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Abstract
Background—Age is the strongest breast cancer risk factor, with overall breast cancer risk
increasing steadily beginning at approximately 30 years of age. However, while breast cancer risk
is lower among younger women, young women's breast cancer may be more aggressive. Though
several genomic and epidemiologic studies have shown higher prevalence of aggressive, estrogen-
receptor negative breast cancer in younger women, the age-related gene expression that
predisposes to these tumors is poorly understood. Characterizing age-related patterns of gene
expression in normal breast tissues may provide insights on etiology of distinct breast cancer
subtypes that arise from these tissues.

Methods—To identify age-related changes in normal breast tissue, 96 tissue specimens from
reduction mammoplasty patients aged 14 to 70 were assayed by gene expression microarray.

Results—Significant associations between gene expression levels and age were identified for
802 probes (481 increased, 321 decreased with increasing age). Enriched functions included
‘aging of cells’, ‘shape change’, and ‘chemotaxis’, and enriched pathways included Wnt/beta-
catenin signaling, Ephrin Receptor Signaling, and JAK/Stat Signaling. Applying the age-
associated genes to publicly available tumor datasets, the age-associated pathways defined two
groups of tumors with distinct survival.
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Conclusion—The hazard rates of young-like tumors mirrored that of high grade tumors in the
Surveillance, Epidemiology and End Results Program, providing a biological link between normal
aging and age-related tumor aggressiveness.

Impact—These data show that studies of normal tissue gene expression can yield important
insights about the pathways and biological pressures that are relevant during tumor etiology and
progression.
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Introduction
Age is the strongest demographic risk factor for human cancer overall (1, 2), with breast
cancer rates steadily increasing with age. However, while tumors are less common in young
women, younger women are more likely to have aggressive tumors. Young women's breast
cancer is more often estrogen receptor (ER) negative, while older women's cancers are more
often ER-positive (3, 4). Two previous gene expression studies have compared molecular
features of breast cancer by age, focusing on the tumor gene expression (5, 6). These studies
have shown that young women's tumors have distinct gene expression, ultimately reflecting
different prevalence of breast cancer subtypes. In some analyses, age-associated gene
expression changes were no longer evident after adjusting for subtype and grade (7). Thus,
persistent gaps in our understanding of age-associated changes in tumor aggressiveness
remain.

Research is needed to distinguish characteristics of the malignancy from those of the host (5,
8) and to distinguish background effects of aging from those that contribute to
carcinogenesis (9). Though the host-tumor interface has important consequences for a
nascent tumor (10-12), changes to this interface with aging are poorly understood (7).
Beyond the histology of postmenopausal involution, aging of normal breast tissue has had
limited study (13), and gene expression studies of normal tissue may provide important
insights.

Normal tissue studies can help to identify barriers that must be overcome by tumor cells
(14). Barriers to carcinogenesis derive from normal tissue homeostasis in the
microenvironment prior to, or early in, disease (15). Because tumors evolve with selective
pressure from surrounding stroma, studies of normal breast tissue, typically more than 90%
stroma by volume, may provide insights regarding selective pressures faced by tumors. We
hypothesized that older vs. younger tissues represent distinct evolutionary environments,
resulting in distinct cancer subtypes by age. Under this hypothesis, gene expression in the
normal tissue of young women would be reflected in aggressive tumors common in young
women. To evaluate this hypothesis, we identified age-associated gene expression in 96
normal tissues from premenopausal reduction mammoplasty (RM) patients and tested this
signature in independent normal breast microarray data. We then evaluated the age-
associated signature using publicly available tumor tissue gene expression data, asking
whether age-associated gene expression from normal defines distinct tumor groups. The
results link gene expression in young women's breast tissue with aggressive tumor
phenotypes.
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Methods
Patient characteristics

This study included women age 14 – 70 who underwent RM surgery at Baystate Medical
Center in Springfield, Massachusetts between 2007 and 2009. Patient characteristics are
presented in Table 1. Institutional Review Boards (IRBs) at Baystate and University of
Massachusetts Amherst approved the study. Women consented to provide tissues not needed
for diagnostic purposes to complete a telephone interview following surgery. Tissues were
snap frozen and stored at -80° C. An independent data set of isolated glands from RMs was
from UCSF Cancer Center and the Cooperative Human Tissue Network, with patients
consented under an Institutional Review Board at those institutions.

