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Abstract
Background—Experimental evidence has demonstrated an anti-neoplastic role for vitamin D in
the colon and higher circulating 25-hydroxyvitamin D (25[OH]D) levels are consistently
associated with a lower risk of colorectal cancer (CRC). Genome-wide association studies have
identified loci associated with levels of circulating 25(OH)D. The identified SNPs from four gene
regions, collectively explain approximately 5% of the variance in circulating 25(OH)D.

Methods—We investigated whether six polymorphisms in GC, CYP2R1, CYP24A1 and
DHCR7/NADSYN1, genes previously shown to be associated with circulating 25(OH)D levels,
were associated with CRC risk in 10,061 cases and 12,768 controls drawn from 13 studies
included in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon
Cancer Family Registry (CCFR). We performed a meta-analysis of crude and multivariate-
adjusted logistic regression models to calculate odds ratios and associated confidence intervals for
SNPs individually, SNPs simultaneously, and for a vitamin D additive genetic risk score (GRS).

Results—We did not observe a statistically significant association between the 25(OH)D
associated SNPs and CRC marginally, conditionally, or as a GRS, or for colon or rectal cancer
separately or combined.

Conclusions—Our findings do not support an association between SNPs associated with
circulating 25(OH)D and risk of CRC. Additional work is warranted to investigate the complex
relationship between 25(OH)D and CRC risk.

Impact—There was no association observed between genetic markers of circulating 25(OH)D
and CRC. These genetic markers account for a small proportion of the variance in 25(OH)D.
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Introduction
Colorectal cancer (CRC) is the second leading cause of cancer death in men and women in
the United States. It is estimated that in 2012, a total of 143,460 U.S. men and women will
be diagnosed with cancer of the colon and rectum(1). Family history is a strong risk factor
for colorectal cancer(2, 3), which is consistent with the existence of shared etiologic and
genetic determinants among relatives. Known genetic mutations account for about 30-50%
of the familial risk(4); much of the remaining familial aggregation is unexplained. Genome-
wide association studies (GWAS) of sporadic CRC have identified at least 20 independent
loci statistically significantly associated with risk (5-12). However, these variants
cumulatively explain only a very small fraction of CRC risk (13).

Beyond inherited risk, there is a large body of evidence supporting the role of non-genetic
factors, including vitamin D status, in the etiology of CRC. The first human evidence to
suggest an association between vitamin D and CRC was the ecologic study by Garland and
Garland based on data collected in the 1950's and 60's which showed a strong inverse
association between colon cancer mortality and solar ultraviolet B (UVB) radiation exposure
in the U.S. (14). Since then, most but not all case-control and cohort studies have found an
inverse association between intake of vitamin D (both diet and supplements) and CRC risk
(15-18), with even stronger associations observed using directly measured circulating
25(OH)D (19-22), an integrated biomarker of vitamin D status (23). Randomized clinical
trials of vitamin D supplementation, including the Women's Health Initiative(24) and the
British Oxford Trial(25), have not demonstrated reductions in colorectal cancer incidence.
However, these trials have generally tested low doses of vitamin D and each included less
than seven years of follow-up, which is likely insufficient to shown an effect on cancer
incidence, particularly in light of the long latency of disease. Similarly, large meta-analyses
of clinical trials have not shown robust evidence for a protective role of vitamin D in the
development of colorectal cancer(26) despite some indication of a preventative role in the
development of adenomas(27).

Circulating 25(OH)D levels are a function of dietary sources and exposure of the skin to
sunlight, specifically UVB rays. In addition to environmental determinants, twin and family
studies suggest that genetic factors contribute substantially to circulating vitamin D levels,
with heritability estimates ranging from 43 to 80% (28-31).

Two published GWAS of 25(OH)D have uncovered SNPs significantly associated with
lower circulating 25(OH)D levels in four gene regions that appear to have functional
relevance:GC (group-specific component vitamin D binding protein); CYP2R1 (cytochrome
P450, family 2, subfamily R, polypeptide 1, encoding C-25 hydroxylase that converts
vitamin D to the active ligand for the vitamin D receptor; DHCR7/NADSYN1 (7-
dehydrocholesterol [7-DHC] reductase/nicotinamide adenine dinucleotide synthetase(32))
with roles in the synthetic vitamin D pathway(33, 34); and CYP24A1 (encoding 24-
hydroxylase involved in the degradation of both 25-hydroxyvitamin D and 1,25-
dihydroxyvitamin D) (33, 34). Both the GC SNP rs2282679 and the DHCR7/NADSYN1
SNPs are located in intronic regions, with the GC SNP demonstrating the largest magnitude
of association with 25(OH)D <75 nmol/L (OR 1.63 (1.53–1.73)(34). The SNP rs10741657
is proximal to the CYP2R1 gene and rs6013897 is proximal to CYP24A1 yet the precise
associations with gene expression are yet to be determined.

We investigated the association between these SNPs previously identified as associated with
25(OH)D, and risk of CRC in 13 cohorts that are part of the Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO) and the Colon Cancer Family Registry (CCFR).
Within a subset of participants from NHS, HPFS and PHS with measured pre-diagnostic
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plasma 25(OH)D levels, we also examined the joint effects of plasma 25(OH)D and
25(OH)D-associated SNPs on CRC risk.

Materials and Methods
Study Population

The analysis included a total of 10,061 cases and 12,768 controls of European ancestry
drawn from 13 studies within GECCO and CCFR. Details on the studies are provided in
Table 1, and are described in detail in the Supplemental Note and Supplemental Table 1. In
brief, each study defined CRC cases as colorectal adenocarcinoma, confirmed by medical
records, pathologic reports, or death certificates. All participants provided informed consent
and studies were approved by their respective Institutional Review Boards. None of the
studies included in GECCO or CCFR contributed subjects to the any previous GWAS of
25(OH)D with the exception of a subset of the NHS subjects (n=1,342) who participated in
the validation stage of one study (33).

