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Abstract

Introduction—Overall survival of early-stage breast cancer (BC) patients is similar for those 

who undergo breast conserving therapy (BCT) and mastectomy, however, 10-15% of women 

undergoing BCT suffer ipsilateral breast tumor recurrence. The risk of recurrence may vary with 

BC subtype. Understanding the gene expression of the cancer-adjacent tissue and the stromal 

response to specific tumor subtypes is important for developing clinical strategies to reduce 

recurrence risk.

Methods—We utilized two independent data sets to study gene expression data in cancer-

adjacent tissue from invasive BC patients. Complementary in vitro cocultures were used to study 

cell-cell communication between fibroblasts and specific BC subtypes.

Results—Our results suggest that intrinsic tumor subtypes are reflected in histologically-normal 

cancer-adjacent tissue. Gene expression of cancer-adjacent tissues shows that triple negative 

(Claudin-low or Basal-like) tumors exhibit increased expression of genes involved in 

inflammation and immune response. While such changes could reflect distinct immune 
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populations present in the microenvironment, altered immune response gene expression was also 

observed in cocultures in the absence of immune cell infiltrates, emphasizing that these 

inflammatory mediators are secreted by breast-specific cells. In addition, while triple negative 

BCs are associated with upregulated immune response genes, Luminal breast cancers are more 

commonly associated with estrogen-response pathways in adjacent tissues.

Conclusions—Specific characteristics of BCs are reflected in the surrounding histologically-

normal tissue. This commonality between tumor and cancer-adjacent tissue may underlie second 

primaries and local recurrences.

Impact—Biomarkers derived from cancer-adjacent tissue may be helpful in defining personalized 

surgical strategies or in predicting recurrence risk.

Introduction

Breast conservation therapy (BCT) with lumpectomy and radiotherapy and mastectomy are 

equally effective in treating early stage breast cancer. However, approximately 10-15% of 

women undergoing BCT suffer ipsilateral breast tumor recurrence [1-3], often with 

metastasis [4, 5]. Younger age has been associated with higher recurrence [6], but tumor 

characteristics may also be responsible because aggressive breast cancers tend to be 

diagnosed in younger women [7] and have higher local recurrence rates [8, 9].

Breast stromal microenvironments (including fibroblasts, endothelial cells, and immune 

cells), change during carcinogenesis. Cancer-associated fibroblasts may play a critical role 

in maintaining chronic inflammation around breast cancers [10], and may also have 

regulatory effects independent of immune cells [11-13]. Stromal microenvironments also 

vary by breast cancer subtype, and may influence progression [14] [15, 16]. Recent studies 

have examined benign, cancer-adjacent tissue and found substantial interindividual 

variation. These studies show two distinct subtypes of cancer-adjacent tissues with distinct 

survival patterns [17], and show that “molecular histology” of epithelium in cancer-adjacent 

tissues surrounding Estrogen Receptor (ER)-negative tumors differ from those of ER-

positive cancers [18]; ER-positive tumors are associated with high expression of ER mRNA 

in cancer-adjacent tissue [19]. Thus, understanding the microenvironment surrounding 

breast cancer subtypes is important for recurrence and in targeting surgical strategies.

We hypothesized that genomic features of histologically-normal, cancer-adjacent tissue 

differ by intrinsic subtype. Based on previous findings from cell culture and mouse models 

showing upregulation of key chemokines and growth factors in fibroblast interactions with 

basal-like breast cancers [14, 20, 21], it is important to characterize the microenvironment 

response to basal-like breast cancer in human tissue. We also sought to validate previous 

reports of differences in estrogen responsiveness of ER-positive tumor-adjacent tissue. We 

therefore investigated gene expression profiles of cancer-adjacent tissue using data from two 

independent sources: the National Cancer Institute's Polish Breast Cancer Study and The 

Cancer Genome Atlas (TCGA) Project. We then used insights from these in vivo studies to 

further interrogate subtype-specific gene expression in vitro.
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Materials and Methods

Polish Women's Breast Cancer Study (PWBCS), the TCGA Study and the Normal Breast 
Study (UNC)

This study included 139 women from the PWBCS with snap-frozen extratumoral breast and 

tumor tissues (Supplemental Table 1). The PWBCS is a population-based case-control study 

conducted in Poland (Warsaw and Łódź) during 2000-2003 [22]. PWBCS cases were 

women aged 20-74 years with pathologically-confirmed in situ or invasive breast carcinoma. 

