determined the atomic structure of AAV-2 by X-ray crystallography.
This study showed that the core β-barrel motif of the AAV2 capsid monomer, comprised of
two antiparallel β-sheets, is very similar in structure to that of other parvoviruses.101–104
Major differences between AAV2 and the other parvovirus capsid monomers were noted in
the loops between the strands of the core β-barrel. These looped structures correspond to
regions of the capsid responsible for interactions with antibodies and cellular receptors. An
interesting feature of the AAV-2 surface topology are three clusters of three peaks centered
about the three-fold axis of symmetry.105,106 These peaks arise from the interaction of two
neighboring subunits. Recently, five amino acids (arginines 484, 487, 585, and 588 and lysine
532) were identified that mediate the natural affinity of AAV2 for HSPG. These five amino
acids contribute to a basic patch on one side of each three-fold related spike in the atomic
structure of AAV2.14,15,100

Marker rescue.—By systematically exchanging domains between AAV1 and AAV2, Hauck
et al have identified regions on the AAV1 capsid responsible for its ability to transduce skeletal
muscle. This approach, which relied on cloning and assessing each individual construct, was
successful and demonstrated the importance of such a strategy.107 A marker rescue approach
has also been used as an alternate method to generate chimeric AAV vectors. One advantage
of this method is that domains are swapped based on selection and function in the specific cells
or tissues. Several observations have indicated the feasibility of this approach. First,
recombination occurs between the serotypes in nature. For example, AAV6 appears to be the
product of recombination between AAV1 and AAV2.51 Second, as few as six nucleotides of
homology between two AAV2 mutant genomes was enough to result in recombination.108
Third, a high degree of homology exists among capsid sequences of known serotypes, about
80% homology among serotypes 1, 2, 3, 7, and 8, and around 60% homology between serotypes
4 or 5 and the other serotypes.48,54 This homology is distributed throughout the whole capsid
genome and provides the platform for recombination between individual serotypes.

We recently completed a study using AAV type 2 DNA in “marker rescue” experiments with
AAV3 capsid DNA. The homology between the capsid DNA of the two serotypes allowed for
homologous recombination, resulting in a mixed population of chimeric viral genomes at the
transfection stage. The chimeric capsid DNA was PCR amplified, cloned into a shuttle vector,
and examined for biological properties. According to the crossover regions, four classes of
chimeras were observed. The smallest recombinant only had a 16-nt fragment from AAV3
capsid, whereas the largest one contained the whole type 3 capsid sequence that was used for

Li et al. Page 5

Cancer Gene Ther. Author manuscript; available in PMC 2006 February 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“marker rescue”.109 Marker rescue is a very valuable technique to map or define the domains
that play a role in the AAV transduction process, including receptor binding, trafficking, and
uncoating in specific cells. Most importantly, a panel of chimeric viruses generated from
marker rescue in specific cells will exhibit novel tropisms and high transduction efficiency for
vector targeting in human gene therapy.

Mixed capsid vector.—Based on the high degree of homology between the amino-acid
sequences of the different AAV serotypes and what is known about the AAV2 crystal structure,
it is possible to form a virion shell from capsid subunits of different serotypes to generate mixed
capsid vectors. For example, each virion from mixed vectors of AAV1 and AAV2 should have
six kinds of capsid proteins: AAV1 Vp1, Vp2, Vp3 and AAV2 Vp1, Vp2, Vp3. These types
of mosaic virions may exhibit a broader tissue tropism due to the combination of the tropisms
from different serotypes, or they may exhibit enhanced transgene expression since different
serotypes may have different cellular trafficking pathways that serve to initiate transgene
expression more efficiently. They may be more readily purified using a heparin column or
sialic acid column if the mosaic virions contain capsids from AAV2 or AAV4/5. Additionally,
they may be more stable and therefore more readily produced in high amounts than vectors
made by epitope insertions into the capsid.90,92,93,96,110,111

