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Abstract

Background—High body mass index (BMI) is consistently linked to increased risk of colorectal 

cancer (CRC) for men, whereas the association is less clear for women. As risk estimates from 

observational studies may be biased and/or confounded, we conducted a Mendelian randomization 

study to estimate the causal association between BMI and CRC.

Methods—We used data from 10,226 CRC cases and 10,286 controls of European ancestry. The 

Mendelian randomization analysis used a weighted genetic risk score, derived from 77 genome-

wide association study identified variants associated with higher BMI, as an instrumental variable 

(IV). We compared the IV odds ratio (IV-OR) with the OR obtained using a conventional 

covariate-adjusted analysis.

Results—Individuals carrying greater numbers of BMI-increasing alleles had higher CRC risk 

(per weighted allele OR, 1.31; 95% confidence interval [CI], 1.10–1.57). Our IV estimation results 

support the hypothesis that genetically influenced BMI is directly associated with risk for CRC 

(IV-OR per 5 kg/m2, 1.50; 95% CI, 1.13–2.01). In the sex-specific IV analyses higher BMI was 

associated with higher risk of CRC among women (IV-OR per 5 kg/m2, 1.82; 95% CI, 1.26–2.61). 

For men, genetically influenced BMI was not associated with CRC (IV-OR per 5 kg/m2, 1.18; 

95% CI, 0.73–1.92).

Conclusions—High BMI was associated with increased CRC risk for women. Whether 

abdominal obesity, rather than overall obesity, is a more important risk factor for men requires 

further investigation.
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Impact—Overall, conventional epidemiologic and Mendelian randomization studies suggest a 

strong association between obesity and the risk of CRC.
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Introduction

Observational studies consistently show that high body mass index (BMI) is associated with 

an increased risk of colorectal cancer (CRC) for men, whereas the magnitude of the 

association is less clear for women (1). Although these findings came from well designed 

and conducted epidemiologic studies, associations from observational studies could arise 

from bias and residual confounding and, therefore, may not necessarily reflect a causal 

relationship. First, the correlation between BMI and multiple other lifestyle and clinical 

factors suggests that adequate control for all potential confounding may be difficult. 

Conversely, over-adjustment in multivariable models can attenuate risk estimates towards 

the null and may explain the smaller associations reported for women (e.g., adjusting for 

menopausal hormone therapy) (2). Second, conventional epidemiologic analyses are often 

based on self-reports of participants’ weights and heights at one point in time and thus may 

be subject to misclassification from inaccurate reporting and insufficient follow-up to 

capture changes in measurements over time (e.g., men over-report height more so than 

women, and heavier women tend to under-report weight more so than heavier men (3, 4)). 

Finally, early stages of cancer may result in weight loss, and so measures of body weight 

reported within a few years of CRC diagnosis may introduce bias, a particular problem in 

case-control studies. As the latent period between high BMI and CRC risk is unknown, a 

measure that reflects typical lifetime BMI may counteract some of these limitations. 

Determining whether or not the association is causal is important as BMI could be a key 

target for primary prevention of CRC.

The use of genetic variants under the Mendelian randomization framework is one approach 

to exploring the possible causal nature of the observed associations between BMI and risk of 

CRC (5). Mendelian randomization uses instrumental variables (e.g., genetic variants that 

proxy for directly measured environmental risk factors) to make causal inferences about the 

relationship between a risk factor and an outcome and this approach can overcome issues of 

confounding, recall bias and reverse causality inherent in observational studies (5–7). First, 

because alleles are randomly allocated from parents to offspring during gamete formation, 

the association between the instrumental variable and the outcome is not confounded by 

environmental exposures. Second, genetic variants are measured reliably and are not 

affected by disease status. Furthermore, as those with the risk alleles have been essentially 

allocated randomly to higher levels of exposure across the lifecourse, genetic variation may 

more accurately reflect lifetime exposure compared with a single measurement. A potential 

limitation of Mendelian randomization arises however for highly complex traits whereby 

genetics may explain only a small fraction of the phenotypic variability. Many early 

Mendelian randomization studies used a single variant as an instrumental variable and, in 

the case described above, were unable to test the full spectrum of genetically influenced 
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phenotype. By using multiple genetic variants as instrumental variables, we can increase 

statistical power and improve the precision of the instrumental variable estimate (8).