RNA isolation and microarrays
Isolation of RNA from RM tissue was performed as described in Sun et al. (16). Agilent
4X44K V1 and custom 244k arrays were performed according to manufacturer protocols for
linear amplification and two-color hybridization. Spots that had an intensity of greater than
10 in at least 80% of samples were selected for subsequent analyses. Data were lowess
normalized and missing data were imputed using k-nearest neighbors with k=10. Duplicate
arrays (N=15) were average. A total of 114 microarrays representing 99 patients were
included (GSE33526 for n=72, GEO Submission in progress for n=42). All statistical
analyses were performed in R, Bioconductor. For age-associated and menopause-associated
gene expression analyses (n=76 and n=99, respectively), probes with no Entrez Gene ID or
with less than median variability were eliminated. Linear regression with LIMMA (17) was
used to identify significant probes associated with chronological age (in decades) or
menopausal status (pre/peri-menopausal vs. postmenopausal). Unadjusted p-values were
used with qvalue (Bioconductor) to identify q-values < 0.10 (defined as statistical
significance). Hierarchical clustering was used to visualize gene expression, with samples
ordered by chronological age and genes clustered by Pearson correlation. Gene ontology
analyses were performed using Ingenuity Pathway Analysis (IPA, Redwood City, CA).

We tested a second dataset of isolated glands from RM patients (N=30). Tissue samples
were minced and enzymatically dissociated using 0.1% w/v collagenase I in Dulbecco's
Modified Eagle Medium at 37 °C for 12 to 18 h. Organoids remaining after digestion were
collected by centrifugation at 100 g for two minutes and stored frozen. RNA was extracted
using Qiagen RNeasy and Affymetrix GeneChip Human Gene 1.0 ST microarrays were
performed at University of Wisconsin, Madison. Microarray data was processed using
Robust Multiarray Average (Bioconductor).

To confirm expression changes for CDKN2A and TP53 as identified in microarray data, 1
ug RNA per sample for 26 samples were reverse transcribed using QuantiTect Reverse
Transcription kit (Qiagen). Resultant cDNAs (10 ng) were analyzed in triplicate (using
miScript SYBR Green PCR Kit and miScript-derived primers for p16 (CDK2NA), p53 or
GAPDH) by real-time, quantitative PCR on an Applied Biosystems 7900HT thermocycler.
An outlier was detected in regression diagnostics and removed to yield a final QPCR
datasets (n=25).

Public Microarray Datasets and Test Set of Isolated Glands
Based on the previous evidence that increasing age is associated with qualitative shifts in
tumor subtype (5, 18), we hypothesized that gene expression of normal aging would be
manifest in tumors, with more aggressive tumors similar to younger, normal tissue. To test
this, we projected the age-associated gene set onto publicly available microarray datasets:
the NKI295 (19), Naderi et al. (20), and UNC337 (21). To classify tumors as young-like or
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older-like, we applied methods described in Creighton et al. (22) to obtain a correlation
coefficient describing the relation between each sample and the 802-probe age associated
signature. Probes were collapsed by statistical mean to a list of 719 unique entrez genes. The
vector summarizing the age signature on these genes was constructed as median expression
in RM patients younger than 30 minus that in patients older than 39. Genes with differences
less than zero (lower expression in young) were set to -1 and genes with differences larger
than zero (higher expression in young) were set to 1. This vector was compared with the
sample gene expression data to calculate Pearson correlation coefficients. If the correlation
was positive, the patient was classified as young-like; if correlation was negative, the patient
was classified as older-like. Since all patients in the RM data set and the NKI dataset were
55 or younger, all three tumor datasets were restricted to this age range for combined
analysis. These data were median-centered by gene and filtered to include only those genes
with top 50% variability prior to correlation analysis. The 719 genes mapped to 380 variable
genes in the NKI dataset, 317 variable genes in Naderi, and 268 variable genes in UNC337.
Following classification, all samples were aggregated to a single dataset (n=459).