Tissues from invasive tumors and non-neoplastic cancer-adjacent breast tissue were 

collected at the time of breast surgery. Histologically-normal, cancer-adjacent tissues were 

<2 cm from the tumor margin. Based on in vitro evidence of their distinctive 

microenvironments, Basal-like and Luminal tumors were oversampled for these analyses. 

Patient data was collected from medical records and in-person interviews as described 

previously. All participants provided written informed consent under a protocol approved by 

the National Cancer Institute and Polish institutional review boards.

An additional 60 snap-frozen cancer-adjacent samples collected and analyzed by the TCGA 

were used as a validation data set (Supplemental Table 1). These samples were all 

histologically-normal, cancer-adjacent (<2cm from tumor margin) to invasive breast 

carcinoma and tumor subtype was classified for these samples and reported previously [23].

A subset of 36 cancer-adjacent samples from ‘The Normal Breast Study’ (NBS) were used 

for this study to evaluate distance from tumor margin. NBS is a hospital-based cross-

sectional study conducted in UNC-Hospitals (Chapel Hill, NC, USA) from 2009-2014. All 

patients had a newly diagnosed invasive breast carcinoma. Fresh tissues were collected at 

the time of breast surgery and snap frozen in liquid nitrogen. Tumor adjacent breast tissues 

used in this study were classified as peritumoral (<2 cm from the tumor margin) and remote 

(>2 cm from the tumor margin). Information on clinicopathological, demographic, and 

anthropometric factors was collected from medical records and in-person interviews. 

Detailed data on tumor subtype was unavailable for these patients so they could not be used 

for primary analyses of subtype-specific microenvironments. All of the participants provided 

written informed consent under a protocol approved by the IRB.

Tumor expression analysis: Molecular classification of the tumor using PAM50

Tumor samples from PWBCS and TCGA were used to determine molecular subtype of the 

cancer. RNA was isolated using previously published methods. For PWBCS data, Illumina 

Ref-8 Beadchip Version2 microarray platform was used and data normalization was 

performed using Lumi in R. For TCGA data, custom Agilent arrays or RNA sequencing 

were performed as described in [23]. To classify tumors, genes were median-centered and 

samples were standardized to zero mean and unit variance. The PAM50 predictor was 

performed [24] to categorize the tumors into five subtypes (Luminal A, Luminal B, Her2-

enriched, Basal-like, and normal-like). The Claudin-low predictor was applied as in [25].
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Cancer-adjacent expression analysis

For PWBCS, two-color 4X44K Agilent whole genome arrays were performed on a frozen 

section of cancer-adjacent tissue, with sections on either side used for imaging of cellular 

composition. Tissue for microarrays was homogenized using a MagnaLyser homogenizer 

(Roche), and RNA was isolated and quality was checked as described in Troester et al. [15]. 

Microarrays were performed as previously described [26]. Briefly, Cy3-labeled reference 

was produced from total RNA from Stratagene Universal Human Reference (spiked 1:1,000 

with MCF-7 RNA and 1:1,000 with ME16C RNA to increase expression of breast cancer 

genes) following amplification with Agilent low RNA input amplification kit. Patient 

samples were labeled with Cy5. Data were Lowess normalized, and probes with a signal <10 

dpi in either channel were excluded as missing. Probes with more than 20% missing data 

across samples were excluded. In data preprocessing, we (1) eliminated probes without 

corresponding ENTREZ ID, (2) collapsed duplicate probes by averaging, (3) imputed 

missing data using k-nearest neighbors (KNN) method with k=10, and (4) median-centered 

genes. Microarray data are publicly available through the Gene Expression Omnibus (GEO) 

(GSE49175 [26], GSE50939). TCGA data and methods are available at the TCGA Data 

Portal (https://cga-data.nci.nih.gov).