We therefore conducted a Mendelian randomization study using a weighted genetic risk 

score, derived from 77 genetic variants associated with higher BMI, as an instrumental 

variable to reassess the observational estimates of the associations between BMI and CRC 

risk.

Materials and Methods

Our analyses included individual participant data and genetic material from 10,226 CRC 

cases and 10,286 population-based controls of European ancestry in the Genetics and 

Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon-Cancer Family 

Registry (C-CFR). The 11 studies (6 cohort and 5 case-control) used in our analyses 

(Supplementary Table S1) have been described in detail previously (9) and include the 

Health Professionals Follow-up Study (HPFS) (10); Nurses’ Health Study (NHS) (11); 

Physician’s Health Study (PHS) (12); Prostate, Lung, Colorectal and Ovarian Cancer 

Screening Trial (PLCO) (13); VITamins and Lifestyle Study (VITAL) (14); Women’s 

Health Initiative (WHI) (15); the Colon-Cancer Family Registry (C-CFR) (16); Ontario 

Familial Colon Cancer Registries (OFCCR) (17); Diet, Activity and Lifestyle Survey 

(DALS) (18, 19); Postmenopausal Hormone Study (PMH-CCFR) (20); and Darmkrebs: 

Chancen der Verhütung durch Screening (DACHS) (21). To avoid confounding by 

population stratification, we used principal components analysis (HapMap II populations as 

reference) to restrict our analyses to individuals of European ancestry (22). Cases were men 

and women with primary invasive colorectal adenocarcinoma (International Classification of 

Diseases, 9th revision (ICD-9) codes 153.0–153.4, 153.6–153.9, and 154.0–154.1) and 

histologic confirmation (by medical records, pathologic reports, or death certificates) of 

CRC was performed for all studies. All participants provided written, informed consent and 

each study was approved by the relevant Institutional Review Boards.

Data on demographic and lifestyle factors were collected using in-person interviews or self-

completed questionnaires, and data were centrally harmonized as previously described (23). 

BMI was calculated as weight in kilograms divided by height in meters squared (kg/m2). 

Although the studies obtained participants’ weight (either self-report or measured) at 

different time points with respect to CRC diagnosis (Supplementary Table S1), we used 

weight that most accurately reflected usual adult weight prior to any disease-related weight 

loss. For the Mendelian randomization analysis, we used a weighted genetic risk score as an 

instrumental variable (IV) for BMI. A recent genome-wide association study (GWAS) 

conducted by the Genetic Investigation of Anthropometric Traits (GIANT) consortium 

involving over 300,000 individuals of European-descent identified 77 single nucleotide 

polymorphisms (SNPs) associated with BMI at genome-wide significance (e.g., P<5×10−8) 

(24). Genotype information on these 77 SNPs was used to construct the weighted genetic 

risk score. The GIANT GWAS for BMI found no evidence of non-additive effects among 

SNPs, thus we fit additive SNP effects. For each SNP, participants received a score of 0, 1 

or 2 for carrying zero (wild-type homozygous), one (heterozygous) or two (homozygous for 

the risk allele) alleles associated with higher BMI. For imputed SNPs, participants received 
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scores that ranged from 0 to 2. SNPs were externally-weighted in the score by the per-allele 

change in BMI (the increase in BMI per 1 additional risk allele) reported for that SNP in the 

GIANT GWAS for BMI (24). Details on genotyping and quality assurance/quality control 

have been previously published (9). Call rates were ≥98% and all selected SNPs were in 

Hardy-Weinberg Equilibrium among controls (P≥1×10−4).