Genotyping, Quality Assurance/Quality Control and Imputation
We used genotype data from GECCO and CCFR. GECCO consisted of participants within
the French Association Study Evaluating RISK for sporadic colorectal cancer (ASTERISK);
Hawaii Colorectal Cancer Studies 2 and 3 (Colo2&3); Darmkrebs: Chancen der Verhütung
durch Screening (DACHS); Diet, Activity, and Lifestyle Study (DALS); Health
Professionals Follow-up Study (HPFS); Multiethnic Cohort (MEC); Nurses' Health Study
(NHS); Ontario Familial Colorectal Cancer Registry (OFCCR); Physician's Health Study
(PHS); Prostate, Lung, Colorectal Cancer, and Ovarian Cancer Screening Trial (PLCO);
VITamins And Lifestyle (VITAL); and the Women's Health Initiative (WHI). Phase-one
genotyping on a total of 1,709 colon cancer cases and 4,214 controls from PLCO, WHI, and
DALS (PLCO Set 1, WHI Set 1, and DALS Set 1) was done using Illumina HumanHap
550K, 610K, or combined Illumina 300K and 240K, and has been described previously (12).
A total of 650 CRC cases and 522 controls from OFCCR are included in GECCO from
previous genotyping using Affymetrix platforms (35). A total of 5,540 CRC cases and 5,425
controls from ASTERISK, Colo2&3, DACHS, DALS Set 2, MEC, PMH, PLCO Set 2,
VITAL, and WHI Set 2 were successfully genotyped using Illumina HumanCytoSNP. A
total of 2,004 CRC cases and 2,244 controls from HPFS (2 sets), NHS (2 sets), and PHS (2
sets) were successfully genotyped using Illumina HumanOmniExpress. The CCFR included
a population-based case-control set of participants from sites in USA, Canada, and Australia
successfully genotyped using Illumina Human1M or Human1M-Duo (36).

DNA was extracted from samples of white blood cells or, in the case of a subset of NHS,
HPFS, DACHS, MEC, and PLCO samples, and all VITAL samples from buccal cells using
conventional methods(37). All studies included 1 to 6% blinded duplicates to monitor
quality of the genotyping. All individual-level genotype data were managed centrally at
University of Southern California (CCFR), the Ontario Institute for Cancer Research
(OFCCR), the University of Washington (HPFS, NHS, and PHS), or the GECCO and CCFR
Coordinating Center (CC) at the Fred Hutchinson Cancer Research Center (all other studies)
to ensure consistent quality assurance and quality control (QA/QC) and statistical analysis.
Details on the QA/QC can be found in Supplemental Table 2. In brief, samples were
excluded based on call rate, heterozygosity, unexpected duplicates, gender discrepancy, and
unexpectedly high identity-by-descent or unexpected concordance (> 65%) with another
individual. For missing SNP data, all GECCO studies were imputed to HapMap II release
24, with the exception of OFCCR, which was imputed to HapMap II release 22. CCFR was
imputed using IMPUTE (38), OFCCR was imputed using BEAGLE (39), and all other
studies were imputed using MACH (40). All SNPs met quality-control measures for Hardy
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Weinberg Equilibrium in controls (HWE, p ≥ 10-4), and minor allele frequency (MAF ≥
1%)or imputation R2 > 0.3.

Dietary and Lifestyle Factors
Dietary information, including calcium, folate, fiber and alcohol intake, was available for
Colo2&3, DALS, HPFS, MEC, NHS, PLCO I, PLCO II, VITAL, WHI; calcium, folate and
alcohol was available in PHS; and calcium and alcohol in ASTERISK and DACHS. Regular
use of non-steroidal anti-inflammatory drugs (NSAIDs) was available for CCFR, Colo2&3,
DACHS, HPFS, MEC, NHS and VITAL. All studies collected data on smoking status, red
meat consumption, physical activity, body mass index, and hormone replacement therapy in
post-menopausal women with the exception of ASTERISK. ASTERISK was restricted to
cases with no family history of colorectal cancer. We adopted a flexible approach to
retrospective covariate harmonization as previously described (41, 42).

Laboratory Assessment of 25(OH)D
In previous studies, we measured plasma levels of 25(OH)D in a subset of the cases and
controls with genetic data that were nested within the NHS, HPFS, and PHS (total cases
n=672 and total controls n=909) using a radioimmunosorbent assay in the laboratory of Dr.
Bruce W. Hollis (Medical University of South Carolina, Charleston, SC). The median intra-
assay coefficient of variation from blinded quality-control samples was 11.8% in NHS,
10.1% in HPFS, and 13.8% in PHS. Cases and their controls were analyzed in the same
batch, and laboratory personnel were blinded to case, control, and quality-control status (21,
43, 44).

Statistical Analyses
The statistical analyses of the GECCO and CCFR samples were conducted at a central data
analysis center on individual-level data to ensure a consistent analytical approach. For each
study, we estimated the association between each SNP and risk for CRC by calculating
betas, odds ratios (ORs), standard errors, 95% confidence intervals (CIs), and p-values using
log-additive genetic models relating the genotype dose (0, 1 or 2 copies of the allele) to risk
of CRC. For imputed SNPs, we used the dosage (expected number of copies of the minor
allele) when testing associations, which has been shown to give unbiased estimates (45). We
also created a genetic risk score (GRS), comprised of four SNPs from four distinct gene
regions to ensure no single gene was over represented in the score using an allelic scoring
system based on summing the number of risk alleles (previously associated with lower
25(OH)D), yielding a possible range of 0-8 alleles to derive estimates of allelic OR.

Minimally adjusted models included covariates for age, sex (when appropriate), center
(when appropriate), smoking status, batch effects (ASTERISK only), and the first three
principal components from EIGENSTRAT to account for population substructure.
Multivariate models were additionally adjusted for family history of CRC, BMI, NSAID
use, alcohol use, dietary calcium, folate and red meat intake, sedentary status, and hormone
replacement therapy based on covariate availability. We repeated the minimally adjusted
model analyses stratified by anatomical site (colon and rectum).