Supervised analysis of cancer-adjacent tissue

Using the PWBCS as a training set, four-class significance analysis of microarrays (SAM) 

[27] was used to identify differentially expressed genes associated with breast cancer 

subtypes (LuminalA, LuminalB, Her2 and Basal-like plus Claudin-low) [27]. Significance 

was defined as False Discovery Rate (FDR) ≤0.1%. Tumors classified as “normal-like” may 

result from extensive normal or stromal content in the tumor [28], so we excluded normal-

like tumors. The genes identified as differentially expressed in these four groups from the 

SAM analysis are henceforth referred to as the ‘In vivo triple negative microenvironment 

signature’ (Figure 1; Full list of genes can be found in Supplemental Table 2). Because there 

was a common pattern for both triple negative tumor subtypes vs. other subtypes, we 

collapsed tumor subtypes to conduct a 2-class comparison (Basal-Like/Claudin low vs. 

HER2/Luminal). This 2-class gene list was used only for gene ontology; the more 

parsimonious (fewer genes) 4-class list was used for all subsequent classification. Gene 

ontology analysis was done using Ingenuity Pathway Analysis with Benjamini–Hochberg 

multiple testing correction to identify significant functions and pathways (P-values < 0.05). 

Pathways and functions with less than 2 genes were excluded (Supplemental tables 3 and 4).

To evaluate the association of gene expression for each patient with the defined biological 

signature, Pearson correlation coefficients were obtained as described in [17, 26, 29]. 

Briefly, for a given gene signature (i.e., EReS [30] and the ‘In vivo triple negative 

microenvironment signature’), ‘1’ was assigned to up-regulated and ‘-1’ to downregulated 

genes, Pearson correlation coefficients were calculated by comparing this standard vector to 

the measured, median-centered gene expression level for each patient. Patients were 

classified as positive if the Pearson correlation coefficient was ≥0, and negative if the 

coefficient was <0. These classes were further evaluated for their association with other 

tumor characteristics. The EReS signature was analyzed in both data sets and the ‘In vivo 

triple negative microenvironment signature’ was identified in the PWBCS and tested in the 
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TCGA dataset. Because all analyses were conducted with median-centered data, expression 

is relative to other subtypes. That is, high expression of the Triple Negative signature in 

tissue adjacent to Basal-like and Claudin-low tumors implies lower expression of these 

inflammatory genes among tissue adjacent to Luminal tumors. Conversely, high expression 

of the EReS in tissue adjacent to Luminal tumors implies relatively lower estrogen 

responsiveness among tissue adjacent to triple negative tumors.

Composition analysis of cancer-adjacent tissues from PWBCS

Frozen sections were obtained from the same frozen block used for the microarray analysis 

and were taken immediately adjacent to the piece used for RNA extraction. 127 samples 

from the PWBCS and 47 samples from TCGA had hemotoxylin and eosin (H&E) stained 

sections of sufficient quality to be analyzed for tissue composition. Composition analysis 

was performed as explained in [26]. Briefly, 20 μm (PWBCS) or 5 μm (TCGA) frozen 

sections were H&E stained. A training set of slides was scanned using Aperio ScanScope 

CS V11.0.2.725 and images were manually annotated for composition of adipose, 

epithelium and non-fatty stroma. This training set was used to create a Genie (Aperio 

Technologies, Vista, CA, USA) algorithm with high accuracy in segmenting adipose tissue, 

epithelium, non-fatty stroma, and glass on each slide. Agreement between manual and 

digital assessment exceeded 98%, and thus the data from Genie digital segmentation was 

used in analyses. Composition data from both data sets (mean values) were used to 

determine a cut-point for dichotomized analyses of composition; an epithelium cut-point of 

10% (Mean values PWBCS=9.8% and TCGA=10.2%) and a stroma cut-point of 20% (Mean 

values PWBCS=26.8% and TCGA= 14.4%) were selected.

Cell lines and Coculture conditions

Cell lines were purchased and maintained as in [14]; MCF7, SKBR3, MDA-MB-231, 

HCC1937 and MDA-MB-468 were purchased from ATCC and passaged for less than 6 

months prior to being used for experiments, Sum159 were purchased from Asterand and 

passaged for less than 6 months prior to being used for experiments, authentication was 

provided at time of purchase. ZR75, T47D, Sum149, ME16C and Sum102 were described in 

