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Abstract

Background—Multiple primary cancers account for ~16% of all incident cancers in the U.S.. 

While genome-wide association studies (GWAS) have identified many common genetic variants 

associated with various cancer sites, no study has examined the association of these genetic 

variants with risk of multiple primary cancers (MPC).

Methods—As part of the NHGRI Population Architecture using Genomics and Epidemiology 

(PAGE) study, we used data from the Multiethnic Cohort and Women’s Health Initiative. Incident 

MPC (IMPC) cases (n=1,385) were defined as participants diagnosed with >1 incident cancers 

after cohort entry. Participants diagnosed with only one incident cancer after cohort entry with 

follow-up equal to or longer than IMPC cases served as controls (single-index cancer controls; n= 

9,626). Fixed-effects meta-analyses of unconditional logistic regression analyses were used to 

evaluate the association between cancer risk variants and IMPC risk. To account for multiple 

comparisons, we used the false positive report probability (FPRP) to determine statistical 

significance.

Results—A nicotine dependence-associated and lung cancer variant, CHRNA3 rs578776 

(OR=1.16, 95% CI=1.05–1.26; p=0.004) and two breast cancer variants, EMBP1 rs11249433 and 

TOX3 rs3803662 (OR=1.16, 95% CI=1.04–1.28; p=0.005 and OR=1.13, 95% CI=1.03–1.23; 

p=0.006) were significantly associated with risk of IMPC. The associations for rs578776 and 

rs11249433 remained (p<0.05) after removing subjects who had lung or breast cancers, 

respectively (p-values≤0.046). These associations did not show significant heterogeneity by 

smoking status (p-heterogeneity≥0.53).

Conclusions—Our study has identified rs578776 and rs11249433 as risk variants for IMPC.

Impact—These findings may help to identify genetic regions associated with IMPC risk.
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Introduction

In the past 50 years, the 5-year relative survival rate for all cancers has dramatically 

increased from 49% to 67%(1). As a result, the number of cancer survivors is growing by 

2% per year(2). Compared to the general population, cancer survivors are at a greater risk 

for a number of comorbidities, including the occurrence of subsequent primary cancers(3), 

which is one of the leading causes of death for long-term cancer survivors (>5-years)(4, 5). 

In 2002, Surveillance Epidemiology and End Results (SEER) data indicated that ~16% of all 

new cancers in the U.S. were second or higher-order primary cancers(1). Risk factors for 

developing multiple primary cancers (MPC) include younger age at index (first) cancer, 
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treatment modality for the index cancer, shared etiological factors (e.g. smoking) and 

genetic susceptibility(3).

Genome-wide association studies (GWAS) have identified several hundred genetic variants 

associated with various types of cancers(6). Pleiotropy, defined as when a single variant is 

associated with more than one phenotype, has been identified for some of these cancer risk 

loci(7, 8). For instance, variants in the chromosome 8q24 locus have been associated with 

risk of prostate, breast, colorectal and other cancers(8) and those near the telomerase reverse 

transcriptase gene (TERT) have been associated with many cancer sites(9–14), including 

lung(15–17), estrogen-receptor negative breast(18), ovary(19) and pancreatic(20) cancers. 

Given that some cancer risk variants are associated with more than one cancer site, it is 

possible that they may also be associated with risk of developing MPC. Identification of 

such risk variants may elucidate common cancer etiologies and pathways, improve our 

understanding of treatment-related effects or identify populations at risk for developing 

multiple cancers.

With the exception of familial cancer syndromes, the literature examining genetic variants 

and risk of MPC is sparse, and is usually limited to risk after a specific index cancer site. 

Furthermore, prior studies are rarely based on prospective data and there has been no 

systematic investigation of the relationship between common cancer susceptibility variants 

and MPC risk. Thus, we utilized prospective data from the Population Architecture using 

Genomics and Epidemiology (PAGE) study to investigate the associations of 188 cancer 

risk variants with risk of incident MPC.