Statistical analysis

Associations between potential confounders and CRC risk were assessed using chi-square 

tests and Student t-tests. Associations among potential confounders, the IV, and BMI were 

assessed in controls using linear regression, Student t-tests and analysis of variance.

All participants were analyzed using a single-model (pooled) approach with adjustment for 

study. For the IV analysis, we used the two-stage control function IV approach, with the 

genetic risk score as an IV for BMI, and assumed an additive model (25). First, we fit a 

linear regression model within controls to predict BMI from the IV, adjusted for study and 

the top three principal components of genetic ancestry. Next, we fit a logistic regression 

model with BMI as a predictor and CRC case-control status as the outcome using robust 

standard errors and adjusted for the residuals from the first step (25). The coefficient for 

BMI from the second-stage model is the causal estimate for BMI. In Mendelian 

randomization studies, the IV for the exposure of interest is considered sufficiently strong if 

the first-stage F-statistic exceeds 10 (26). For the conventional covariate-adjusted analysis, 

BMI was the variable of interest and odds ratios (OR) and 95% confidence intervals 

(95%CI) were estimated using unconditional logistic regression models. We conducted 

minimally adjusted analyses (models were adjusted for age, sex, and study) and fully 

adjusted analyses (models were additionally adjusted for smoking status, family history of 

cancer, history of diabetes, use of aspirin or non-steroidal anti-inflammatory drugs 

[NSAIDs], consumption of fruit, vegetables, processed meat, and red meat, and [women 

only] use of menopause hormone therapy). Variables were retained in the fully adjusted 

analyses if they were statistically significantly associated with CRC risk after mutual 

adjustment for other risk factors. Participants with missing data on covariates were included 

in the analyses using an additional category for missing values. We assessed whether the 

estimates obtained using conventional epidemiologic and IV methods were different using 

the Durbin form of the Durbin-Wu-Hausman statistic (27). Rejection of the null hypothesis 

(i.e., risk estimates for BMI from both analyses are equal) indicates that the OR from the 

conventional covariate-adjusted analysis differs from the OR from the IV approach. We 

examined potential statistical interaction between BMI and sex by including a multiplicative 

term in the model, and conducted additional analyses for the BMI-CRC association stratified 

by sex and cancer sub-site. Furthermore, we performed a sensitivity analysis excluding 

studies with self-reported weight. In a supplementary analysis, we examined the association 

between a weighted genetic risk score for waist-to-hip ratio (WHR), derived using 47 

variants associated with WHR adjusted for BMI (28), and CRC risk. Statistical significance 

was determined at α=0.05 and all tests for statistical significance were two-sided. Analyses 

were performed using Stata 12.0 (StataCorp, College Station, TX).
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Results

The mean age of study participants was 63 years and 56% were women (Supplementary 

Table S1). Compared with controls, cases were more likely to smoke cigarettes, have a 

family history of cancer, and have diabetes and less likely to use aspirin or NSAIDs and 

(women only) menopausal hormones (Table 1). Cases consumed more red and processed 

meats on average than controls, but less fruit and vegetables. On average, cases (women: 

mean BMI, 27.0; standard deviation [SD], 5.4; men: mean BMI, 27.3; SD, 4.0) had 

statistically significantly higher BMI than controls (women: mean BMI, 26.2; SD, 5.0; men: 

mean, 26.5; SD, 3.7) (Supplementary Table S1). BMI was statistically significantly 

associated with age, sex, history of diabetes, use of aspirin/NSAIDs, consumption of fruit, 

processed meat, and red meat and, for women only, use of menopause hormone therapy 

(Supplementary Table S2).