To test whether young-like tumors mirror aggressive tumors, we used data for women 55 or
younger in the Surveillance, Epidemiology, and End Results (SEER) Program (23). Hazard
curves for public microarray data and SEER data were generated using the muhaz library in
R. Young-like and older-like tumor (microarray data) hazard rates was compared with
‘aggressive’ (grade 3) tumors and ‘less aggressive’ tumors (grade 1 or 2) in SEER. Previous
manuscripts (3) have demonstrated that several clinical characteristics (ER status, PR status,
race, grade, tumor size) duplicate the same general patterns for age at incidence and hazard
rate, so grade was representative.

Creighton correlation-based classifications were also used for analyzing age-associated gene
expression in a test set of isolated glands. Entrez IDs from the age signature were mapped to
the University of Wisconsin data, with 138 probes identified in common. The association
between the Creighton correlation (coded as ‘positive’ if >= 0 or ‘negative’ if < 0) and the
true age of tissue (< 30, 30-39, >39) was estimated using the nonzero correlation statistic (1
degree-of-freedom Cochran-Mantel-Haenszel statistic, PROC FREQ in SAS 9.2).

Comparison of Age-Associated Signature with Previously Published Signatures
Previously, a signature of aging based on tumor gene expression data (5) and a meta-
analysis of common signatures of aging across many tissues were published (24). These
signatures were evaluated in our RM samples to test whether they predicted age in normal
human breast tissue and to assess correlation with our aging signature. These signatures
were mapped to our filtered RM dataset, resulting in 85 genes for the 145-gene Yau et al. (5)
signature and 52 genes for the 73-gene de Magalhaes signature (24). A Creighton correlation
was computed (genes with high expression in young coded as 1, high expression in older
coded as -1). Positive correlation indicated patients were young-like for a given signature.
These classes were then evaluated for association with our RM-based young-like and older-
like signature and in association with chronological age. Chi-square tests, or Fisher exact
where cell counts were <5, were used to test statistical significance.

Results
Age-associated gene expression in reduction mammoplasty patients

A substantial proportion of genes had expression changes associated with age. Given a False
Discovery Rate (FDR) of 5 or 10%, 2 or 4% of genes were age-associated, respectively. A
striking 15% of genes were age-associated at FDR of 20%, demonstrating broad changes
induced by aging. Figure 1A shows a one-dimensional (gene only) cluster for 802 age-
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associated genes (with FDR<10%) across 76 samples (representing 62 patients), ordered by
chronological age. A qualitative shift is evident in gene expression in the late thirties, with
substantial inter-individual variation.

To test this gene set, we used data from isolated glands (enriched for epithelium) of RM
patients. Results in this independent test set shows that even in epithelium, the age-related
changes observed in whole tissue are preserved. Figure 1B shows a strong correlation
between age and the aging signature, with young women positively correlated with the
younger women's signature (9 of 14 samples positively correlated) and older women (12 of
16) negatively correlated with young signature. There was a trend toward decreasing
correlation with the young-like signature as age increased (odds ratio for young expression
was 5.4 [95% CI: 1.1-26.0] comparing younger to older). The association is particularly
striking given distinct specimen processing methods and microarray platforms. These data
suggest that our signature reflects aging in multiple cell types.