We conducted inverse-variance weighted, fixed-effects meta-analysis to combine beta
estimates and standard errors from log-additive models across individual studies. We chose
to focus on fixed-effects to improve power and assessed heterogeneity across studies
utilizing random effects models (46).

For analyses of the joint effect of plasma 25(OH)D and our GRS comprised of 25(OH)D-
associated SNPs, we included the 672 cases and 909 controls in NHS, HPFS, and PHS
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among whom we had previously measured pre-diagnostic levels of 25(OH)D and also had
genotype data (21, 44). We calculated ORs and 95% CI for CRC comparing extreme
quartiles of 25(OH)D defined according to cohort-specific cutpoints determined by the
distribution in controls (44). We compared the GRS-associated risk for CRC across
categories of high versus low vitamin D levels and quartiles of vitamin D, as well as tested
for multiplicative interactions between GRS and a 1ng/mL increase in 25(OH)D and high/
low vitamin D using a product term in the model and assessing its significance by the Wald
method.

We used PLINK, R (47, 48) and SAS 9.2 (SAS Institute Inc, Cary, NC) to conduct the
statistical analyses. We estimated our power to detect an association between a GRS and
CRC using the method of Tosteson et al. (49). These calculations account for the strength of
association between the vitamin D SNPs and circulating 25(OH)D.

Results
Our study included 10,061 CRC cases and 12,768 controls. Overall 53% were female, and
the mean age at CRC diagnosis was 64.0 years (+/- 9.6 SD), 55.0% past/current smokers and
with risk allele frequencies ranging from 16 – 61%. Table 1 summarizes the characteristics
of the studies included in the analyses. Analyses of each individual SNP in models first
minimally and then fully adjusted, did not demonstrate a statistically significant association
with CRC risk (Table 2). In analyses stratified by anatomic site each of the four SNP
associations remained non-significant (Table 3), in tests of associations with cancers of the
colon and rectum.

We considered the possibility that a combination of SNPs associated with circulating
25(OH)D in prior GWAS may be associated with risk of CRC. However, an analysis of a
GRS comprised of the risk alleles from the four SNPs associated with plasma 25(OH)D and
CRC risk did not demonstrate any significant association (Table 4). The figure 1 forest plot
depicts the ORs and 95% CIs of the GRS and CRC association of the individual GECCO
and CCFR studies showing a balanced distribution of study-specific odds ratios around the
null value of 1.0.

Among the subset of NHS, HPFS and PHS subjects with measured prediagnostic plasma
25(OH)D levels (N=672 cases and N=909 controls), we observed that a 1 allele change in
our GRS was associated with a mean 1.5ng/mL decrease in 25(OH)D (p-value <0.0001).
Compared with the lowest quartile of 25(OH)D, the highest quartile of 25(OH)D was
associated with an OR of 0.66 (95% CI 0.47, 0.92) for CRC. We did not observe a
differential association of GRS with risk of CRC according to strata of quartile levels of
plasma 25(OH)D or according to high or low levels of 25(OH)D (p-heterogeneity>0.05).

Discussion
Consistent evidence from epidemiologic studies supports an inverse association between
circulating 25(OH)D, the best integrated biomarker of vitamin D status, and risk of CRC.
However, contrary to expectation, we did not observe a statistically significant association
between SNPs associated with circulating 25(OH)D and CRC, marginally or in an additive
GRS.

A number of epidemiologic studies have reported inverse associations between 25(OH)D
and CRC. A meta-analysis of five nested case–control studies reported a pooled odds ratio
of 0.49 (95% CI; 0.35– 0.68) for CRC comparing the highest quintile (median 37 ng/mL) of
25(OH)D with the lowest (6 ng/mL) (19). Another recent systematic review of nine studies
observed pooled RRs for CRC of 0.67 (95% CI, 0.54 to 0.80) comparing extreme quintiles
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of 25(OH)D (22). Overall, the estimated OR of CRC for a 10ng/mL increase in circulating
25(OH)D was 0.74 (95% CI, 0.63 to 0.89)with the relationship appearing approximately
linear (22). Several mechanisms could explain an anti-cancer benefit for vitamin D:
reduction of cell proliferation; inhibition of angiogenesis; promotion of cell differentiation;
and stimulation of apoptosis (23, 50-57). Vitamin D also has an anti-inflammatory effect,
reducing PTGS-2(COX-2) expression and decreasing levels of the inflammatory marker C-
reactive protein (58-60).

Prior clinical trials testing the association between vitamin D and cancer have been null. In a
5-year British placebo-controlled trial with cancer assessed as a secondary outcome, 100,000
IU of vitamin D3 every four months over five years was not associated with CRC incidence
(RR=1.02, 95% CI 0.60-1.74)(25). Similarly, among 36,000 women in the WHI calcium-
vitamin D trial, a combination of calcium (1000 mg/day) plus low-dose vitamin D3 (400 IU/
d) for a mean of 7 years did not reduce CRC incidence (RR=1.08, 95% CI 0.86-1.34)(24).
However, the interpretation of these null results is tempered by several important
limitations. First, the relatively low doses of vitamin D used were probably inadequate to
yield a substantial contrast between the treatment and placebo groups. Second, the duration
of follow-up was probably too short to observe an influence on incidence of cancer.
Observational data suggest that any influence of calcium and vitamin D intake on CRC risk
could require at least 10 years to emerge, consistent with our understanding of the prolonged
dwell time of the adenoma-carcinoma pathway(18). On the other hand, a Nebraska
population- based placebo-controlled trial of calcium alone or calcium plus vitamin D3
(1100 IU/d) observed a significantly lower cancer incidence among those supplemented with
calcium and vitamin D over just four years of treatment (61). However, follow-up of total
cancers was a secondary outcome and there were only a small number of CRC cases,
limiting the interpretation of these results.

