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Abstract

Introduction—Breast tissue composition (epithelium, non-fatty stroma, and adipose) changes 

qualitatively and quantitatively throughout the lifespan, and may mediate relationships between 

risk factors and breast cancer initiation. We sought to identify relationships between tissue 

composition, risk factors, tumor characteristics, and gene expression.

Methods—Participants were 146 patients from the Polish Breast Cancer Study, with data on risk 

factor and clinicopathological characteristics. Benign breast tissue composition was evaluated 

using digital image analysis of histological sections. Whole genome microarrays were performed 

on the same tissue blocks.

Results—Mean epithelial, non-fatty stromal, and adipose proportions were 8.4% (SD=4.9%), 

27.7% (SD=24.0%), and 64.0% (SD=24.0%), respectively. Among women < 50 years old, stroma 

proportion decreased and adipose proportion increased with age, with approximately 2% 

difference per year (p <0.01). The variation in epithelial proportion with age was modest (0.1% 

per year). Higher epithelial proportion was associated with obesity (7.6% in non-obese vs 10.1% 

in obese; p=0.02) and with poorly differentiated tumors (7.8% in well/moderate vs 9.9% in poor; 

p=0.05). Gene expression signatures associated with epithelial and stromal proportion were 

identified and validated. Stroma-associated genes were in metabolism and stem cell maintenance 

pathways, while epithelial genes were enriched for cytokine and immune response pathways.

Conclusions—Breast tissue composition was associated with age, BMI, and tumor grade, with 

consequences for breast gene expression.
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Impact—Breast tissue morphologic factors may influence breast cancer etiology. Composition 

and gene expression may act as biomarkers of breast cancer risk and progression.
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Introduction

Benign breast tissue is comprised of epithelium, stroma, and adipose tissue, each of which is 

heterogeneous and complex in composition. Previous papers have suggested that during 

critical developmental windows, such as embryogenesis, pregnancy, and postmenopausal 

involution, important shifts occur in normal breast tissue composition (1, 2). Epithelial 

proportions increase with hormonal exposure, and stromal composition may also increase 

(3–5). As malignant transformation evolves, composition of benign breast tissues may 

change in parallel (6–9), exerting selective forces that influence tumor biology and behavior 

(10, 11). It is important to understand how the balance of epithelium and stroma is 

modulated by normal events throughout the lifespan, and how this balance contributes to 

carcinogenesis. The importance of understanding factors that influence benign breast tissue 

composition is underscored by the strong direct association between mammographic density 

(a radiological measure of fibroglanduar breast tissue content) and breast cancer risk and by 

growing experimental evidence that the tumor microenvironment may influence breast 

cancer biology, prognosis, and treatment response (12–15).

The epidemiologic and clinical factors that affect benign breast tissue can be partly 

understood by examining mammographic density. Specifically, increasing age, menopause, 

elevated body mass index, and having a live birth are associated with lower mammographic 

density, suggesting less fibroglandular tissue relative to adipose tissue. Family history of 

breast cancer and use of menopausal hormones are related to higher mammographic density, 

and therefore greater fibroglandular content. In benign breast tissue of younger women, 

stroma accounts for the majority of mammographically dense tissue, but epithelial content 

may be an important driver of mammographic density-risk associations. Few studies have 

directly parsed density into stroma vs. epithelium, and even fewer have evaluated all three 

components (epithelium, fat, and stroma) in association with risk factors (16–18). Such 

studies could lead to improved understanding of mammographic density as a risk factor and 

may identify novel risk biomarkers.

To determine factors related to breast histology and to identify plausible biological pathways 

affected by changing breast tissue composition, we used breast tissues and gene expression 

data from the Polish Breast Cancer Study. Our aims were to determine the relationships of 

breast tissue composition to breast cancer risk factors and tumor characteristics, and to relate 

different tissue components (epithelial, non-fatty stroma and adipose) to gene expression 

profiles.
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Materials and Methods

Patient samples

The study population is a subset of patients from the Polish Breast Cancer Study (PBCS), a 

population-based case-control study conducted in two large cities in Poland (Warsaw and 

ŁódŸ) during 2000–2003 (19). PBCS cases were women aged 20–74 years with an incident, 

pathologically-confirmed in situ or invasive breast carcinoma identified through a rapid 

identification system organized at five participating hospitals and via cancer registries. Fresh 

tissues from invasive tumors, non-neoplastic adjacent breast tissue and mammary fat tissue 

were collected at the time of breast surgery and snap frozen in liquid nitrogen. Based on in 

vitro evidence that basal-like and luminal tumors are associated with distinctive 

microenvironments (20), we oversampled these subtypes. All of the participants provided 

written informed consent under a protocol approved by the U.S. National Cancer Institute 

and local (Polish) institutional review boards.