The allele frequencies for each of the 77 SNPs were consistent across the 11 studies (data 

not shown). The IV was normally distributed (mean, 1.97; median, 1.97; SD, 0.2; minimum, 

1.37; maximum, 2.66) and the association between the IV and BMI was homogeneous 

across studies (test for heterogeneity, I2 = 0%; P = 0.45; Figure 1). From the pooled 

analysis, a one-unit increase in the IV was associated with a 3.23 kg/m2 (95% CI, 2.66–3.79) 

increase in BMI. The IV explained only 1.2% of the variance in BMI, but was a sufficiently 

strong instrument for BMI (F-statistic, 126). There were no associations of the IV with age, 

sex, smoking status, family history of cancer, consumption of fruit, vegetables, processed 

meat, and red meat or use of menopause hormone therapy (Supplementary Table S2). 

However, the IV was associated with history of diabetes, and we found a modest positive 

association between the IV and use of aspirin/NSAIDs (Supplementary Table S2).

Individuals with greater numbers of (weighted) BMI-increasing alleles (i.e., those with a 

higher weighted genetic risk score) were at increased risk for CRC (per weighted allele OR, 

1.31; 95%CI, 1.10–1.57; Supplementary Table S3). The IV analysis showed evidence that 

higher BMI was causally associated with increased risk of CRC (IV-OR per 5 kg/m2, 1.50; 

95% CI, 1.13–2.01). The IV point estimate was greater in magnitude than the point estimate 

from conventional covariate-adjusted analysis (minimally adjusted OR per 5 kg/m2, 1.18; 

95% CI, 1.15–1.22); however the 95% CIs overlapped and they were not statistically 

significantly different from one another (P-difference = 0.10). The findings were similar 

when we examined the BMI-CRC association by cancer sub-site in the colorectum (Table 

2). Additional adjustment for confounding did not change the estimates in the conventional 

analysis (Table 2) and, likewise, adjustment of the IV analysis for age, sex, history of 

diabetes, and use of aspirin/NSAIDs did not change the IV risk estimate for BMI (IV-OR 

per 5 kg/m2, 1.51; 95%CI, 1.13–2.02).

Using conventional methods, we found a statistically significant interaction between BMI 

and sex (CRC, Pinteraction<0.001; Colon, Pinteraction <0.001, Rectal, Pinteraction =0.02). The 

IV was a sufficiently strong instrument for BMI in stratified analyses for men (F-statistic, 

74.2; R2, 1.6%) and women (F-statistic, 60.5; R2, 1.0%). For men, there was no evidence 

that carriers of greater numbers of (weighted) BMI-increasing alleles were at increased risk 

for CRC and the risk estimate for CRC obtained from the IV analysis (IV-OR per 5 kg/m2, 
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1.18; 95% CI, 0.73–1.92) contained 95% CIs that included the null; however, the IV results 

were in the same direction as the estimate from conventional covariate-adjusted analysis 

(minimally adjusted OR per 5 kg/m2, 1.30; 95% CI, 1.23–1.38) and the two estimates were 

not statistically significantly different (P-difference = 0.70). In contrast, for women, carriers 

of greater numbers of (weighted) BMI-increasing alleles were at increased risk for CRC and 

the IV estimate for CRC risk (IV-OR per 5 kg/m2, 1.82; 95% CI, 1.26–2.61) was statistically 

significantly different from the estimate obtained from conventional covariate-adjusted 

analysis (minimally adjusted OR per 5 kg/m2, 1.14; 95% CI, 1.10–1.18; P-difference = 

0.01).

For men, the OR for BMI associated with CRC was greater in magnitude when the 

conventional covariate-adjusted analysis was restricted to those studies with measured 

height and weight (minimally adjusted OR per 5 kg/m2, 1.53; 95% CI, 1.33–1.76); there was 

no difference to the overall analysis for women (minimally adjusted OR per 5 kg/m2, 1.13; 

95% CI, 1.06–1.19).

In supplementary analyses, individuals with greater numbers of (weighted) WHR-increasing 

alleles were at increased risk for CRC (per weighted allele OR, 1.36; 95%CI, 1.08–1.73). In 

contrast to that seen for BMI, men with greater numbers of (weighted) WHR-increasing 

alleles were at increased risk for CRC, while there was no evidence that women carriers of 

greater numbers of (weighted) WHR-increasing alleles were at increased risk for CRC 

(Supplementary Table S3).