Hauck et al mixed AAV1 and AAV2 capsids to produce AAV1/2 mosaic virions. These viruses
bound heparin and reacted with neutralizing antibodies against both AAV1 and AAV2. When
injected into mouse muscle and liver, the AAV1/2 mosaic virus composed of 50% AAV1 and
50% AAV2 induced higher transgene expression than AAV1 or AAV2 vectors alone.110 We
have extended these studies to assess the mixing of serotypes 1–5 and based on data from these
experiments propose that three subgroups of AAV exist according to their abilities to generate
mixed capsids.111 Similar mixing experiments performed with newly identified AAV
serotypes should allow assignment of these newer serotypes to an appropriate subgroup and
may reveal new and novel properties.

Split vectors
The optimal packaging size of rAAV vectors is between 4.1 and 4.9 kb with a maximum
capacity of 5.2 kb.112,113 This small packaging size of AAV has always been thought to
preclude its use for delivering genes larger than 5 kb, such as dystrophin and factor VIII, or
the use of large regulatory elements to enhance or control transgene expression. Recently, a
new approach has been developed to overcome this vector size limitation by exploiting the
unique heterodimerization ability of AAV DNA.114–117 rAAV genomes often form head-to-
tail concatemers through intermolecular recombination.118,119 Therefore, by splitting a gene
and its regulatory elements into two separate rAAV vectors, head-to-tail heterodimers of the
two rAAV vectors will be formed after codelivering two vectors into target cells. The presence
of an appropriate intron or splicing signal sequences then allows rejoining on an intact
expression cassette following post-transcriptional processing.120 This split-gene or trans-
splicing strategy has effectively increased the packaging capacity of rAAV vectors to 10 kb
and has been applied to factor VIII (F8) cDNA (7 kb). After intraportal vein injection of two
rAAV/F8 vectors in immunodeficient mice, 2% of the normal level of factor VIII was achieved
for 4 months.121 The major disadvantage of this approach is the reduced transgene expression
due to low recombination of the few genome copies in the nucleus. However, studying the
mechanism of AAV concatemer formation should provide novel approaches to improve this
type of recombination and enhance transgene expression. In addition, the use of other serotypes
may increase recombination because certain serotypes may transduce more efficiently and
introduce more copies of the AAV genome to the nucleus.122
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Self-complementary vectors
The second-strand synthesis is a limiting factor for rAAV transduction.23,24 Early studies
demonstrated that DNA of less than half the size of the wtAAV genome can be packaged as a
dimer or a diploid monomer.4,112,123 Based on this finding, McCarty et al recently generated
a novel double-stranded AAV vector that was named self-complementary vector (scAAV). In
HeLa cells, scAAV demonstrated an increase in transduction capacity of 5–140-fold over
conventional rAAV. Inhibitors of DNA replication did not affect the transduction efficiency
of scAAV vectors. Consistent with in vitro results, delivery of scAAV/mEpo vectors into
mouse liver resulted in much faster and higher transgene expression than the full-length single-
stranded DNA vector. This indicates that the scAAV vectors initiate transgene expression
immediately after virus uncoating and entry into the nucleus.124,125 scAAV vectors will be
extremely useful when addressing concerns about current vector production and rapid, high
transgene expression for AAV vectors in clinical trials.