Over 90% of circulating 25(OH)D is protein-bound with the GC encoded vitamin D binding
protein being the major carrier of 25(OH)D. Less than 1% of vitamin D circulates in its
unbound form (62). Vitamin D binding protein is a multifunctional protein that also binds
fatty acids, and may have immune functions independent of its role as a carrier of vitamin
D(63). Prior studies have observed that unbound 25(OH)D was more strongly related to
bone mineral density(64), parathyroid hormone levels among hemodialized patients(65),
than total 25(OH)D, thereby implicating a role for vitamin D binding protein in modifying
the biologic activity of circulating vitamin D. The available estimates of the association
between 25(OH)D and CRC, as well as genetic markers of 25(OH)D, are based solely on
total circulating 25(OH)D levels (19, 22, 33, 34). It is unclear how these estimates might
change when accounting for vitamin D binding protein levels or by individually examining
free and protein-bound 25(OH)D.

Prior studies have examined individual SNPs in CYP24A1 or GC(66, 67) in association with
risk of CRC. A prior DALS multicenter population-based case-control study of 1,600 CRC
cases found a statistically significant association between one CYP24A1 polymorphism and
overall risk of colon cancer, particularly for proximal colon cancer, as well as an association
between three CYP24A1 polymorphisms and distal colon cancer (67). However, the
correlation between these CYP24A1 genetic markers investigated by the DALS study and
the CYP24A1 marker examined in this full combined analysis study is very low (r2 <0.1).
Because our a priori hypothesis was that SNPs most strongly associated with 25(OH)D
levels would be associated with CRC, we did not consider total genetic variation in
CYP24A1 with CRC risk. It is possible that alternative CYP24A1 SNPs may be associated
with CRC through mechanisms independent of 25(OH) D levels. A prior study of the CCFR
cohort of 1,750 sibships found no evidence for associations between GC and the risk of
CRC, and no evidence for modification of the association by calcium and/or vitamin D
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intake (66). Studies of additional genes that are not significantly associated with circulating
25(OH)D but are implicated in the vitamin D pathway, including the vitamin D receptor
(VDR) SNPs Fok1 and BsmI, have yielded inconsistent results (68-71). Notably, among
over 10,000 men with prostate cancer, a greater number of low 25(OH)D SNPs were
associated with a decreased risk of aggressive prostate cancer (OR 0.66; 95% CI, 0.44-0.98
for 6–8 vs. 0–1 alleles,; Ptrend = 0.003)(72).

The lack of association that we observed between genetic markers associated with
circulating 25(OH)D and CRC is consistent with prior clinical trials of vitamin D and CRC
and would, at least initially, seem to argue against a causal association between vitamin D
and CRC(73). However, prior work has demonstrated that these 4 SNPs, though correlated
with circulating 25(OH)D, explain only a small fraction (5%) of the variance in circulating
25(OH)(74). Recently, a Scottish case-control study observed a significant association
between direct plasma measurements of 25(OH)D and CRC risk, yet failed to replicate the
association using an instrumental-variable method of mendelian randomization (MR) with
the same four genome-wide significant risk loci examined in our analysis (75). The
investigators attributed these inconsistent results to a presumed weak correlation between
these SNPs and 25(OH)D, as well as a limited sample size of 2,001 cases of CRC and 2,237
controls. Given our significantly larger sample size of approximately 10,000 cases and
12,500 controls and assuming a correlation between our GRS and 25(OH)D of r=0.17, with
a 10 ng/ml increase in 25(OH)D associated with OR=0.74 for CRC(22), our power to detect
a 1-allele change in our GRS is 96% (significance level of 0.05). However, if the true
magnitude of association with a 10ng/mL increase in 25(OH)D is in fact an OR of 0.85 for
CRC, we would have only had 56% power to detect a 1-allele change in our GRS.

We are not certain of the precise pathway or biological mediators by which 25(OH)D
influences CRC risk. Our GRS assumes that each included SNP would be associated with
increased CRC risk according to their observed association with lower 25(OH)D. If this
assumption is invalid, combining the alleles into this GRS would reduce our power to detect
associations with CRC. If we remove the GC SNP and repeat our power calculation, our
observed correlation between our GRS and 25(OH)D becomes r=0.11, resulting in
68%power to detect a 1 allele change in our proxy score.

We acknowledge some limitations. First, our study includes only populations of European
descent, which limits the generalizability of our findings. However, the circulating 25(OH)D
SNPs that we examined were identified in GWAS of populations of European descent, and
so the underlying genetic associations should hold in our study population. Moreover,
limiting our analysis to European descent populations minimizes the potential for
confounding by population structure. Second, if these SNPs are correlated with another
locus that influences the risk of CRC, this could confound our results(73). Third, despite our
large sample size, we had limited power to detect associations between individual SNPs and
risk of CRC.

In conclusion, our findings do not support an association between SNPs associated with
circulating 25(OH)D and risk of CRC. This may be due to the fact that these SNPs account
for only a small portion of the variance observed in circulating 25(OH)D levels and that
those alleles associated with low circulating levels of 25(OH)D may not affect CRC risk in
the same direction. Future studies are needed to examine the role of unbound and protein-
bound 25(OH)D, along with other biomarkers of the vitamin D pathway, in the development
of CRC.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
ASTERISK: We are very grateful to Dr. Bruno Buecher without whom this project would not have existed. We
also thank all those who agreed to participate in this study, including the patients and the healthy control persons, as
well as all the physicians, technicians and students.

DACHS: We thank all participants and cooperating clinicians, and Ute Handte-Daub, Renate Hettler-Jensen, Utz
Benscheid, Muhabbet Celik and Ursula Eilber for excellent technical assistance.

GECCO: The authors would like to thank all those at the GECCO Coordinating Center for helping bring together
the data and the people that made this project possible.