Among the 802 differentially expressed probes, several processes and pathways were over-
represented (Table 2). Aging of cells, cell flattening, and shape change were significant
processes, while JAK2-associatied hormone-like cytokine signaling, Wnt/β-catenin
signaling, and Ephrin Receptor Signaling were significant pathways. The complete list of
genes from Figure 1 are in Supplemental Table 1 with the average fold change comparing
youngest (< 30, n=20) to oldest patients (>49, n=6).

We confirmed the direction of change for CDKN2A (p16) and TP53 by performing Q-RT-
PCR on a subset of samples with remaining RNA (Supplemental Figure 1). The p16INK4a
tumor suppressor has an established role in aging and its expression increases with
increasing age (25, 26). p53 plays a critical role in determining cellular senescence and in
vitro lifespan (27) and has declining activity in aging rodents (28). QPCR showed p53 levels
decrease with age and p16 levels increase, consistent with the microarray data.

Menopause-associated gene expression in reduction mammoplasty patients
In contrast to a broad gene expression response to age, there were few genes associated with
menopausal status. In comparing 76 pre/peri-menopausal to 23 post-menopausal women,
only 273 genes were statistically significant with an unadjusted p-value <0.05. No genes
were significantly associated with menopausal status after correction for multiple testing (q
value > 0.10 for all genes). Despite the weak association, we performed an IPA analysis
with the 273 genes that had p-value < 0.05. No Functional Annotation or Canonical Pathway
categories were differentially expressed with Benjamini-Hochberg p<0.05. These results
show that within the age range 20-70, menopausal status did not strongly influence breast
tissue gene expression.

Age-associated gene expression in the breast cancer patients
According to evolutionary theories of cancer (11), tumors use the transcriptional programs
and pathways that are active in normal tissue to advance growth and survival. Thus we
expected that age-associated genes in normal tissue would also be dysregulated in tumors.
By applying the age-associated gene set from Figure 1 to three public microarray datasets,
we identified two groups of patients. ‘Aggressive’ high grade patients in SEER (Figure 2A)
and patients with young-like gene expression (Figure 2B) both showed a left shift in the age-
at-incidence distribution, documenting earlier age at incidence. Aggressive tumors (Figure
2C) and young-like tumors (Figure 2D) also had peak hazard ratios early after diagnosis,
with declining hazard rates thereafter. ‘Less aggressive’ SEER tumors and older-like tumors
do not show this pattern. In sum, the patterns of age at incidence and hazard rate over time
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for young-like breast tumors are very similar to patterns presented for aggressive breast
cancers based on SEER data (3).

Young-like tumors were more likely to have clinically aggressive characteristics (Table 3),
with statistically significant associations in the largest of the three datasets (NKI): ER
negative (p=0.02), high grade (p=0.005), larger (p=0.04). Substantial, though non-
significant, associations in the same direction (more aggressive tumors given young-like
gene expression class) were observed for Naderi et al. and UNC 337 datasets. Considering
the combined dataset, significant associations held with numerous clinically aggressive
phenotypes (large size, high grade, and young age). The strongest association was for high
tumor grade. Young-like tumors were also more prevalent among young women in all
datasets except for the Naderi et al., where the young-like signature did not correlate with
patient age. However, Naderi et al. (n=52) had an older patient population (mean age of 47;
compared with UNC and NKI, both mean age of 44). These results document that the
normal biology of younger women is reflected inaggressive tumors that are more common in
this age group.

Evaluation of correlations with previous age-related signatures
A previous study identified common signatures of aging across multiple tissues (including
heart, lung, brain, muscle, and others, but not breast) and species (24). As shown in Table 4,
young-like samples based on this de Magelhaes signature were younger chronologically and
more likely to be young-like according to our signature. Previous studies of aging human
breast were not available for comparison, but a tumor-based signature that evaluated age-
related gene expression among ER-positive breast tumors (5), avoiding some of the
problems of confounding by tumor subtype as described in Anders et al. (7), was evaluated.
The Yau et al. signature was significantly associated with our young-like signature, but was
not associated with RM patient age. The weaker correlation with age for this signature may
reflect the evolution and divergence of tumor biology from normal age-related biology.