Potential application of AAV vectors in cancer gene therapy
Although recombinant adenoviral vectors have been utilized for a majority of both preclinical
and clinical trials in cancer gene therapy, studies in animal models have suggested therapeutic
benefits for tumor treatment using AAV vectors. No T-cell-mediated cytoxicity to AAV
vectors has been observed even though AAV vectors can induce strong humoral immune
response. AAV can initiate long-term transgene expression and this transduction is attributed
to episomal concatamer formation without integration into host chromosome. Based on this
point, AAV vectors would appear less mutagenic. Although AAV package capacity is
restrained to less than 5 kb, most of therapeutic genes for cancer treatment fall into this range.
Some initial limitations of AAV now appear resolved. Production protocols allow for high titer
and can be scaled up. Slow onset of gene expression, believed to be related to conversion of
ssAAV vector genome to double-stranded templates, now demonstrate fast kinetics when
delivered as scAAV vector. This advancement, which further reduces AAV packaging size
(2.5 kb), will still accommodate most anticancer genes (e.g. cytokines, RNAi, antiangiogenesis
genes, etc.). With new serotypes and potential to develop targeting vectors, AAV holds great
promise as a viral vector delivering therapeutic genes such as immune regulation (e.g.
cytokines) and antiangiogenesis genes (e.g. endostatin, angiostatin, PEDF) for cancer gene
therapy. Cancer gene therapy with AAV vectors is still in its infancy; however, AAV-mediated
cancer gene therapy has shown promising results in preliminary experiments. The approaches
for cancer gene therapy with rAAV vector can be divided into four major categories:
antiangiogenesis, immuno-modulation, suicide gene therapy, and repair of damaged tumor
cells.

Antiangiogenesis therapy
Targeting the vasculature has been proven to be an attractive strategy in the treatment of cancer
since solid tumor growth and metastasis depend on angiogenesis.126 To date, AAV2-based
vectors have been used to deliver different antiangiogenesis genes to tumors in animal models
with promising results.127–131 Ma et al used an AAV2/angiostatin vector to treat human
glioma in an animal model. Following either intratumoral or intramuscular injection with this
vector, approximately 40% of the animals survived for over 10 months free of tumors.127,
129 AAV2/angiostatin vectors delivered directly to the liver via portal vein injection
significantly suppressed the growth of established metastatic EL-4 lymphoma tumors in the
liver and prolonged the survival time of the animals.131 In another study, AAV2/angiostatin
delivered to the liver via portal vein injection or tail vein injection initiated long-term sustained
angiostatin expression in the sera, resulting in inhibited tumor growth in B16F10 melanoma
and Lewis Lung Carcinoma (LLC) models within a narrow dose range. The addition of
chemotherapy extended the survival of tumor-grafted mice treated with AAV2/angiostatin.132
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In addition to angiostatin, other antiangiogenesis genes have been packaged into AAV shells
for cancer therapy. Davidoff et al delivered a soluble, truncated form of the vascular endothelial
growth factor receptor-2 (Flk-1) into liver via AAV vectors. Of the 15 mice, 10 receiving the
vectors did not develop renal tumors, while the five remaining mice exhibited a tumor growth
delay.128 Shi et al demonstrated that intramuscular injection of rAAV2/human endostatin
vectors led to sustained serum transgene expression which significantly inhibited tumor vessel
formation and tumor growth.130 Tumor growth was also significantly reduced following
transduction with AAV2/Timps vectors (tissue inhibitors of matrix metalloproteinases) into
Kaposi’sarcoma engrafted nude mice.133

Since various antiangiogenesis proteins prevent tumor vascularization through different
mechanisms, it has been suggested that a combination of therapies utilizing different
antiangiogenesis agents potentiates an additive inhibitory effect on tumor growth.134–136
Recently, Ponnazhagan used this approach and delivered both endostatin and angiostatin in a
single AAV2 shell. A synergistic protective efficacy was demonstrated on tumor development.
137 Consistent with the above observation, we injected AAV1/murine angiostatin and AAV1/
murine endostatin into xenografted mice intramuscularly. The combination of endostatin and
angiostatin gene therapy suppressed LLC cells growth more than either endostatin or
angiostatin alone in the xenograft tumor mice, with tumor growth inhibition of 91, 62, and
82%, respectively.138

Immunotherapy
Tumor immune therapy has been studied for over a century. Gene therapy for cancer has
brought new optimism to this field by targeting both immune effector cells and tumor cells for
gene transfer. Many approaches and strategies have been exploited to use AAV vectors to
deliver genes to enhance the immune response against tumors through targeting either tumor
cells or nontumor cells.