Troester et al. [31]. Direct cocultures, wherein cells are seeded in a single well and in 

physical contact (not separated by transwell membranes), were performed as previously 

described [14]. Briefly cancer cells lines (MCF7, ZR75, T47D, SKBR3, MDA-MB-231, 

SUM159, SUM149, HCC1937, ME16C, SUM102 and MDA-MB-468) and immortalized 

reduction mammary fibroblasts (RMFs, [32]) were plated on plastic in direct contact, 

potentially interacting both through secreted factors and through cell-cell contact. RMFs 

were tested for viability in all cancer cell media, and direct cocultures were maintained in 

the appropriate cancer cell media (e.g., MCF-7 in RPMI). The following RMF:cancer cell 

ratios were plated for most direct cocultures: 0:1, 1:4, 1:2, 1:1, 2:1, 1:0. Cocultures and 

monocultures (for comparison) were maintained for 48 hours prior to RNA isolation.

RNA and expression microarrays: cell lines

Monocultures and cocultures were harvested by scraping in RNA lysis buffer. Total RNA 

was isolated using the RNeasy mini kit (Qiagen) as previously described in (Camp et al 
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[14]). Microarrays were performed according to Agilent protocol using 2-color Agilent 

4×44K (Agilent G4112F) human arrays and 244K (Agilent G4502A) custom human arrays. 

Only probes present on both platforms were utilized. Samples were run in batches together 

with appropriate monoculture controls to minimize the effect of batch. Agilent's Quick Amp 

labeling kit was used to synthesize Cy3-labeled reference from Stratagene Universal Human 

Reference (as described above) and Cy5-labeled RNA from cocultured or monocultured cell 

lines (as previously described in [14]). Data are available through the GEO (GSE26411).

Coculture data normalization and analysis

Data from 122 microarrays (representing monocultures and direct cocultures from 12 

different cell lines described above) were included. Only genes where >70% of microarrays 

had signal >10 dpi in both channels were included. Data were Lowess normalized and 

missing data were imputed using k-nearest neighbors' imputation. For the direct coculture 

analyses, we excluded genes that did not have at least 2-fold deviation from the mean in at 

least 1 sample and the method of Buess et al.[33, 34] was used to normalize cocultures to 

appropriate monocultures as described in [14]. Briefly, the Buess method is an established 

expression deconvolution approach for direct cocultures of 2 different cell lines that 

estimates the percent of fibroblasts and cancer cells in each coculture, and normalizes the 

data for composition differences prior to estimating the effect of epithelial-stromal 

interaction on gene expression. The Buess interaction coefficient “I” was calculated as the 

ratio of observed to expected gene expression for each gene and an “I-matrix” representing 

the epithelial-stromal interaction coefficients for each gene in each coculture was generated. 

This I-matrix was analyzed using multiclass Significance Analysis of Microarrays (SAM 

[27]) in R.1.14, comparing Basal-like and Claudin-low cocultures (i.e. direct cocultures of 

MBA-MB-231, SUM159, SUM149, HCC1937, SUM102 and MDA-MB-468 with RMFs) to 

Her2-enriched and Luminal cocultures (direct cocultures of MCF7, ZR75, T47D, SKBR3, 

ME16C with RMFs). Heatmaps were generated using Cluster 3.0 and Java treeview was 

used to visualize data.

Evaluating correlation between breast cancer subtype and in vitro triple negative gene 
signature

The ‘in vitro triple negative signature’ (Supplemental table 2) was defined by all genes 

significantly upregulated in basal-like and claudin-low cocultures after performing a 

multiclass SAM analysis. Because, all of the genes defining this ‘in vitro triple-negative 

signature’ were upregulated, the average expression levels across all genes was used to score 

tumors and normal tissue for the triple negative signature. Expression values were median-

centered by gene before summing. Boxplots were used to compare the triple negative score 

across intrinsic subtypes. We further evaluated the difference in mean expression by subtype 

using Analysis of Variance (ANOVA).

Statistical analysis

R version 1.14 was used to generate box plots, evaluate signature correlations, and to 

perform chi-square significance tests. SAS 9.2 (32) was used for logistic regression to 

estimate odds ratios for expression of estrogen response and the triple negative stromal 
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response signatures by subtype. Fisher's Exact test was used to test associations with clinical 

features and for subtype-stratified tissue composition analysis.