We limited our analysis to 146 invasive breast cancer cases in Warsaw with available data 

on breast composition and gene expression of extratumoral breast tissues. Our interest was 

to evaluate how normal tissue without evidence of pathologic change may vary in 

association with risk factors. Considering that epithelial tissue is a minority component 

(typically <10% by area) in normal breast (16), 11 women with outlying values suggestive 

of possible hyperplasia (epithelial proportion greater than 20%) were excluded as potentially 

non-normal. We further excluded women with incomplete data on breast risk factors and 

clinicopathological factors, which left 96 women in our main analysis. The 50 women with 

incomplete risk factor data were included as a validation data set.

Data collection

Information on demographic and anthropometric factors was collected from medical records 

and in-person interviews (19). Mammographic density of pre-treatment mammograms of the 

unaffected breast was assessed using a quantitative, reliable computer-assisted thresholding 

method (21). One expert reader measured absolute dense area (cm2) and total breast area 

(cm2); percentage mammographic density was calculated by dividing the dense breast area 

by the total breast area and multiplying by 100. Frozen non-neoplastic breast specimens of 

approximately 100 mg were cut over dry ice and then used to prepare 20 μm frozen sections 

from each end. The central portion was used for RNA extraction. Microarrays on the central 

section were performed using two-color 4X44K Agilent whole genome arrays. More 

information on RNA isolation, microarray, and data preprocessing has also been described 

previously (18). Microarray data used in this analysis are publicly available through the 

Gene Expression Omnibus (GSE49175).

After H&E staining, the sections were scanned into high-resolution (20X) digital images 

using the Aperio Scan-Scope XT Slide Scanner (Aperio Technologies, Vista, CA, USA) in 

the Translational Pathology Laboratory of University of North Carolina at Chapel Hill. The 

details of composition measurement and measurement validation have been described 

previously (18). Briefly, 15 representative digital slides were firstly manually annotated for 

epithelial area, non-fatty stromal area, and total area (mm2) using Aperio ImageScope 
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software. These annotations were used to train the composition estimator in Aperio’s Genie 

Classifier. The trained classifier was positively and strongly correlated with manual 

annotation, and showed better performance in quantifying small percentages over visual 

assessment (by human eye on regular H&E slides). After training and validation, Aperio’s 

Genie Classifier was applied to the remaining slides partitioning epithelium, adipose tissue, 

non-fatty stroma, and glass into percentages.

Statistical analysis

The distribution of adipose, non-fatty stroma, and epithelial composition and the Pearson’s 

correlation between components were evaluated using R (version 3.0.0). To assess the 

influence of age on breast composition, we evaluated the distribution of composition by five 

age groups at diagnosis (<40 y, 40–49 y, 50–59 y, 60–69 y, and ≥70 y) and employed a 

cubic spline interpolation algorithm (knots=3) to model and visualize these associations 

(22). As stromal and adipose proportions were strongly inversely correlated (γ=−0.98, 

p<0.001), we only studied epithelial and stromal compositions in subsequent analyses. To 

study how composition changed in one compartment (e.g. epithelium) relative to another 

(e.g. stroma), the ratios of epithelial-to-stromal proportions and stromal-to-adipose 

proportions were also evaluated. Log-transformed ratios were used in the analysis to account 

for substantial skew.

Besides age, other breast cancer risk factors included percentage density, dense area, BMI, 

use of oral menopausal hormone therapy, menopausal status, family history of breast cancer 

in a first degree relative, previous benign breast disease history (defined as ever having any 

biopsy or partial removal procedure, with no cancer detected), age at menarche, and parity. 