Interferon (IFN) has an antitumor effect by directly inhibiting tumor cell proliferation or
immune modulation. In an early study, recombinant AAV2 viruses encoding a synthetic type
I IFN gene (IFN-con1) were used to infect various human tumor cell lines. Tumor growth was
not observed up to 3 months after these transduced cells were inoculated into nude mice;
whereas mice receiving nontransduced cells developed tumors within 7–10 days. When a
mixture of transduced and nontransduced cells was injected into mice, tumors developed
slowly and then completely regressed. Tumor regression was also demonstrated when mice
with an established Eskol tumor were treated with AAV/IFN-con1-transduced 293 cells. These
results implicate that the human IFN-con1 gene delivered by AAV vectors has antitumor effects
both directly and by tumor-targeted gene therapy.139 Intratumoral injection of AAV/IFN-β
vectors completely inhibited the growth of engrafted gliomas.140 Recently, Mohr et al used
AAV2 vectors to deliver tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL/Apo2L), a member of the TNF superfamily of cytokines involved in various immune
responses and apoptotic processes, into human colorectal cancer cells. The tumor growth in
mice was significantly inhibited by delivery of AAV2/TRAIL vectors.141

Vaccination represents a very promising alternative immunotherapy for cancer. Transduction
of B cells from chronic lymphocytic leukemia (CLL) patients with AAV2/CD40 ligand led to
the upregulation of the costimulatory molecule CD80 on both infected and noninfected CLL
cells, and induced specific proliferation of HLA-matched allogeneic T cells, indicating the
possibility of vaccination in cancer patients using tumor cells infected with AAV.142 Liu et
al explored a potential vaccine to use vectors encoding a dominant HPV16-E7 cytotoxic T-
lymphocyte (CTL) epitope and a heat–shock protein in human papillomavirus (HPV)-induced
tumors. A potent antitumor response against challenge with an E-7-expressing syngeneic cell
line in immunocompetent mice was demonstrated after intramuscular injection of AAV vectors
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encoding the fusion protein. Both CD4- and CD8-dependent CTL activity was induced in
vitro.143 Dendritic cells (DCs), the most potent antigen-presenting cells, have also been used
as targets for cancer gene therapy. Even though AAV vectors do not appear to infect DCs
following intramuscular injection, several recent studies have indicated that immature DCs
were transduced by AAV.144–147 DCs infected with an AAV vector containing the HPV-16
E6 or E7 gene induced a strong CTL response against primary cervical cancer cell lines after
7 days of priming. Tumor cell killing was significantly blocked by the addition of anti-MHC
class I antibodies, indicating CTL function via the MHC class I-restricted killing. In addition,
high levels of CD8 + T cells were induced by transduced DC with high levels of CD80.148,
149 Based these observations, AAV-transduced tumor cells or DCs induce very strong CTL
response to tumor cells.

Suicide gene therapy and enhancing chemotherapy
The basic principle behind suicide gene therapy is the selective intratumoral activation of a
nontoxic drug by specific transfer of the activating transgene into tumor cells. Using an albumin
promoter and an α fetoprotein enhancer, AAV-mediated delivery of the herpes simplex virus
thymidine kinase (HSV-TK) gene can selectively kill α-fetoprotein-positive hepatocellular
carcinoma cells in a mouse model,150 and a bystander effect was demonstrated followed by
the administration of ganciclovir (GCV).151

Similar in vivo therapeutic effects of AAV-mediated delivery of the HSV-TK gene have also
been reported in an experimental glioma model and a human oral squamous cell carcinoma.
152,153 It is well known that irradiation can enhance the transgene expression of AAV vectors
via increased second-strand synthesis of the AAV genome. Kanazawa et al used a combination
of irradiation and the HSV-TK gene delivered by an AAV2 vector to efficiently kill a human
maxillary sinus cancer cell line in vitro.154 In addition, the same group demonstrated that
topoisomerase inhibitors can also enhance the cytocidal effect of AAV/HSV-TK on cancer cells
by increasing second-strand synthesis of AAV vectors.155