Materials and Methods

Study Populations

The PAGE study(21) was initiated in 2008 by the National Human Genome Research 

Institute (NHGRI). Two PAGE studies in collaboration with NHGRI and the coordinating 

center(21) participated in this analysis, the Multiethnic Cohort (MEC)(22) and the Women’s 

Health Initiative (WHI)(23). Informed consent was obtained from all study participants. This 

investigation was approved by each study’s respective Institutional Review Boards.

Briefly, the MEC was initiated in 1993 to investigate the impact of dietary and 

environmental factors on major chronic diseases, particularly cancer, in ethnically diverse 

populations in Hawai’i and California(22). The study recruited 96,810 men and 118,441 

women aged 45 to 75 years between 1993 and 1996. MEC subjects recontacted mostly from 

1995 to 2001 for blood collection included incident cases with breast, prostate, or colorectal 

cancers, as well as a random sample of cohort participants to serve as controls in genomic 

nested case-control studies (participation rate 72% and 63%, respectively). The median 

interval between diagnosis and blood draw was 14 months (interquartile range, 10–19 

months). From 2001 to 2006 blood was also collected, prospectively, without regard for 

cancer diagnosis, from willing cohort participants (participation rate 43%). Incident cancers 

are identified through annual linkage to the Hawai’i Tumor Registry, Los Angeles County 

Cancer Surveillance Program and the California Cancer Registry. All three registries are 

Park et al. Page 3

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



members of SEER(24). At the time of case selection for this analysis, follow-up was 

complete as to December 31, 2007

The Women’s Health Initiative (WHI) is a long-term health study that recruited 161,808 

post-menopausal women aged 50 to 79 years between 1992 and 1998 at 40 clinical centers 

throughout the U.S. WHI comprises a Clinical Trial (CT) arm, an Observational Study (OS) 

arm, and several extension studies, which are studies with continued follow-up of 

consenting participants from the original two study arms. The details of WHI have been 

previously described(23, 25), and are available online(26). Blood draw was taken at time of 

study recruitment on all study participants. During the follow-up period of January 1, 1992 

to September 30, 2013, incident cancers were identified among participants in the OS and 

CT arm. Potential cancer status was identified from self-reported and/or hospital record data 

and confirmation of status was determined through review of the participant’s medical 

records and pathology reports by trained cancer coders.

Case and Control Definitions

Details regarding the study design and case-control definitions are presented in 

Supplementary Table 1. All subjects for this analysis were cancer-free at baseline and had to 

have developed at least 1 cancer during study follow-up. MPC cases were defined as those 

who were diagnosed with more than one invasive primary cancer (non-melanoma skin 

cancers were excluded) during study follow-up(27), and are referred herein as incident 

multiple primary cancer (IMPC) cases. Controls were defined as subjects who developed 

only one invasive primary cancer during study follow-up and are referred to as incident 

single-index cancer (ISC) controls. In order to test the association of cancer risk variants 

with risk of subsequent cancers, cancer-free controls were not used in this analysis. In the 

MEC, which identifies cancer cases by linkage to SEER registries, IMPC cases could have a 

subsequent primary cancer of the same site, provided that the subsequent cancer met the 

SEER definition for same site MPCs (e.g., a subsequent breast cancer following a first breast 

cancer defined as primary given the following conditions: 1) contralateral breast cancer that 

did not result from metastases, 2) breast cancer of a different histologic cell type, or 3) 

breast cancer 5+ years after initial diagnosis)(27). No second primaries were allowed for 

prostate cancer, leukemia and non-Hodgkin’s lymphoma, also based on SEER rules. In the 

WHI, which adjudicated cancer cases by medical record review, it was not possible to 

systematically determine whether the cancer of the same site was a subsequent primary 

cancer or metastases. Thus, a repeat diagnosis of the same cancer site during follow-up was 

not counted as IMPC in WHI. IMPC cases for each study were frequency matched to all 

eligible ISC controls by age of index cancer diagnosis (within 5-year intervals), length of 

follow-up (where controls had follow-up time that was equal to or greater than that of the 

cases), race and sex. This analysis included a total of 1,385 IMPC cases and 9,626 ISC 

controls. In preliminary analyses, we had additionally matched for first cancer site. As the 

findings were similar, we matched only on age, sex, and race/ethnicity to increase our 

sample size and adjusted for first cancer in the statistical model.
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SNP Selection and Genotyping

A total of 188 cancer risk variants associated with 18 cancers and nicotine dependence 

(nicotine dependence SNPs were considered herein as cancer risk variants given that 

smoking is a major risk factor for several cancer sites)(28) were identified from the NHGRI 

catalog of GWAS studies(6) as of January 2010, followed by a review of the original reports 

and the fine mapping literature(12, 14–17, 20, 29–84). The risk allele for each SNP was 

determined based on the prior literature and was defined as the allele associated with an 

increased risk of cancer in the first GWAS report.