Results

Tumor Intrinsic Subtype is reflected in Cancer-Adjacent Tissue

We used samples from the Polish Women's Breast Cancer Study (PWBCS, population 

characteristics in Supplemental Table 1) to identify subtype-associated changes in cancer-

adjacent tissue. Triple negative cancer-adjacent tissues had a unique stromal response, with 

Figure 1 showing a heatmap of 126 genes (Supplemental Table 2) whose expression differed 

significantly between tissues adjacent to Basal-like, Claudin-low, Luminal B, and Luminal 

A tumors. Gene ontology analysis (using Ingenuity Pathway Analysis) revealed that genes 

upregulated in tissues adjacent to Triple Negative tumors are involved in functions and 

pathways such as activation of leukocytes, proliferation of mononuclear leukocytes, cell 

movement of leukocytes, interferon signaling, Hepatic Fibrosis, T-helper cell differentiation 

or antigen presentation pathway (Full list in Supplemental Tables 3 and 4).

Our results suggest that the cancer-adjacent tissue shares biology of the tumors themselves. 

Four genes (NAT1, FOXA1, MLPH, ESR1) used in the PAM50 subtyping [24] have 

differential expression in the tissue adjacent to Luminal breast cancers. Having observed 

high expression of estrogen receptor 1 (ESR1) adjacent to Luminal breast cancers, and in 

light of previous reports suggesting similarities between ER positive tumors and their 

adjacent tissue [19], we utilized a published estrogen response signature (EReS) [30] to 

characterize the estrogen response of each cancer-adjacent tissue (positive or negative for 

the EReS) in both populations. Table 1 shows that in both populations there was a 

significant association between the expression of this signature and breast cancer subtype, 

with the majority of Luminal A cancer-adjacent tissue being positive for EReS (PWBCS: 

62.26% and TCGA: 68.00%) and the vast majority of the more aggressive Claudin-low 

cancer-adjacent tissue being negative (PWBCS: 92.31% and TCGA: 100.00%). Moreover, 

there was a significant association between expression of the in vivo triple negative signature 

by subtype (p-value: 0.0033 in PWBCS, training set and p-value: 0.0005 in TCGA, test set, 

respectively). Claudin-low cancer-adjacent tissues had the highest percentage of ‘in vivo 

triple negative signature’-positive tumors (84.65% in PWBCS and 100% in TCGA) and 

Luminal A cancer-adjacent tissues had the lowest percentage of positive tumors (only 

34.00% in PWBCS and 28.00% in TCGA) (Table1).

Cancer-adjacent expression is not associated with tissue composition

One source of variation in cancer-adjacent tissue is the heterogeneous composition, with 

some patients having more or less stroma and epithelium than others. To evaluate the role of 

tissue composition in expression of the in vivo triple negative microenvironment signature, 

we quantified the proportion of epithelium, non-fatty stroma and fatty/adipose tissue in each 

sample. Histological sections adjacent to the portion of tissue used for RNA extraction were 

used for H&E staining and analysis. Table 2 dichotomizes the samples according to 

composition. There were no statistically significant associations between tumor subtype 

(from which the adjacent tissue came) and epithelial content (Fisher's Exact p-value=0.213 
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and p-value=0.177) or non-fatty stromal content (Fisher's Exact p-value=0.235 and p-

value=0.104) in either dataset of cancer-adjacent tissue, underscoring that the triple negative 

gene expression profile is not due to differences in composition by subtype. However the 

contrary is true for the EReS signature, it was significantly associated with non-fatty stromal 

content (Chi square p-value<0.001 in PWBCS and p-value = 0.049 in TCGA) in both 

datasets, suggesting a role for the stroma in estrogen response of normal breast tissue.

Given that tumor margins may vary from tumor to tumor, we addressed the EReS signature 

in an additional dataset from UNC-hospitals to evaluate whether distance from margin could 

represent an unmeasured confounder of these analyses. We obtained 32 ER-positive, cancer-

adjacent samples, 16 each from <2cm and >2 cm from the tumor. The majority of these 

samples were positive for the EReS signature (10 of 16 were positive at both distances). 

This suggests that the correlation is not strongly dependent upon distance to tumor.