Autologous peripheral blood progenitor cell (PBPC) transplantation has been used for
treatment of many solid tumors in patients; however, PBPC contaminated with tumor cells
may give rise to relapse following myelo-ablative therapy and PBPC transplantation. In vitro
experiments have revealed that AAV2 transduces some tumor cells very efficiently but does
not transduce human hematopoietic stem/progenitor cells.156,157 Based on this finding,
AAV2 vector-mediated gene transfer may be used to purge contaminating tumor cells from
the hematopoietic stem cell population prior to transplantation. Fruehauf et al found that AAV2
vectors efficiently infect human HS-1 and HT 1080 sarcoma cells (more than 95%), while
primary human mobilized peripheral blood progenitor cells are more resilient to transduction
by AAV2. Transplantation of these sarcoma cells transduced with AAV2/TK vectors into
immunodeficient mice resulted in a greater than 5 month survival (AAV2/TK-ganciclovir
group), compared to only 3 weeks of survival in the control group.158

The development of multiple drug resistance (MDR) is a major obstacle to chemotherapy.
MDR is associated with overexpression of the P-glycoprotein; P-glycoprotein is a 170-kDa
transmembrane ATPase that exports chemotherapeutic drugs from cells. Many approaches
have been exploited to reverse the MDR phenotype. We have used scAAV2 vectors to
successfully deliver hairpin siRNA into multidrug-resistant human breast cancer and oral
cancer cells, and dramatically reduce P-glycoprotein expression levels resulting in substantial
reversal of the MDR phenotype in the cells.159
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Repair of tumor cells
The development of malignant tumors is caused by imbalanced regulation of two groups of
genes: oncogenes and tumor suppressor genes. Tumor suppressor genes are involved in cellular
checkpoint control, preventing the passage of cells with damaged DNA or other cellular
damage through the cell cycle. Transfer of wild-type (wt) p53 cDNA into cancer cells can
suppress the tumor phenotype in vitro and in vivo. rAAV/p53-mediated transduction inhibited
the growth of neoplastic cells with G1–S arrest and also mediated cytotoxicity with apoptosis.
Tumor growth in three of five animals was completely inhibited after direct injection of
rAAVp53 into H-358 tumors implanted subcutaneously in immunodeficient nu/nu mice,160
which suggests the efficacy of rAAV-mediated phenotypic correction at the molecular level.
The function of telomerase is to maintain and stabilize the integrity of telomeres. Activated
telomerase is detected in many tumor cells. Zhang et al delivered telomerase antisense RNA
into MCF-7 cells using a hybrid adenovirus/AAV vector. The telomerase activity was
significantly suppressed, leading to reduced colony formation and cell proliferation as well as
induction of tumor cell apoptosis.161 Dumon et al used AAV to deliver the tumor suppressor
gene Fragile histidine triad (FHIT) to human pancreatic cells and demonstrated slow tumor
growth and long-term survival in a mouse model.162

Suppression of E6/E7 oncogene expression can reverse the transformed phenotype in cervical
carcinomas. The monocyte chemoattractant protein-1 (MCP-1) indirectly suppresses E6/E7
gene expression and is absent in HPV-positive cervical carcinoma cell lines. AAV-2 vectors
carrying the MCP-1 gene were used to transduce HPV16-or HPV18-positive cervical
carcinoma cell lines (HeLa or SiHa, respectively). The expression of human MCP-1 strongly
inhibited the development of tumors derived from either HeLa or SiHa cells transduced in
vitro with AAV2 vectors. Similar results were also achieved after in vivo delivery of AAV2/
MCP-1 into SiHa-derived tumors.163