Genotyping for the 188 cancer variants (175 SNPs in WHI and 156 SNPs in MEC; 143 

SNPs with overlap) was performed using the TaqMan OpenArray platform (MEC) and 

Illumina BeadXpress (WHI). To control for population stratification, a panel of 128 ancestry 

informative markers(85) were genotyped. Principal components analysis(86) was performed 

and the main principal components were included in the regression model to adjust for 

genetic ancestry in each study.

Standard quality-assurance and quality-control measures were applied to ensure genotyping 

quality(21). Samples and SNPs were included based on call rates (≥90%), concordance of 

blinded replicates (>98%), and no clear departure from Hardy-Weinberg equilibrium 

(p>0.001).

Statistical Analysis

For each study, we tested the association between each SNP and risk of IMPC using 

unconditional logistic regression. SNPs were coded additively, with 0, 1, 2 referring to the 

number of risk alleles. Models were adjusted for age at diagnosis for the index cancer 

(continuous), sex (MEC only), study design (WHI only: CT vs. OS), the most significant 

principal components (PC) of genetic ancestry (to account for race/ethnicity [five PCs for 

the MEC and three PCs for WHI]), and index cancer site (17 categories), stage (local, 

regional, distant) and diagnosis year (to account for treatment cohort effects). We adjusted 

for index cancer site and stage to account for differences in cancer survival.

The regression estimates were combined across studies using inverse-variance weighted, 

fixed-effect meta-analysis as implemented in METAL (http://www.sph.umich.edu/csg/

abecasis/Metal/). We calculated the cross-study and cross-race heterogeneity p-values based 

on Cochran’s Q statistic. Stratified analysis by race/ethnicity were conducted for SNP 

associations with p<0.05. To account for the multiple testing of 188 SNPs, we used the false 

positive report probability (FPRP) introduced by Wacholder et al.(87). We set a stringent 

FPRP threshold of 0.20 and assigned a prior probability range of 0.01–0.10 to detect an OR 

of 1.2 or 0.83. Variants that were found to be significantly associated with IMPC after 

correction for multiple comparisons were further investigated in sensitivity analyses in 

which subjects with the cancer site (either as index cancer or IMPC) corresponding to the 

variant’s first known GWAS association were removed, as well as after adjusting for or 

stratifying by smoking status, obtained by self-report at baseline.
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Results

The main characteristics of the 1,385 IMPC cases and 9,626 ISC controls are presented in 

Table 1. Subjects were of six different ethnic/racial populations: European American, 

African American, Hispanic, Asian, Pacific Islander, and Native American. Forty-three 

percent of subjects were European American and 59% were female (the MEC ascertained 

both sexes, while WHI ascertained only women). The most common index cancer sites were 

prostate and breast for the MEC and colorectal and breast for WHI. In both studies, among 

all IMPC cases, breast cancer was the most common incident second cancer (for the MEC, 

n=164 and for WHI, n=133). The distribution of index and subsequent incident cancers by 

study is presented in Table 2 and Supplemental Table 2 (which includes latency intervals 

between cancer sites). The most common index and subsequent cancer combination in the 

MEC study was an index breast and subsequent breast cancers and in the WHI study index 

endometrial and subsequent breast cancers. Less common cancers were collapsed as ‘other;’ 

the enumeration of these cancer sites can be found in Supplemental Table 3 (WHI) and 

Supplemental Table 4 (MEC). There were 115 MEC IMPC cases and 15 WHI IMPC cases 

with 3 or more cancers (Supplemental Table 5).