Cancer-adjacent biology can be recapitulated in vitro

We next identified a triple negative signature in coculture (in vitro) and evaluated whether 

this in vitro signature also accurately identifies triple negative-adjacent samples. Twelve 

breast cancer subtype models were cocultured with immortalized reduction mammary 

fibroblasts (RMFs) and we identified a unique set of genes upregulated in triple negative 

cocultures (Figure 2A, grey bar ‘In vitro triple negative signature’, full list of genes can be 

found in Supplemental Table 2). To address whether this in vitro gene signature is 

associated with tissue adjacent to triple negative tumors two approaches were used: (1) 

comparison of pathways and biological functions obtained in vitro vs. in tissue and (2) 

evaluation of the in vitro signatures in breast tumors and the cancer adjacent tissue.

Using the first approach, genes identified through the in vitro cocultures (Supplemental 

Tables 5 and 6) and in vivo (Supplemental Tables 3 and 4) were in similar pathways. 

Statistically significant biological functions and pathways in common were activation of 

cells, proliferation of mononuclear leukocytes, cell movement of leukocytes, inflammatory 

response, hepatic fibrosis, role of cytokines in mediating communication between immune 

cells and IL-6 signaling. Using the second approach, Basal-like and Claudin-low tumors had 

high expression of genes identified in cocultures of triple negative cancer cell lines, both 

within the tumor (Figure 2B, one-way ANOVA by subtype, p=8.44e-15) and in the cancer-

adjacent tissue (of the PWBCS) (Figure 2C). The association with cancer-adjacent tissue 

was weaker and not significant (p-value=0.196), however, the expression from cancer-

adjacent tissues qualitatively mirrors the expression patterns from tumors.

Discussion

Studies of breast cancer microenvironment by subtype [19, 35] have important implications 

for local recurrence. Locoregional recurrence may be higher among Basal-like breast 

cancers [36], and we hypothesized that these cancers may induce a permissive 

microenvironment for local recurrence. The results presented in this manuscript suggest that 

cancer-adjacent tissue of Basal-like and Claudin-low breast cancers differs substantially 

from that of Luminal cancers and that these differences are strongly dependent upon 
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fibroblast interactions and/or stromal composition. That is, the microenvironment may be 

primed for inflammation [37] or estrogen response by the extratumoral stroma.

Previous studies have isolated intratumoral and extratumoral stroma and evaluated gene 

expression in association with outcome. For example, Finak et al. reported that stroma 

adjacent to basal-like breast cancers had high levels of immune response genes and that 

these genes predicted progression [16]. However, microdissection cannot perfectly exclude 

immune infiltrates, so it was difficult to identify the cell type responsible for the up-

regulation of immune mediators. Our use of cocultures allowed us to identify fibroblasts as 

key contributors to cytokine/chemokine expression. Even in the absence of immune cells, 

fibroblasts and epithelial cells produce molecules that affect immune cell recruitment and 

activation and that directly regulate epithelial cell differentiation (e.g. IL-6 alters epithelial 

cell phenotypes [38]). Thus, while previous studies established that Triple Negative BCs are 

associated with a pro-inflammatory milieu [25, 37, 39, 40], the current findings suggest that 

this reaction may initiate in epithelial-fibroblast interactions and occurs in both tumors and 

surrounding histologically-normal tissue.

Our results also addressed unique features of Luminal microenvironments in vivo. Cancer-

adjacent gene expression for Luminal tumor subtypes is markedly different from that of 

Basal-like and Claudin-low tumors, with Luminal-adjacent tissues expressing high levels of 

Luminal breast tumor markers [24]. In other words, the cancer-adjacent tissue around the 

tumor reflects or may even predict the biology of the tumor that arises. If ER-positive 

tumors are more likely to occur in pervasively estrogen responsive benign tissues [41, 42], 

extratumoral signatures could be candidate biomarkers for predicting subtype-specific risk. 

Others have hypothesized that host factors or widespread field effects cause first and second 

primaries to have similar phenotypes, with most second primaries having the same 

phenotype as the first primary [43, 44]. Thus, the idea of an estrogen responsive “field 

effect” is supported by different types of human data. The viability of using estrogen 

response in normal tissue to predict risk or recurrence risk depends upon whether these 

signatures occur early or late in carcinogenesis. Because our data was collected at a single 

time point after tumor onset, the genomic differences we observed could represent (1) 

patterns of predisposition that pre-exist tumor formation, or (2) a reaction to the tumor. We 

hypothesize that the triple negative signatures are a response to tumor, while the estrogen 

response signature reflects susceptibility. Future longitudinal studies are needed to test these 

hypotheses in additional populations and should consider other epidemiologic variables 

(such as BMI, age or estrogen exposure).