Combined gene therapy with AAV
Combination gene therapy can improve antitumor capacity. Early work has shown that
transduction of U-251SP human glioma cells in vitro with a bicistronic AAV vector containing
both the TK and human interleukin-2 genes (AAV-tk-IRES-IL2) rendered these cells
susceptible to GCV treatment and allowed the cells to produce IL-2 in a dose-dependent
manner. After stereotactic delivery of AAV-tk-IRES-IL2 transduced glioma cells into nude
mice, the tumor volume following GCV administration was reduced by 35-fold compared to
controls.164 A similar strategy used by another group examined the effects of the AAV2/TK/
IL-2 vector in the mouse hepatocellular carcinoma cell line Hepa 1–6. Hepa 1–6 cells,
transduced with either AAV2/TK/IL-2 or AAV2/TK, were injected into both nude mice and
immunocompetent C57L/J mice. Tumor cells that had been transduced with AAV2/TK/IL2
were more susceptible to GCV treatment than tumor cells transduced with only TK. In the
absence of GCV treatment, all mice inoculated with AAV/TK/IL-2-transduced cells were
tumor free by day 24 postinoculation, indicating that IL-2 alone has a profound effect on tumor
killing. The tumor-killing effect of AAV-mediated TK/IL-2 gene transfer was further studied
by mixing TK/IL-2- or TK-transduced tumor cells with unmodified tumor cells and then
evaluating tumor growth with and without GCV treatment. The optimal result was observed
from the TK/IL-2-transduced group without GCV treatment. Animals receiving 10%
transduced cells with no GCV treatment saw total clearance of the tumor as well as long-term
protection against rechallenge with tumor cells in 50% of the group. However, when the group
with TK/IL-2-transduced tumor cells was treated with GCV, the antitumor effect of TK/IL-2
was decreased. This suggests that GCV treatment results in the short-term IL-2 expression by
the early killing of AAV-tranduced tumor cells. It was concluded that TK/IL-2 induces a
stronger tumor-killing effect than HSV-TK with administration of GCV, but that the tumor
killing of TK/IL-2 is more effective without addition of GCV.165 Janouskova et al attempted
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to investigate the antitumor effect with the combined delivery of a suicide gene and
immunostimulatory gene to cancer cells. TC-1 cells, HPV-16-transformed C57BL/6 mouse
cells, were infected with AAV2/TK and either AAV2/MCP-1 or AAV2/B7.1 in vitro. These
cells were then transplanted into mice and GCV was administered. None of the mice treated
with the combination of AAV2/TK and AAV2/B7.1 or AAV2/MCP-1 developed tumors. The
tumor-free mice were rechallenged with untreated TC-1 cells 54 days after tumor engraftment,
and it was found that the tumor resistance rate was related to immunostimulatory gene delivery
and the utilization of GCV. In agreement with the results of Su et al, the best protection was
observed in mice preinoculated with TC-1 cells transduced with either B7.1- or MCP-1-
expressing rAAV without GCV administration.166

An attempt to combine antiangiogenic therapy and immunotherapy against tumor growth has
recently been carried out by Sun et al. Mice implanted with B7.1-engineered EL-4 tumor cells
by AAV transduction demonstrated slow tumor growth and resisted rechallenge with
unmodified tumor cells. However, these mice were unable to resist the challenge with over
burden of tumor cells, which was overcome by intraportal injection of AAV/angiostatin before
rechallenge. The study implicates that the synergistic effect against tumor growth can be
achieved by combination of immunotherapy and anti-angiogenesis therapy with AAV vectors.
167

Targeted cancer gene therapy with AAV
For the safety and efficiency of cancer gene therapy with rAAV, the development of targeted-
AAV for cell-specific delivery is critical for targeting tumor cells directly in vivo to enhance
local delivery and effective suppression of tumor growth. Two approaches have been exploited
to express transgenes in specific tumor cells delivered by AAV vectors: tumor cell surface
targeting (transductional) and transcriptional targeting with cell-specific enhancers/promoters.