Discussion

Observational studies have consistently reported that high BMI is associated with increased 

risk of CRC; however, the magnitude of the BMI-CRC association may differ between men 

and women (1). The limitations of observational studies, such as residual confounding (e.g., 

by socio-economic status, smoking, alcohol, and other lifestyle and behavioral factors), 

reverse causation, and reporting bias, may contribute to the heterogeneity reported in 

previous studies. Using Mendelian randomization methods, we re-examined the association 

between BMI and CRC risk without the inherent limitations in observational studies and 

compared the IV and conventional estimates. Overall, we found that BMI was associated 

with CRC risk; however, the sex-specific associations in our study are in conflict with 

expectations based on the existing literature of the BMI-CRC association. For women, 

genetically influenced BMI was statistically significantly associated with risk of CRC and 

our findings suggest that BMI may confer greater risk of CRC than previously reported (1). 

On the other hand, for men, while the IV and conventional estimates of CRC risk associated 

with high BMI were not statistically significantly different, the IV for BMI was not 

associated with CRC risk for men.

Results from large meta-analyses indicate that the risk of CRC for men increases by 20–30% 

per 5 kg/m2 increase in BMI. For women, the magnitude of the association was lower in all 

studies (~10% increased risk per 5 kg/m2) and did not always reach statistical significance 

(1). Consistent with these results, in our conventional covariate-adjusted analysis, the 
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magnitude of the BMI-CRC association was substantially higher for men (32% increased 

risk per 5 kg/m2) than for women (15% increased per 5 kg/m2).

Using the Mendelian randomization approach, for women, we found evidence that 

genetically raised BMI was associated with increased risk of CRC. Importantly, the 

instrumental variable estimation for the BMI-CRC association for women was higher in 

magnitude than the risk estimate for BMI obtained from the conventional covariate-adjusted 

analysis. This suggests that the conventional risk estimate for women in our study, as well as 

those previously reported, may underestimate the true causal association between BMI and 

CRC risk for women. It is possible that previous estimates may have been biased toward the 

null if heavier women were more likely to under-report their weight than women with 

normal weight (3). This appears unlikely in our study as the results for women were similar 

between self-reported and measured BMI. There may also be sex-specific behavioral factors 

associated with BMI and CRC that may not be adequately measured and/or controlled for in 

a conventional epidemiologic analysis. This may explain why the risk estimates for BMI 

were different between self-reported and measured BMI for men, but not for women. It is 

also possible that the stronger effect in the IV analysis for women may be due to the IV for 

BMI reflecting genetic factors that express themselves early in life (e.g., BMI in childhood) 

and influence CRC risk more so than adult weight gain. An early effect of BMI on CRC risk 

for women may be plausible based on possible interactions between the different hormonal 

milieu associated with pre- and post-menopause. Mendelian randomization methods may 

better capture an early BMI effect on CRC risk for women than conventional epidemiologic 

methods. However, while our findings suggest that higher genetically influenced BMI is 

directly associated with increased CRC risk for women, the instrumental variable estimate is 

a valid test of the direction of the effect, and given the low variance explained, the exact 

magnitude of the effect could be in the range between the conventional estimates and our IV 

estimate.

For men, the conventional and IV estimates were not statistically significantly different from 

one another. However, the instrumental variable estimation gave evidence that genetically 

influenced BMI was not associated with CRC risk for men. It is unclear why the IV estimate 

for men was not statistically significant; however, it is unlikely that this was due to weak 

instrument bias as the IV was a strong instrument for BMI (F-statistic = 74.2). A possible 

explanation could be that the distribution of body fat, rather than total body fatness, may be 

an important predictor of CRC risk for men. In the supplementary analysis, we found that an 

IV for WHR was associated with CRC risk for men but not for women. Given that the IV 

was derived using SNPs associated with WHR adjusted for BMI, the two IVs in this study 

are largely distinct and these findings suggest that fat distribution may be important for CRC 

risk for men, while overall obesity may be more important for CRC risk for women.