Age at first birth and duration of lactation were assessed among parous women. Time since 

last birth could not be evaluated because approximately 95% patients had their most recent 

birth more than 15 years before breast cancer diagnosis. Tumor clinicopathological factors 

evaluated included tumor size, histological type, differentiation stage, number of positive 

axillary lymph nodes, and ER status. The age-adjusted differences in epithelial and stromal 

compositions according to breast cancer risk factors and tumor characteristics were 

compared using Wald test.

Linear regression with Linear Models for Microarray Data (LIMMA) (23) was used to 

identify genes associated with stromal and epithelial composition. Both epithelial and 

stromal proportions were included in the model as independent variables. The false 

discovery rate (FDR) approach was used to control for multiple comparisons, with 0.05 as 

the cutoff for statistical significance. Previous analyses showed distinct microenvironments 

associated with breast tumor subtypes (20, 24), so ER-stratified analysis were also 

performed.

To validate the signatures identified, a test data set (n=50, described above) was used. 

Principle component analysis was used to assess global gene expression in the test and 

training data sets, and showed considerable overlap (Supplementary Figure 1). To evaluate 

relative expression of a signature in a test set sample, the log2(R/G) expression for each 

gene was multiplied by corresponding direction index (1 for up-regulated genes, and -1 for 

down-regulated gene) and results were summed across all genes. This score was also 
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evaluated for association with cellular composition of test samples. Although training and 

test datasets showed considerable similarity in demographic, anthropometric factors, and 

tumor characteristics (except that mammographic density of women in test dataset was 

slightly higher compared with women in training dataset), we performed a sensitivity 

analysis including the 50 subjects, to evaluate the impact of exclusion from the training 

dataset due to missing values. The magnitude of associations observed in the training dataset 

was not meaningfully changed by including these patients.

Results

Associations between histology and risk factors/clinicopathological characteristics

The analysis used histology data from 96 patients with complete data to assess risk factor 

associations. In this sample, mean epithelial proportion was 8.4% (SD=4.9%; range=0.5–

19.4%), mean stromal proportion was 27.7% (SD=24.0%; range=0.02–85.0%), and mean 

adipose proportion was 64.0% (SD=24.0%; range=12.5–98.5%). While epithelial proportion 

was independent of the other two components (non-fatty stroma: γ=−0.09, p=0.40; 

adiposity: γ=−0.12, p=0.26), stromal and adipose proportions were strongly inversely 

correlated (γ=−0.98, p<0.001).

Among the risk factors examined, age showed the strongest association with breast 

composition. Interestingly, the association was not strictly monotonic linear, but had a 

turning point around age 50 (Figure 1). Adipose proportion significantly increased with age 

until age 50, with a 2.0% increment per year (p=0.004). After age 50, the rate of change in 

adipose proportion decreased to 0.1% per year (p=0.800). Conversely, stromal proportion 

decreased with age at a rate of −1.9% per year (p=0.006), with an inflection after 50 years of 

age, and a rate of −0.06% per year (p=0.864) thereafter. The variation in epithelial 

composition with age was relatively small, both before and after age 50, but a slight U-shape 

curve was observed, with declines in epithelial proportion prior to age 50, followed by a 

modest increase in proportion thereafter (< 50y: 0.11% decrement per year, p=0.426; ≥50y: 

0.14% increment per year, p=0.042). The ratios of epithelium to non-fatty stroma and non-

fatty stroma to adipose were also assessed (Supplementary Figure 2). For the ratio of 

epithelium to non-fatty stroma, we observed a slight but insignificant increase with age. The 

ratio of stromal-to-adipose proportion had an association with age that was very similar to 

that of stromal proportion, decreasing till age 50 years and then leveling off.