With the discovery of the AAV crystal structure and the identification of the heparin binding
motif on AAV capsid,14,15,168 it becomes quite feasible to retarget AAV transduction by
modifying the capsid for cancer gene therapy. Grifman et al incorporated the tumor-targeting
sequence NGRAHA into the AAV capsid. This targeting sequence contains the peptide motif,
NGR, responsible for binding CD13, a receptor expressed in angiogenic vasculature and in
many tumor cell lines. The vectors containing the NGRAHA sequence were able to transduce
Kaposi sarcoma (KS1767) cells and the embryonal rhabdomyosarcoma cell line (RD) 10–20
fold better than wt AAV2.91 Incorporation of an Arg-Gly-Asp (RGD)-containing peptide in
the AAV capsid enabled this mutant AAV to transduce integrin-expressing cells independently
of heparin binding and led to increased transduction in tumor cell lines which express integrin,
but few heparin-binding receptors.169

Others have attempted to use specific tissue enhancer/promoters to achieve tumor-specific
AAV-mediated gene expression. In one approach, the promoter of the glucose transporter
isoform 1 (GLUT1) gene was utilized to drive the enhanced green fluorescence protein (EGFP)
and the HSVtk gene expression. EGFP expression under the control of the GLUT1 promoter
element (rAAV/GTI-1.3egfp) was restricted to tumor cells and oncogene-transformed cells
following infection with AAV2/GLUT1-EGFP-TK. Tumor remission was achieved after TK-
expressing tumors were treated with GCV.170 Based on difference on hypoxia between tumor
cells and normal cell, Ruan et al used AAV vectors to deliver transgene Epo to human brain
tumor cell lines U-251MG and U-87MG under the control of hypoxia-response elements
(HRE), which are activated by the transcriptional complex hypoxia-inducible factor-1. A 79–
110-fold increase of Epo expression was observed with anoxic condition after transduction
with AAV2 regulator vectors.171
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Recently, Nicklin et al combined AAV vector surface modification and transcriptional
regulation for cancer gene therapy. The SIGYPLP-targeting peptide was inserted into AAV
virus capsids, conferring the ability to transduce six of 12 tumor cell lines (C8161, PC-3, G-
CCM, MKN-45, LnCAP and A549) regardless of native viral tropism. Furthermore, the cancer-
specific promoter FLT-1 was found to be active in three of these six cell lines (PC-3, A549
and MKN-45). These results suggest the potential application for dual targeting at transduction
level and transcriptional regulation level in cancer cells.172

Conclusion and future prospects
AAV vectors can efficiently initiate sustained transgene expression in vivo and appear to be
safe. With the identification of different serotypes and recent progress in the improvement of
AAV vectors, such as dual vectors to overcome the limited packaging capacity, self-
complementary vectors to increase the level and onset of transgene expression, and capsid
modifications to mediate cell specific transduction, it will be possible in the future to design
more specific and efficient therapies for use in the cancer treatment arena.

Most of experiments in vitro and in vivo with AAV vectors were performed in tumor cell lines,
so it is imperative that more work should be carried out in the primary tumor cells in the future
since the transduction efficiency with AAV vectors may be different between cell lines and
primary cells. Although researchers have found that some tumor cells are not permissive to
AAV infection, with the discovery of AAV crystal structure and development of receptor
retargeting AAV vector, direct targeted tumor cells with engineering AAV vectors will provide
promising approach with specificity and efficiency for cancer gene therapy. It is clear that there
is wide variation in transduction efficiencies among different cell types using different AAV
serotypes. The identification of a possible cellular receptor and coreceptors for AAV serotypes
will expedite the application of AAV as a gene therapy vector. It is becoming evident that
additional developments to achieve high infectivity will be predicated on effective utilization
of AAV-based vectors in cancer gene therapy using such techniques as maker rescue and mixed
capsid vectors.

For receptor retargeting, it is very important to find an optimal ligand or targeting receptor,
since the length and sequence of the insertion may result in profound alterations of the three-
dimensional capsid structure.89 Using AAV vector-phage display may help to find an optimal
inserted peptide.173,174

In addition to AAV targeting studies, the understanding of tumor development at biological
and molecular biological levels will lead to the discovery of strong, efficient, and specific
enhancers/promoters in tumor cells. Utilization of regulatory systems will avoid the undesired
side effect of systemic transgene expression delivered by AAV vectors for immune-modulation
and antiangiogenesis.175,176
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