HPFS, NHS, PHS: We would like to acknowledge Patrice Soule and Hardeep Ranu of the Dana Farber Harvard
Cancer Center High-Throughput Polymorphism Core who assisted in the genotyping for NHS, HPFS, and PHS
under the supervision of Dr. Immaculata De Vivo and Dr. David Hunter, Qin (Carolyn) Guo and Lixue Zhu who
assisted in programming for NHS and HPFS, and Haiyan Zhang who assisted in programming for the PHS. We
would like to thank the participants and staff of the Nurses' Health Study, the Health Professionals Follow-Up
Study, and Physicians' Health Study for their valuable contributions as well as the following state cancer registries
for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ,
NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA,WA, WY.

PLCO: The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer
Institute, the Screening Center investigators and staff or the Prostate, Lung, Colorectal, and Ovarian (PLCO)
Cancer Screening Trial, Mr. Tom Riley and staff, Information Management Services, Inc., Ms. Barbara O'Brien and
staff, Westat, Inc., and Drs. Bill Kopp, Wen Shao, and staff, SAIC-Frederick. Most importantly, we acknowledge
the study participants for their contributions to making this study possible.

WHI: The authors thank the WHI investigators and staff for their dedication, and the study participants for making
the program possible. A full listing of WHI investigators can be found at: https://cleo.whi.org/researchers/
Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf

Grant Support: S. Bézieau and S. Kury are affiliated with ASTERISK which was funded by a regional Hospital
Clinical Research Program (PHRC) and supported by the Regional Council of Pays de la Loire, the Groupement
des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique
and the Ligue Régionale Contre le Cancer (LRCC).

J.A. Baron, G. Casey, D.V. Conti, J.L. Hopper, M.A. Jenkins, P.A. Newcomb and F.R. Schumacher are affiliated
with CCFR which is supported by the National Cancer Institute, National Institutes of Health under RFA #
CA-95-011 and through cooperative agreements with members of the Colon Cancer Family Registry and P.I.s. This
genome wide scan was supported by the National Cancer Institute, National Institutes of Health by U01 CA122839.
The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or
any of the collaborating centers in the CFRs, nor does mention of trade names, commercial products, or
organizations imply endorsement by the US Government or the CFR. The following Colon CFR centers contributed
data to this manuscript and were supported by the following sources: Australasian Colorectal Cancer Family
Registry (U01 CA097735), Seattle Colorectal Cancer Family Registry (U01 CA074794) and Ontario Registry for
Studies of Familial Colorectal Cancer (U01 CA074783).

S. Gallinger, T.J. Hudson, M. Lemire and B.W. Zanke are affiliated with OFCCR which is supported by the
National Institutes of Health, through funding allocated to the Ontario Registry for Studies of Familial Colorectal
Cancer (U01 CA074783); see CCFR section above. As subset of ARCTIC, OFCCR is supported by a GL2 grant
from the Ontario Research Fund, the Canadian Institutes of Health Research, and the Cancer Risk Evaluation
(CaRE) Program grant from the Canadian Cancer Society Research Institute. Thomas J. Hudson and Brent W.
Zanke are recipients of Senior Investigator Awards from the Ontario Institute for Cancer Research, through
generous support from the Ontario Ministry of Research and Innovation.

B. Henderson and L. Le Marchand are affiliated with COLO2&3/MEC. COLO2&3 is supported by the National
Cancer Institute (R01 CA60987).MEC is supported by R37 CA54281, P01 CA033619, and R01 CA63464.

Hiraki et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

https://cleo.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf
https://cleo.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short%20List.pdf


H. Brenner, J. Chang-Claude and M. Hoffmeister are affiliated with DACHS which was supported by grants from
the German Research Council (Deutsche Forschungsgemeinschaft, BR 1704/6-1, BR 1704/6-3, BR 1704/6-4 and
CH 117/1-1), and the German Federal Ministry of Education and Research (01KH0404 and 01ER0814).

B.J. Caan, J.D. Potter and M.L. Slattery are affiliated with DALS which was supported by the National Cancer
Institute, National Institutes of Health, U.S. Department of Health and Human Services (R01 CA48998 to M.L.S.).

T.A. Harrison, C.M. Hutter, U. Peters and C. Qu are affiliated with GECCO which is supported by National
Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services (U01 CA137088).
Funding for the genome-wide scan of DALS, PLCO, and WHI was provided by the National Cancer Institute,
National Institutes of Health, U.S. Department of Health and Human Services (R01 CA059045).

A.T. Chan, C.S. Fuchs, E.L. Giovannucci, L.T. Hiraki, A. Hazra, P. Kraft, H. Nan, K. Ng and K. Wu are affiliated
with HPFS, NHS and PHS: HPFS was supported by the National Institutes of Health (P01 CA 055075., UM1
CA167552, R01 137178, and P50 CA 127003), NHS by the National Institutes of Health (R01 137178, P50 CA
127003, and P01 CA 087969) and PHS by the National Institutes of Health (CA42182).

S.I. Berndt, S.J. Chanock, R.B. Hayes and R.E. Schoen are affiliated with PLCO which was supported by the
Intramural Research Program of the Division of Cancer Epidemiology and Genetics and supported by contracts
from the Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Control samples were genotyped
as part of the Cancer Genetic Markers of Susceptibility (CGEMS) prostate cancer scan, supported by the Intramural
Research Program of the National Cancer Institute. The datasets used in this analysis were accessed with
appropriate approval through the dbGaP online resource (http://www.cgems.cancer.gov/data_acess.html) through
dbGaP accession number 000207v.1p1.c1. (National Cancer Institute (2009) Cancer Genetic Markers of
Susceptibility (CGEMS) data website. http://cgems.cancer.gov/data_access.html; Yeager et al. 2007) Control
samples were also genotyped as part of the GWAS of Lung Cancer and Smoking (Landi et al. 2009). Funding for
this work was provided through the National Institutes of Health, Genes, Environment and Health Initiative [NIH
GEI] (Z01 CP 010200). The human subjects participating in the GWAS are derived from the Prostate, Lung, Colon
and Ovarian Screening Trial and the study is supported by intramural resources of the National Cancer Institute.
Assistance with genotype cleaning, as well as with general study coordination, was provided by the Gene
Environment Association Studies, GENEVA Coordinating Center (U01 HG004446). Assistance with data cleaning
was provided by the National Center for Biotechnology Information. Funding support for genotyping, which was
performed at the Johns Hopkins University Center for Inherited Disease Research, was provided by the NIH GEI
(U01 HG 004438). The datasets used for the analyses described in this manuscript were obtained from dbGaP at
http://www.ncbi.nlm.nih.gov/gap through dbGaP accession number phs000093.