We examined a total of 188 cancer risk variants (Table 3 for associations with p<0.05 and 

Supplementary Table 6 for associations with p≥0.05). Prostate and breast cancer risk 

variants represented the greatest proportions of variants (28% and 15%, respectively). 

Among the 188 SNPs, 12 were found to be associated with risk of IMPC at p<0.05 (Table 

3). These 12 associations were with three prostate cancer variants, three lung cancer 

variants, two breast cancer variants, one pancreatic cancer variant, one melanoma variant, 

one thyroid variant and one colorectal variant. These associations were not found to be 

heterogeneous by study or race/ethnicity (p>0.05) (Table 3 and Supplemental Table 7).

After correction for multiple comparisons, we found that the associations of CHRNA3 

rs578776, EMBP1 rs11249433 and TOX3 rs3803662 with IMPC remained statistically 

significant at a FPRP threshold of 0.20 and a prior probability of 0.01 (Table 4). The 

CHRNA3 rs578776 risk allele “C” previously associated with nicotine dependence and lung 

cancer, was associated with an increased risk of IMPC (OR=1.15, 95% CI=1.05–1.26; 

p=0.004) (Table 2). The risk allele “C” for the breast cancer variant EMBP1 rs11249433 

was also associated with an increased risk of IMPC (OR=1.16, 95% CI=1.04–1.28; 

p=0.005). The risk allele “T” for the breast cancer variant TOX3 rs11249433, located at 

16q12.1, was also associated with an increased risk of IMPC (OR=1.13, 95% CI=1.03–1.23; 

p=0.006).

When removing from the analysis all subjects with lung cancer for the CHRNA3 variant and 

with breast cancer for the EMBP1 and TOX3 variants, either as index cancer or IMPC, the 

associations for CHRNA3 rs578776 and EMBP1 rs11249433 remained significant 

(p’s≤0.046) (Table 5). The association for rs3803662 had a similar OR as its main effects; 

however, the association did not quite reach statistically significant (OR=1.13; p=0.005 vs 

OR=1.11; p=0.064, respectively).
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Because smoking is a risk factor for many cancers, we additionally adjusted our models for 

smoking status and pack-years and found similar associations (data not shown). In our 

analyses stratified by smoking status, no heterogeneity in the effects of the genetic variants 

was detected between never and ever smokers (p-heterogeneity≥0.53) (Table 5). Due to a 

limitation in sample size, we were unable to restrict this analysis to cancers that are 

unrelated to smoking.

Discussion

To our knowledge, this is the first study to examine the association of cancer risk variants 

with risk of IMPC. We tested 188 established cancer risk variants among 1,385 IMPC cases 

and 9,626 ISC controls and found that the lung cancer/nicotine dependence risk allele “C” of 

CHRNA3 rs578776 and the breast cancer risk alleles “C” of EMBP1 rs11249433 and “T” of 

TOX3 of rs3803662 were associated with an increased risk of IMPC. The associations for 

rs578776 and rs11249433 remained after accounting for multiple hypothesis testing, were 

not restricted to participants with the cancer previously associated with those variants, and 

were consistent with regard to smoking status.

The 15q25.1 region includes the CHRNA5-CHRNA3-CHRNB4 cluster of cholinergic 

nicotine receptor subunit genes. Variants within this region have been associated with 

increased risk of lung cancer primarily due to their relationships with smoking behavior and 

nicotine dependence(15, 81, 82, 88). In addition, risk variants in the CHRNA5-CHRNA3-

CHRNB4 region have been positively associated with chronic obstructive pulmonary 

disease(89), serum albumin levels(90), pulmonary function(91) and childhood obesity-

related traits in Hispanics(92). In our study, we found that both rs578776 and rs8042374, 

which are in high LD in whites and Asians (CEU: r2=0.83, YRI: r2=0.16, CHB+JPT: 

r2=0.72), were positively associated with risk of multiple primary cancers when compared to 

those with only one incident cancer. Only the association with rs578776 remained 

significant after correction for multiple testing. Smoking is an established risk factor for at 

least 10 different cancer sites(28); therefore, a reasonable explanation for the association of 

these variants with IMPC would be the result of their known association with smoking. 