Given the high inverse correlation between stromal and adipose proportions, subsequent 

analyses focused on epithelium and non-fatty stroma, and did not separately assess 

associations with adipose proportion. However, the adipose associations are presented in 

Supplementary Table 1. Factors associated with breast composition after adjustment for age, 

included BMI and mammographic density measures (Table 1). We evaluated potential 

confounding of risk factor-composition relationships by BMI, and found no substantial 

confounding except for in models with mammographic density, and therefore reported the 

parsimonious model without BMI for all other associations. Women with higher stromal 

proportion were more likely to have higher percentage density and dense area, but were less 

likely to be obese. Interestingly, epithelial composition showed a positive association with 

BMI, but was suggested to be inversely associated with breast density. Although not 
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statistically significant, stromal but not epithelial content, was lower in parous compared 

with nulliparous women (p=0.06). We did not detect any significant associations of breast 

composition with tumor characteristics, except that higher epithelial proportion was 

associated with poorly differentiated tumors (Table 2).

Association between histology and gene expression

To identify gene expression that varied with breast composition on 96 women in the training 

sample with complete risk factor data, supervised analyses were performed. We detected an 

epithelial-content-associated signature (n=716 genes, FDR<0.05 and β>0.02), with 

approximately half of the genes up-regulated (n=332) (Supplementary Table 2). Pathway 

analysis showed that up-regulated genes included cytokine/chemokine activity, EIF2 

signaling, and mTOR signaling, and suggested biological functions related to epithelial 

regulation and immune-related processes (Supplementary Table 3). No significant pathways 

(defined as Benjamini-Hochberg adjusted p-value <0.05) were detected among the down-

regulated genes.

Stromal composition was associated with a broad biological profile, with the corresponding 

signature including 1065 genes (484 down-regulated and 581 up-regulated genes) defined by 

FDR<0.05 and β>0.02 (Supplementary Table 2). The up-regulated pathways were involved 

in regulating vascular permeability, epithelial to mesenchymal transition, and maintenance 

of breast cancer stem cells in self renewal state (Supplementary Table 3). The down-

regulated pathways included metabolic and signaling pathways. The stromal and epithelial 

signatures were relatively independent, with less than one third of genes being identified in 

both signatures and only cell-sertoli cell junction signaling pathways being identified in both 

gene sets.

Given previous evidence of expression differences (20, 24–26) and our own findings 

suggesting epithelial content differences in cancer-adjacent normal by tumor ER status (27), 

we also performed analysis of gene expression stratified by ER status. In ER-positive 

patients, the stromal and epithelial signatures were similar to the signatures detected in 

unstratified analysis, with considerable overlap (stromal signature, 97%; epithelial signature, 

65%). In ER-negative patients, no epithelial signature was detected. However, ER-negative 

stroma had a unique signature, with 425 genes identified (up=190; down=235) 

(Supplementary Table 2) that were not captured in unstratified/overall analysis. Pathway 

analysis showed these genes are involved in carcinogenesis and tumorigenesis, for example, 

actin cytoskeletal signaling, Wnt/beta-catenin signaling and leukocyte extravasation 

signaling (Supplementary Table 3).

We validated the composition-associated signatures in an independent subsample data (n= 

50) from the PBCS. As shown in Figure 2A, the average gene expression level of our 

stromal content signature increased with actual stromal proportion (p-value for trend <0.001, 

age-adjusted). The high inverse correlation between non-fatty stroma and adipose 

compositions was also reflected at the gene expression level, where the expression of the 

stromal signature decreased with actual adipose proportion (Figure 2B, p-value for trend 

<0.001, age-adjusted). Similarly, expression level of epithelial signature showed positive 

associations with epithelial proportion (Figure 2C, p-value for trend <0.001, age-adjusted). 
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Thus the signatures identified in the training dataset showed strong relationships with 

composition in the independent, validation data.

Discussion

Benign breast tissue composition is responsive to exogenous exposures, endogenous 

physiological effects and pathological events. Understanding the factors that influence 

composition is important for understanding breast cancer etiology, risk, and progression. 

Our results showed that epithelial and stromal proportions were associated with well-

recognized breast cancer risk factors (such as age, BMI, and mammographic density) and 

with tumor differentiation. The strongest associations were between age and breast 

composition. While the effect of age on breast epithelial content is well-recognized (16, 17, 

28, 29), we also observed significant differences in stromal content. The association between 

age and tissue composition mirrors associations with percentage density (30), with neither 

appearing strictly monotonic, but both suggesting a turning point at age 50.