Cancer-adjacent tissue is composed of a high percentage of stroma (both fatty and non-fatty) 

and gene expression analyses of these tissues are enriched for stromal pathways. Because of 

this, other studies have approached the study of adjacent tissue by microdissecting and 

studying individual cellular components [16, 45, 46]. However, cellular heterogeneity is 

important, and inclusion of all cell types enabled us to evaluate how stromal composition 

relates to pathway expression. Our coculture results confirm that immune response may 

initiate with stromal-epithelial interactions. Our tissue studies show concordance between 

EReS and stromal content, suggesting a role for stroma in modulating estrogen activity. 

Previous literature also suggests biological plausibility for this association [47], but the 
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mechanisms of estrogen action in stroma remain to be fully elucidated. However, regardless 

of the ultimate mechanisms, both of the signatures evaluated were originally defined in cell 

lines, underscoring our findings and those of others that show that cell line-derived 

signatures have accuracy in elucidating in vivo biology [14, 33, 48, 49].

Strengths of this analysis include use of two distinct sample sets: one as a training dataset 

(PWBCS), and the other as an independent validation set (TCGA). In addition, tissue 

composition was considered as a potential modifier. It is also a strength that we have 

validated the signatures in a controlled, experimental coculture system. Future work should 

focus on investigating the role of distance from tumor more thoroughly, preferably in larger 

study populations.

In conclusion, we found distinct biological characteristics of cancer-adjacent tissue 

depending upon tumor intrinsic subtype. This commonality between tumor and surrounding 

tissue may underlie second primaries and provides plausible explanations for local 

recurrence. These results also suggest that tissue biomarkers derived from cancer-adjacent 

tissue may help in predicting risk and in defining appropriate, personalized surgical 

strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HER2 HER2-like Breast Cancer

BLBC Basal-like Breast Cancer

EReS Estrogen Response Signature

BCT Breast Conserving Therapy

ER Estrogen Receptor

PR Progesterone Receptor

PWBCS Polish Women's Breast Cancer Study

NBS Normal Breast Study

PAM Predictive Analysis of Microarray

SAM Significant analysis of Microarray

IPA Ingenuity Pathway Analysis

RMF Reduction Mammary Fibroblasts

H&E Hematoxilin and Eosin

TDLU Terminal Ductal Lobular Units
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Figure 1. Tumor intrinsic subtype is reflected in cancer-adjacent tissue
Heat map representing 126 differentially expressed genes across the cancer-adjacent tissue 

of Claudin-low (triple negative), Basal-like (triple negative), Her-2-like, Luminal B and 

Luminal A in the (PWBCS). Distinct clusters of up and down regulated genes show a trend 

in the gene expression of these cancer-adjacent tissues. Among those 126 genes, 4 genes that 

are used in the PAM50 classification system to identify Luminal tumors are also highly 

expressed in their adjacent tissue. A) Samples were dichotomized as having a positive 

(black) or negative (white) correlation with the Estrogen response signature (EReS) 

developed by Oh et al. [30] Luminal cancers had the highest proportion of EReS positive 

cancer-adjacent tissues. B) Samples were dichotomized as having a positive (dark orange) or 

negative (light orange) correlation with the newly identified ‘in vivo triple negative 

microenvironment signature’. The triple negative cancers had the highest proportion of 

samples with high expression of this signature.
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Figure 2. Triple negative microenvironments can be recapitulated in vitro using coculture 
systems
(A) Direct in vitro cocultures were performed by culturing fibroblasts with cell lines models 

of different subtypes of breast cancer. Heat map represents interaction values (I) from the 

Buess et al. [33] method of identifying genes differentially expressed in triple negatives 

versus all the other cocultures. The grey bar represents genes upregulated in triple negative 

direct cocultures (“In vitro triple negative signature”). This in vitro generated list of genes 

(“In vitro triple negative signature”, grey bar in A), is highly expressed both in the 
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intratumoral microenvironment (B – Tumor tissue) and in the cancer-adjacent tissue (C – 

Tumor adjacent normal tissue).
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