E. White is affiliated with VITAL which is supported in part by the National Institutes of Health (K05 CA154337)
from the National Cancer Institute and Office of Dietary Supplements.

J. Manson and J. Wactawski-Wende are affiliated with WHI: The WHI program is funded by the National Heart,
Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through
contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C,
HHSN268201100004C, and HHSN271201100004C.

References
1. Howlader, NNA.; Krapcho, M.; Neyman, N.; Aminou, R.; Waldron, W.; Altekruse, SF.; Kosary,

CL.; Ruhl, J.; Tatalovich, Z.; Cho, H.; Mariotto, A.; Eisner, MP.; Lewis, DR.; Chen, HS.; Feuer,
EJ.; Cronin, KA.; Edwards, BK., editors. SEER Cancer Statistics Review. National Cancer Institute;
Bethesda, MD: 2011. based on November 2010 SEER data submission, posted to the SEER web
site

2. Johns LE, Houlston RS. A systematic review and meta-analysis of familial colorectal cancer risk.
Am J Gastroenterol. 2001; 96:2992–3003. [PubMed: 11693338]

3. Baglietto L, Jenkins MA, Severi G, Giles GG, Bishop DT, Boyle P, et al. Measures of familial
aggregation depend on definition of family history: meta-analysis for colorectal cancer. J Clin
Epidemiol. 2006; 59:114–24. [PubMed: 16426946]

4. Aaltonen L, Johns L, Jarvinen H, Mecklin JP, Houlston R. Explaining the familial colorectal cancer
risk associated with mismatch repair (MMR)-deficient and MMR-stable tumors. Clin Cancer Res.
2007; 13:356–61. [PubMed: 17200375]

5. Tenesa A, Theodoratou E, Din FV, Farrington SM, Cetnarskyj R, Barnetson RA, et al. Ten common
genetic variants associated with colorectal cancer risk are not associated with survival after
diagnosis. Clin Cancer Res.

Hiraki et al. Page 10

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cgems.cancer.gov/data_acess.html
http://cgems.cancer.gov/data_access.html
http://www.ncbi.nlm.nih.gov/gap


6. Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of
genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat
Genet. 2008; 40:1426–35. [PubMed: 19011631]

7. Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, Howarth K, et al. Meta-analysis of
three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41,
3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010; 42:973–7. [PubMed: 20972440]

8. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, et al. A
genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes
10p14 and 8q23.3. Nat Genet. 2008; 40:623–30. [PubMed: 18372905]

9. Tomlinson IP, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K, et al. Multiple
common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of
the missing heritability of colorectal cancer. PLoS Genet. 2011; 7:e1002105. [PubMed: 21655089]

10. Kocarnik JD, Hutter CM, Slattery ML, Berndt SI, Hsu L, Duggan DJ, et al. Characterization of
9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-
analysis. Cancer Epidemiol Biomarkers Prev. 2010 Oct 26.

11. Hutter CM, Slattery ML, Duggan DJ, Muehling J, Curtin K, Hsu L, et al. Characterization of the
association between 8q24 and colon cancer: gene-environment exploration and meta-analysis.
BMC Cancer. 2010; 10:670. [PubMed: 21129217]

12. Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, et al. Common variation
near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet. 2012;
44:770–6. [PubMed: 22634755]

13. Galvan A, Ioannidis JP, Dragani TA. Beyond genome-wide association studies: genetic
heterogeneity and individual predisposition to cancer. Trends Genet. 2010; 26:132–41. [PubMed:
20106545]

14. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J
Epidemiol. 1980; 9:227–31. [PubMed: 7440046]

15. Garland C, Shekelle RB, Barrett-Connor E, Criqui MH, Rossof AH, Paul O. Dietary vitamin D and
calcium and risk of colorectal cancer: a 19-year prospective study in men. Lancet. 1985; 1:307–9.
[PubMed: 2857364]

16. Kearney J, Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, et al. Calcium,
vitamin D, and dairy foods and the occurrence of colon cancer in men. Am J Epidemiol. 1996;
143:907–17. [PubMed: 8610704]

17. Bostick RM, Potter JD, Sellers TA, McKenzie DR, Kushi LH, Folsom AR. Relation of calcium,
vitamin D, and dairy food intake to incidence of colon cancer among older women. The Iowa
Women's Health Study. Am J Epidemiol. 1993; 137:1302–17. [PubMed: 8333412]

18. Martinez ME, Giovannucci EL, Colditz GA, Stampfer MJ, Hunter DJ, Speizer FE, et al. Calcium,
vitamin D, and the occurrence of colorectal cancer among women. J Natl Cancer Inst. 1996;
88:1375–82. [PubMed: 8827015]

19. Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, et al. Optimal vitamin D
status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;
32:210–6. [PubMed: 17296473]

20. Woolcott CG, Wilkens LR, Nomura AM, Horst RL, Goodman MT, Murphy SP, et al. Plasma 25-
hydroxyvitamin D levels and the risk of colorectal cancer: the multiethnic cohort study. Cancer
Epidemiol Biomarkers Prev. 2010; 19:130–4. [PubMed: 20056631]