However, when stratifying by smoking status, we found that the association was somewhat 

stronger, albeit not significantly (p-heterogeneity by smoking≥0.47), in never smokers 

(OR=1.21; p=0.01) than in ever smokers (OR=1.13; p=0.05). This association in never 

smokers is unexpected and could be due to chance. Further study of this risk variant with 

IMPC in never smokers is warranted.

The rs11249433 variant is located in the pericentromeric region at 1p11.2 and within the 

embigin pseudogene, EMBP1. This SNP maps near many other pseudogenes in a SNP desert 

region. EMBP1 rs11249433 was originally found to be associated with breast cancer (p=7x 

10−10)(69). Additional studies found that rs11249433 was specifically associated with ER-

positive breast cancer(69, 93) and lower grade breast tumors(93), two characteristics that are 

associated with improved breast cancer survival(94). It is possible that the association for 

rs11249433 with increased risk of MPC may be related to survivorship such that a longer 

survival after breast cancer diagnosis may lead to a higher likelihood of developing a 

subsequent primary cancer. When removing subjects with breast cancer as the index cancer 
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or an IMPC from our analysis, the association of rs11249433 with IMPC persisted, although 

not as significant, suggesting that this association was not exclusively due to a better breast 

cancer survival. This SNP may play a role in increased overall cancer survival or risk of 

cancer development. The closest located genes to rs11249433 are a transmembrane coding 

gene, NOTCH2 and highly paralogous low-affinity Fc gamma receptor family 1B gene, 

FCGR1B. SNPs in NOTCH2 have been associated with Type-2 diabetes(95), a condition 

that has been associated with an increased risk of breast, colorectal, pancreatic, liver, urinary 

tract and endometrial cancers(96, 97). In addition, a study that investigated the expression of 

five genes within 1 Mb of rs11249433 found an increased expression of NOTCH2 in 

patients with ER-positive breast cancer without TP53 mutations compared to those with 

TP53 mutations(98). NOTCH2 receptors are involved in regulation of cell communication, 

proliferation, differentiation and death(99), processes that are all influential in cancer 

development.

The rs3803662 variant is located at 16q12.1 in the Cancer Susceptibility Candidate 16 gene, 

CASC16, which is an RNA gene. TOX3 and LOC643714 are other genes located close to 

this polymorphism. This variant has been previously associated with breast cancer (p-

value=6x10−19)(65), with slightly stronger associations in ER-positive breast cancer than 

ER-negative disease(100). A prior study found that the risk allele for rs3803662 is correlated 

with lower mRNA expression of TOX3 in ER-positive tumors(101). Increased TOX3 mRNA 

expression has been previously found to be predictive of breast cancer metastases(102) and 

lower overall survival among breast cancer patients(101). It is possible that the association 

for rs3803662 with increased risk of MPC may be related to survival from breast cancer. 

When removing subjects with breast cancer, the association was not quite statistically 

significant, suggesting that this association may be due to the risk variants prior association 

with breast cancer.

This study had a number of strengths, including the prospective design which allowed us to 

focus on incident cancers and minimize survival bias, while investigating multiple primary 

cancer risk in an adult population. We also had a long follow-up period to assess subsequent 

cancers (MEC: 14 years and WHI: 19 years), a large sample size, and well-characterized 

study populations enabling adjustment for multiple potential confounders. Study limitations 

include limited power to detect effects for rare SNPs and the lack of detailed information on 

treatment, especially, on radiation therapy, a known risk factor for multiple primaries(103). 

In the MEC, where information on first course of cancer therapy was available, similar 

results were observed after adjusting for radiation treatment (yes/no). In addition, our meta-

analyzed findings did not change when adjusting for index cancer stage, suggesting that our 

findings are not strongly dependent on the treatment received, since treatment is relatively 

well standardized by stage. Our study oversampled the more common cancer sites as a result 

of the blood collection design in the earlier years of the MEC. Also, for WHI, the study 

undersampled breast and colorectal cancer cases to be genotyped for the PAGE analysis. 

Therefore, the more common cancer sites, with the exception of lung cancer, may have been 

overrepresented in the MEC and endometrial cancer was overrepresented in WHI. 