The observation that stroma is slowly displaced by fat even prior to menopause has potential 

implications for breast tumorigenesis broadly and for epidemiologic studies of breast cancer 

risk. It is increasingly recognized that stroma plays an important role in breast cancer 

progression (31–33). It has also been shown that expression of adipokines may be altered 

with obesity and in the peritumoral tissue of advanced breast tumors, suggesting a role for 

breast fat and adipokines in tumorigenesis (34). However, the impact of changing 

premenopausal breast tissue composition on risk is largely unexplored. Given the degree of 

changes in the breast microenvironment that occur prior to menopause, future studies should 

consider stromal composition as a possible modifier of risk among premenopausal women. 

Measures of microenvironment composition are not widely available, however 

mammographic density is increasingly available in epidemiologic studies and may be not 

only a surrogate marker (35), but also a risk modifier for some carcinogenic exposures.

It is interesting that the premenopausal stromal changes were much more pronounced in our 

study than the age-related changes in epithelium. In contrast to previous findings (16), we 

did not observe statistically significant age-associated differences in epithelial proportion 

among younger (age<50 years) women. Differences in the age-epithelial content association 

between our study and Nurse’s Health Study’s (NHS) benign breast disease cohort (16) may 

be due to the older age of women in our dataset (percentage of population <50 years: 22% 

vs. 68% in NHS). That is, given that our study included fewer younger women (where the 

effects of age are most pronounced), we were underpowered to detect age-related declines in 

epithelial content. However, our data including more older women yielded interesting novel 

insights, including suggestions of a modest increase in epithelial proportion after age 50. As 

women age, terminal duct lobular units (TDLUs) are well known to regress, likely due to 

hormonal changes; however, large ducts are believed to change less under the influence of 

age (27, 36). This could account for non-linearity in the age-epithelial content association. 

These associations should be further investigated in other cohorts, particularly if epithelial 

content serves as a marker of risk as suggested previously (28).
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Composition changes with age may also reflect changes in breast volume. As non-fatty 

stroma declines, overall breast tissue volume declines and there is a concomitant increase in 

fat proportion. This is reflected in the ratio of non-fatty stroma to adipose: the ratio 

increased slightly in the age group of 60–69 years, decreasing after age 70. Thus this 

represents an alternative explanation for the increase in epithelial content in older women; 

the increasing proportion of epithelium may reflect a smaller breast rather than an increase 

in epithelium. However, even after normalizing epithelial proportion to fat percentage, the 

U-shaped curve morphology persisted (data not shown). Strong dichotomies in breast 

composition between young women (<50) and older women (≥50) are important to consider 

in light of observations that tumor biology in young women differs from that of old women 

(29).

BMI was strongly and inversely associated with non-fatty stroma content in PBCS. This 

result was consistent with previous studies (16, 17), perhaps reflecting the coordination of 

whole body composition and local breast composition. However, obese women also had a 

higher proportion of epithelium. This association has not been reported previously, but is 

line with the positive relationship of obesity and breast cancer risk observed in 

postmenopausal women. Adipose cells are believed to express high levels of aromatase, and 

therefore local effects on epithelial cell histology are biologically plausible (37). Because 

76% of our study population was postmenopausal, our data were well powered to capture 

the association of epithelial variation with obesity.

We did not observe strong associations between epithelial content and reproductive factors, 

in contrast to previous findings in the Nurse’s Health Study (NHS) (16). The vast majority 

of our patients had experienced birth more than 15 years prior to sample collection, whereas 

the younger NHS study participants (mean age 45 compared to 56 in PBCS) were more 

recently pregnant. The differences in findings and study population suggest that effects of 

reproductive exposures, such as parity, on breast tissue composition may not be persistent. 

In fact, the prevailing hypothesis for long-term parity-associated protection emphasizes 

change in differentiation state of epithelium rather than change in cellular content (38). 

Other morphometric measures of epithelial size, shape, and or involution status may be more 

closely linked with reproductive factors.