21. Wu K, Feskanich D, Fuchs CS, Willett WC, Hollis BW, Giovannucci EL. A nested case control
study of plasma 25-hydroxyvitamin D concentrations and risk of colorectal cancer. J Natl Cancer
Inst. 2007; 99:1120–9. [PubMed: 17623801]

22. Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H. Association between vitamin D and risk of
colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011; 29:3775–82.
[PubMed: 21876081]

23. Holick MF. Sunlight and vitamin D for bone health and prevention of autoimmune diseases,
cancers, and cardiovascular disease. Am J Clin Nutr. 2004; 80:1678S–88S. [PubMed: 15585788]

Hiraki et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



24. Wactawski-Wende J, Kotchen JM, Anderson GL, Assaf AR, Brunner RL, O'Sullivan MJ, et al.
Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med. 2006;
354:684–96. [PubMed: 16481636]

25. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol)
supplementation on fractures and mortality in men and women living in the community:
randomised double blind controlled trial. BMJ. 2003; 326:469. [PubMed: 12609940]

26. Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA. Vitamin D with or without calcium
supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S.
Preventive Services Task Force. Ann Intern Med. 2011; 155:827–38. [PubMed: 22184690]

27. Carroll C, Cooper K, Papaioannou D, Hind D, Pilgrim H, Tappenden P. Supplemental calcium in
the chemoprevention of colorectal cancer: a systematic review and meta-analysis. Clin Ther. 2010;
32:789–803. [PubMed: 20685491]

28. Wjst M, Altmuller J, Braig C, Bahnweg M, Andre E. A genome-wide linkage scan for 25-OH-D(3)
and 1,25-(OH)2-D3 serum levels in asthma families. J Steroid Biochem Mol Biol. 2007; 103:799–
802. [PubMed: 17236760]

29. Orton SM, Morris AP, Herrera BM, Ramagopalan SV, Lincoln MR, Chao MJ, et al. Evidence for
genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr. 2008;
88:441–7. [PubMed: 18689381]

30. Hunter D, De Lange M, Snieder H, MacGregor AJ, Swaminathan R, Thakker RV, et al. Genetic
contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone
regulation. J Bone Miner Res. 2001; 16:371–8. [PubMed: 11204437]

31. Shea MK, Benjamin EJ, Dupuis J, Massaro JM, Jacques PF, D'Agostino RB Sr, et al. Genetic and
non-genetic correlates of vitamins K and D. Eur J Clin Nutr. 2009; 63:458–64. [PubMed:
18030310]

32. Banach-Petrosky W, Ouyang X, Gao H, Nader K, Ji Y, Suh N, et al. Vitamin D inhibits the
formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clin Cancer Res.
2006; 12:5895–901. [PubMed: 17020998]

33. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, et al. Genome-
wide association study of circulating vitamin D levels. Hum Mol Genet. 2010; 19:2739–45.
[PubMed: 20418485]

34. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic
determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;
376:180–8. [PubMed: 20541252]

35. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM, et al. Genome-wide
association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat
Genet. 2007; 39:989–94. [PubMed: 17618283]

36. Figueiredo JC, Lewinger JP, Song C, Campbell PT, Conti DV, Edlund CK, et al. Genotype-
environment interactions in microsatellite stable/microsatellite instability-low colorectal cancer:
results from a genome-wide association study. Cancer Epidemiol Biomarkers Prev. 2011; 20:758–
66. [PubMed: 21357381]

37. King IB, Satia-Abouta J, Thornquist MD, Bigler J, Patterson RE, Kristal AR, et al. Buccal cell
DNA yield, quality, and collection costs: comparison of methods for large-scale studies. Cancer
Epidemiol Biomarkers Prev. 2002; 11(10 Pt 1):1130–3. [PubMed: 12376522]

38. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-
wide association studies by imputation of genotypes. Nat Genet. 2007; 39:906–13. [PubMed:
17572673]

39. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for
whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet.
2007; 81:1084–97. [PubMed: 17924348]

40. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to
estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010; 34:816–34. [PubMed:
21058334]

Hiraki et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



41. Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al.
Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer
Res. 2012; 72:2036–44. E. [PubMed: 22367214]

42. Fortier I, Doiron D, Little J, Ferretti V, L'Heureux F, Stolk RP, et al. Is rigorous retrospective
harmonization possible? Application of the DataSHaPER approach across 53 large studies. Int J
Epidemiol. 2011; 40:1314–28. [PubMed: 21804097]

43. Feskanich D, Ma J, Fuchs CS, Kirkner GJ, Hankinson SE, Hollis BW, et al. Plasma vitamin D
metabolites and risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev. 2004;
13:1502–8. [PubMed: 15342452]

44. Lee JE, Li H, Chan AT, Hollis BW, Lee IM, Stampfer MJ, et al. Circulating levels of vitamin D
and colon and rectal cancer: the Physicians' Health Study and a meta-analysis of prospective
studies. Cancer Prev Res (Phila). 2011; 4:735–43. [PubMed: 21430073]

45. Jiao S, Hsu L, Hutter CM, Peters U. The use of imputed values in the meta-analysis of genome-
wide association studies. Genet Epidemiol. 2011; 35:597–605. [PubMed: 21769935]

46. Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci. 2009;
24:561–73. [PubMed: 20454541]

47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for
whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;
81:559–75. [PubMed: 17701901]

48. Team, RDC. R Foundation for Statistical Computing. Vienna, Austria: 2011. R: A language and
environment for statistical computing.