The strengths of our study include the large sample size, centrally harmonized data, and the 

robust IV for the Mendelian randomization analysis. However, the findings from our 

Mendelian randomization study rely on three key assumptions, some of which are 

untestable: First, that the IV is associated with BMI. We constructed a weighted genetic risk 

score from 77 SNPs associated with higher BMI in an externally conducted genome-wide 

association study in order to maximize power (8) and provided evidence that the weighted 
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genetic risk score (the IV) is associated with BMI in our study (a sufficiently strong 

instrument with F-statistics >> 10). However, our IV analyses may have been underpowered 

as the IV explained less than 2% of total phenotypic variation for BMI, certainly a limitation 

for this study but one that is common when constructing IVs for highly complex traits – and 

seen in the original Locke paper (24) that established the relationship between the SNPs and 

BMI. The second assumption with Mendelian randomization is that the IV is associated with 

CRC only through its association with BMI. Although the biological effects of all the 

variants used in constructing the IV are not well known and this assumption cannot be tested 

directly, we feel that it is highly unlikely that a large subset of the 77 SNPs in the score 

would have pleiotropic associations with BMI and CRC. If the IV is associated with CRC 

risk through the same metabolic pathways (e.g., inflammation, oxidative stress, glucose/

insulin dysregulation) that are suspected to connect BMI to carcinogenesis, then this second 

assumption would still hold, since both the IV and BMI would be considered markers of 

altered metabolic (or related) risk factors. The final assumption is that the IV is not 

associated with factors that confound conventional observational associations. We found 

that the weighted genetic risk score was not associated with age, sex, smoking status, family 

history of cancer, diet, and other factors that may confound the BMI-CRC association in 

conventional covariate-adjusted analyses. The IV was associated with diabetes and use of 

aspirin/NSAIDs. The correlation with diabetes was expected since high BMI is such a strong 

risk factor for diabetes, and indeed, this is probably further evidence that the IV is an 

indicator of obesity-associated altered metabolism. The association with aspirin/NSAID-use 

was not expected a priori but might relate to prophylactic or treatment related use of aspirin 

regimens among heavier weight persons, or it might be due to chance. Nonetheless, 

inclusion of diabetes and aspirin/NSAID use in the IV analyses did not change the IV risk 

estimates for BMI. The majority of studies included in our analyses used self-reported 

weight and height and we showed that this may bias conventional estimates. Imprecision on 

genotypes from imputed SNPs is a limitation and may have resulted in loss of power in the 

instrumental variable analysis. A final limitation in this study is the lack of data on tumor 

molecular phenotype (29–31) and further research is warranted to answer this question.

Unlike estimates obtained from conventional covariate-adjusted analysis of observational 

data, the estimates from our IV analysis are not limited by confounding and/or bias. 

Therefore, they may be interpretable as a measure of the causal effect of BMI on CRC risk. 

Several mechanisms have been proposed to explain the association between high BMI and 

CRC risk, including insulin and the insulin-like growth factor system, adipokines (e.g., 

leptin, adiponectin), inflammation (e.g., C-reactive protein), oxidative stress, altered 

immunity, and steroid hormones, as discussed in recent comprehensive reviews (1, 32, 33).

Overweight and obesity are good targets for primary prevention of CRC, and men and 

women should be encouraged to maintain a normal BMI (18.5–25 kg/m2). Given the 

contrasting findings in this study for men and women, future studies are still needed to better 

understand the role of obesity (overall versus abdominal) in CRC carcinogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The association between the weighted genetic risk score (the instrumental variable) and 

body mass index (BMI) across the 11 participating studies in GECCO and C-CFR.
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