Because patients in this study had cancer, it was also possible to evaluate breast composition 

in association with tumor characteristics. We found that greater epithelial composition was 

associated with poorer tumor differentiation and weakly with ER-negative status. While the 

effects suggesting relationships between cancer-adjacent composition and tumor 

characteristics are weak, future studies should consider other measures of benign 

morphometry. A previous study in PBCS (27) has suggested that TDLU involution may be 

inversely correlated with basal-like breast cancer and more careful measures of epithelial 

morphometry may be more sensitive than ‘epithelial area’ used in this study. Future studies 

should also evaluate inflammatory infiltrates as these cells may play an important role in 

gene expression patterns of ER-positive vs. negative tumors. However, an interesting 

observation of our study is that the associations of epithelium and non-fatty stroma with 

tumor characteristics were always in opposite directions. For example, large tumor size was 

associated with decreased stromal content and increased epithelial content. This could 

Sun et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reflect a repressive stroma and/or a common factor that increases epithelial cell growth for 

both benign and tumor tissue. Whatever the causes, these disparate findings for stroma and 

epithelium have important implications. Because epithelial and stromal content together are 

associated with increasing mammographic density, relationships between cellular content 

and tumor characteristics may be obscured (that is, changes in epithelium and stroma may 

effectively cancel each other out) in studies that rely on mammographic density as a 

surrogate measure of breast tissue composition. Nonetheless, while associations between 

mammographic density and intrinsic subtype may be largely null (39, 40), associations 

between tumor characteristics and particular cellular components may be important for 

progression.

By linking our risk factor exposures with composition, and composition with gene 

expression, our findings suggest biological pathways that are altered by risk factor exposure. 

For example, risk factors that alter stromal content may have effects on vascular 

permeability, tight junction signaling, metabolic signaling, loss of contact inhibition and cell 

polarity. Indeed, our previous experimental work has shown that stromal-epithelial 

interactions altered metabolism and glucose uptake of breast cancers (41). Thus, these gene 

expression changes may lead to novel hypotheses about breast cancer microenvironments. 

Furthermore, these independently validated composition signatures may be used in future 

studies where histological data is unavailable, to estimate composition.

Our study should be considered in light of limitations and strengths. The non-neoplastic 

breast tissues used in the present study were taken from breast cancer patients. The influence 

of tumor on extratumoral microenvironment has been reported previously (24, 42), and 

therefore associations should be interpreted with cognizance of these possible differences. 

Future histological research on normal breast tissues from healthy women is needed. In 

particular, studies like the Komen Tissue Bank (43), in which needle biopsy sampling is 

essentially ‘blind’ to tissue structure, are important. In studies using whole tissue collected 

during pathologic evaluation, a bias toward sampling tissue which appears to contain 

parenchymal cells is well known. This bias was also present in the PBCS samples. Thus, our 

findings on composition are generalizable only as relative measures of composition and not 

as absolute measures. It is likely that our study, and moreover, most studies using surgical 

tissues, over-estimate stromal and epithelial percentages. In spite of these limitations, these 

data show compelling evidence that breast tissue composition varies according to 

epidemiologic risk factors, with important consequences for gene expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Boxplots and spline lines of breast tissue composition by age
Boxplots show the distribution of composition by five age groups at diagnosis (<40 y, 40–49 

y, 50–59 y, 60–69 y, and ≥ 70 y). A cubic spline interpolation algorithm (knots=3) was used 

to smooth the curve and visualize these associations.
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Figure 2. A–C. The average gene expression level of epithelial and stromal composition 
signatures across breast tissue composition groups in test dataset (n=50)
The association of relative expression of epithelial and stromal composition signatures with 

breast tissue composition was validated in a test set sample (n=50). The log2(R/G) 

expression for each gene of each composition signature was multiplied by corresponding 

direction index (1 for up-regulated genes, and −1 for down-regulated gene), and results were 

summed across all genes as relative gene expression level. This relative gene expression 

level was evaluated for association with tissue composition by tertiles (cutoff points: 

epithelial proportion, 7.20% and 16.05%; stromal proportion, 10.78% and 34.31%; adipose 

proportion, 47.11% and 79.62%). A and C. The average gene expression level of the stromal 

and epithelial composition signatures increased with actual stromal and epithelial proportion 

(age-adjusted p-value for trend <0.001). B. The expression level of the stromal signature 

decreased with actual adipose proportion (age-adjusted p-value for trend <0.001).
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