Additionally, cases with subsequent primary cancers of the same site were not available in 

the WHI study and were, thus, underrepresented in that study.
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In conclusion, our findings, if reproduced, may contribute toward identifying common 

cancer etiologic pathways, common treatment-related effects, or populations at risk for 

developing more than one cancer. We found the cancer risk variant rs578776 in CHRNA3 to 

be associated with occurrence of multiple primary cancers. Our analysis suggests that the 

associations for TOX3 rs3803662 may have been driven by the variants known association 

with breast cancer. However, the association for EMBP1 rs11249433 and CHRNA3 

rs578776 appears to be independent of their known cancer association. These findings 

should be confirmed in other study populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Study Characteristics for incident multiple primary cancer cases and first index cancer controls.

MEC WHI

cases
n=965

controls
n=6,969

cases
n=420

controls
n=2,657

Age of index cancer; Mean (SD) 68.3 (7.8) 68.0 (8.3) 70.1 (7.0) 69.7 (9.0)

Age of 2nd cancer; Mean (SD) 72.6 (8.0) NA 74.2 (7.3) NA

Follow-up time, years; Mean (SD) 9.4 (3.3) 13.7 (1.9) 9.6 (3.7) 12.7 (2.3)

Sex; n (%)

 Male 549 (56.9) 3930 (56.4)

 Female 416 (43.1) 3039 (43.6) 420 (100) 2657 (100)

Race/ethnicity; n (%)

 European American 254 (26.3) 1534 (22.0) 372 (88.6) 2088 (78.6)

 African American 235 (24.4) 1419 (20.4) 37 (8.8) 412 (15.5)

 Hispanic 194 (20.1) 1581 (22.7) 6 (1.4) 96 (3.6)

 Asian 232 (24.0) 2045 (29.3)
4 (0.95)b 58 (2.2)b

 Pacific Islander 50 (5.2) 390 (5.6)

 Indian/Native American NA NA 1 (0.24) 3 (0.11)

Smoking status

 Never 352 (36.9) 2843 (41.4) 174 (41.4) 1292 (48.6)

 Former 421 (44.1) 3064 (44.6) 200 (47.6) 1123 (42.3)

 Current 182 (19.1) 959 (14.0) 42 (10.0) 212 (8.0)

 missing, n 10 103 4 30

Pack-yearsa; Mean (SD) 21.9 (17.0) 18.0 (15.7) 15.3 (22.0) 11.0 (19.1)

 missing, n 31 260 14 90

Index Cancer site

 Breast 265 (27.5) 1970 (28.3) 82 (19.5) 906 (34.1)

 Prostate 278 (28.8) 2906 (41.7) NA NA

 Colorectal 164 (17.0) 987 (14.2) 67 (16.0) 433 (16.3)

 Lung 24 (2.5) 175 (2.5) 43 (10.2) 291 (11.0)

 Otherc 234 (24.2) 931 (13.4) 228 (54.3) 1027 (38.7)

Secondary Cancer site

 Breast 164 (17.0) NA 133 (31.7) NA

 Prostate 111 (11.5) NA NA NA

 Colorectal 158 (16.4) NA 49 (11.7) NA

 Lung 120 (12.4) NA 65 (15.5) NA

 Otherc 412 (42.7) NA 173 (41.2) NA

Stage of index cancer, n (%)

 Localized 683 (70.8) 5153 (73.9) 288 (68.6) 1651 (61.1)

 Regional 215 (22.3) 1346 (19.3) 86 (20.1) 640 (24.1)

 Distant 67 (6.9) 470 (6.7) 46 (11.0) 366 (13.8)

Diagnosis year for index cancer, Mean (SD) 1998 (3.4) 2000 (3.7) 2002 (3.5) 2003 (3.7)
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MEC WHI

cases
n=965

controls
n=6,969

cases
n=420

controls
n=2,657

Diagnosis year for second cancer, Mean (SD) 2002 (3.2) NA 2006 (3.7) NA

a
Pack-years for ever smokers only.

b
Counts for Asian and Pacific Islanders

c
The four most common other cancer sites include bladder, endometrium, leukemia, melanoma and non-Hodgkin’s lymphoma, enumeration for 

these sites can be found in Table 2.
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