49. Tosteson TD, Buzas JS, Demidenko E, Karagas M. Power and sample size calculations for
generalized regression models with covariate measurement error. Stat Med. 2003; 22:1069–82.
[PubMed: 12652554]

50. Newmark HL, Yang K, Kurihara N, Fan K, Augenlicht LH, Lipkin M. Western-style diet-induced
colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical
model for human sporadic colon cancer. Carcinogenesis. 2009; 30:88–92. [PubMed: 19017685]

51. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic
considerations. Ann Rheum Dis. 2007; 66:1137–42. [PubMed: 17557889]

52. Yang K, Yang W, Mariadason J, Velcich A, Lipkin M, Augenlicht L. Dietary components modify
gene expression: implications for carcinogenesis. J Nutr. 2005; 135:2710–4. [PubMed: 16251635]

53. Toubi E, Shoenfeld Y. The role of vitamin D in regulating immune responses. Isr Med Assoc J.
2010; 12:174–5. Epub 2010/08/06. [PubMed: 20684184]

54. Erdelyi I, Levenkova N, Lin EY, Pinto JT, Lipkin M, Quimby FW, et al. Western-style diets
induce oxidative stress and dysregulate immune responses in the colon in a mouse model of
sporadic colon cancer. J Nutr. 2009; 139:2072–8. [PubMed: 19759248]

55. Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A. Apoptosis is induced by the active
metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells:
possible implications for prevention and therapy. Cancer Res. 2000; 60:2304–12. [PubMed:
10786699]

56. Giuliano AR, Franceschi RT, Wood RJ. Characterization of the vitamin D receptor from the
Caco-2 human colon carcinoma cell line: effect of cellular differentiation. Arch Biochem Biophys.
1991; 285:261–9. Epub 1991/03/01. [PubMed: 1654769]

57. Miller EA, Keku TO, Satia JA, Martin CF, Galanko JA, Sandler RS. Calcium, vitamin D, and
apoptosis in the rectal epithelium. Cancer Epidemiol Biomarkers Prev. 2005; 14:525–8. [PubMed:
15734982]

58. Fichera A, Little N, Dougherty U, Mustafi R, Cerda S, Li YC, et al. A vitamin D analogue inhibits
colonic carcinogenesis in the AOM/DSS model. J Surg Res. 2007; 142:239–45. [PubMed:
17574271]

59. Timms PM, Mannan N, Hitman GA, Noonan K, Mills PG, Syndercombe-Court D, et al.
Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype:
mechanisms for inflammatory damage in chronic disorders? QJM. 2002; 95:787–96. [PubMed:
12454321]

Hiraki et al. Page 13

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



60. Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin
D. Annu Rev Pharmacol Toxicol. 2011; 51:311–36. [PubMed: 20936945]

61. Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP. Vitamin D and calcium
supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. 2007;
85:1586–91. [PubMed: 17556697]

62. Bikle DD, Siiteri PK, Ryzen E, Haddad JG. Serum protein binding of 1,25-dihydroxyvitamin D: a
reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab. 1985;
61:969–75. [PubMed: 3840175]

63. Chun RF. New perspectives on the vitamin D binding protein. Cell Biochem Funct. 2012; 30(6):
445–56. [PubMed: 22528806]

64. Powe CE, Ricciardi C, Berg AH, Erdenesanaa D, Collerone G, Ankers E, et al. Vitamin D-binding
protein modifies the vitamin D-bone mineral density relationship. J Bone Miner Res. 2011;
26:1609–16. [PubMed: 21416506]

65. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, et al. Bioavailable vitamin D
is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis
patients. Kidney Int. 2012; 82:84–9. [PubMed: 22398410]

66. Poynter JN, Jacobs ET, Figueiredo JC, Lee WH, Conti DV, Campbell PT, et al. Genetic variation
in the vitamin D receptor (VDR) and the vitamin D-binding protein (GC) and risk for colorectal
cancer: results from the Colon Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2010;
19:525–36. [PubMed: 20086113]

67. Dong LM, Ulrich CM, Hsu L, Duggan DJ, Benitez DS, White E, et al. Vitamin D related genes,
CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;
18:2540–8. [PubMed: 19706847]

68. Ochs-Balcom HM, Cicek MS, Thompson CL, Tucker TC, Elston RC, S JP, et al. Association of
vitamin D receptor gene variants, adiposity and colon cancer. Carcinogenesis. 2008; 29:1788–93.
[PubMed: 18628249]

69. Park K, Woo M, Nam J, Kim JC. Start codon polymorphisms in the vitamin D receptor and
colorectal cancer risk. Cancer Lett. 2006; 237:199–206. [PubMed: 16019132]

70. Wong HL, Seow A, Arakawa K, Lee HP, Yu MC, Ingles SA. Vitamin D receptor start codon
polymorphism and colorectal cancer risk: effect modification by dietary calcium and fat in
Singapore Chinese. Carcinogenesis. 2003; 24:1091–5. [PubMed: 12807755]

71. Touvier M, Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, et al. Meta-analyses of vitamin D
intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms and colorectal cancer risk.
Cancer Epidemiol Biomarkers Prev.

72. Mondul AM, Shui IM, Yu K, Travis RC, Stevens VL, Campa D, et al. Genetic variation in the
vitamin d pathway in relation to risk of prostate cancer--results from the breast and prostate cancer
cohort consortium. Cancer Epidemiol Biomarkers Prev. 2013; 22:688–96. [PubMed: 23377224]

73. Sheehan NA, Didelez V, Burton PR, Tobin MD. Mendelian randomisation and causal inference in
observational epidemiology. PLoS Med. 2008; 5:e177. [PubMed: 18752343]

74. Hiraki LT, Major JM, Chen C, Cornelis MC, Hunter DJ, Rimm EB, et al. Exploring the genetic
architecture of circulating 25-hydroxyvitamin D. Genet Epidemiol. 2013; 37:92–8. [PubMed:
23135809]

75. Theodoratou E, Palmer T, Zgaga L, Farrington SM, McKeigue P, Din FV, et al. Instrumental
variable estimation of the causal effect of plasma 25-hydroxy-vitamin d on colorectal cancer risk:
a mendelian randomization analysis. PLoS One. 2012; 7:e37662. [PubMed: 22701574]

Hiraki et al. Page 14

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Forest plot of the genetic risk score and CRC for individual studies and meta-analysis
of all studies (allelic OR, 95% CI)
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