Conclusions
Age-associated changes in normal breast gene expression have not been reported previously.
This is a gap in the literature given that age-associated gene expression has been reported for
human fibroblasts and lymphocytes (29, 30) as well as brain (31), kidney (32), and skeletal
muscle (33, 34). A recent meta-analysis compared aging-related changes across species and
tissues, but without inclusion of mammary gland (24). Histologically, there are important
compositional and morphometric changes in breast tissue with aging (35). Prior to
menopause, a decline in ovarian function causes regression of both epithelium and stroma
from the third to sixth decades of life, independent of previous reproductive history (36).
Aging as a process spanning decades is reflected in our observation of progressive changes,
and the observation that menopause was not strongly associated with changes in breast gene
expression.

In our data, age-associated gene expression was functionally linked with ‘aging’ gene
expression categories, but also included individual genes of interest. CDKN2A (p16) is an
established biomarker and effector of mammalian aging (26), its upregulation being
accompanied by shortened telomeres. As expected from the previous studies (37), we found
increasing expression of p16 and decreasing expression of TERT with age. Transcripts of
the gene coding tumor suppressor p53 (TP53) also changed, with p53 expression declining
in older patients. Studies of p53 and aging have emphasized mouse models of breast cancer
(28), but in human studies, p53 mutations are more common in younger women and basal-
like tumors that occur more frequently in the young (38). These observations raise the
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hypothesis that increased mutation frequency in young women may reflect greater activity
of p53 in young women and a resulting pressure to inactivate p53.

Other interesting developmentally-regulated pathways were also altered in aging breast. The
JAK2-associated hormone-like cytokine signaling, Wnt/β-catenin signaling, and Ephrin
Receptor signaling were differentially expressed with age. The hormone-dependent JAK2
signaling alterations (including higher expression of STAT5A), may reflect changes in
ovarian function/estrogen signaling over time; this pathway regulating mammary gland
development is responsive to estrogen and progesterone (39). The latter two pathways (Wnt/
β-catenin and Ephrin receptor signaling) are known to be involved in maintaining stem cell
dynamics in cancer (40, 41), but their specific roles in normal breast are relatively
unexplored. Given that mammary progenitor cells are a rare cell population, these signals
are unlikely to be derived specifically from stem cell populations, but may reflect the role of
these pathways (and cross talk between them) in tissue architecture or cellular differentiation
[reviewed in (42) and (43), for Ephrins and Wnt pathway, respectively]. We hypothesize
that the changes we observe reflect alterations in survival and proliferation potential of the
normal cell types that are susceptible to carcinogenesis. Alteration of these signals and
normal tissue homeostasis with age may dictate pathways to malignancy and determine the
aggressiveness of resulting tumors. In fact, a recent commentary emphasized the importance
of altered homeostasis in age-dependent cancer rates, countering the previous notion that
oncogenic mutation rates alone limit carcinogenesis at young ages (44).

Our study also identified trends that are relevant for the epidemiology of breast cancer and
aging. Previous analyses of epidemiologic data have used breast cancer incidence data to
draw inferences about aging of breast tissue (45, 46). These papers have suggested that the
rate of aging is most rapid in the early years after menarche and before the first pregnancy,
decreases with each subsequent birth, and decreases further with menopause. Use of very
large datasets and anchoring of changes to particular reproductive events allowed for
observation of these trends in spite of substantial inter-individual variability. While aging-
related changes in undiseased tissue are a more direct route to studying aging in tissue, these
studies are underpowered to dissect the composite and interactive effects of multiple
demographic and exposure variables. However, it is clear in Figure 1 that there is substantial
heterogeneity in the population. Premature expression of signatures reflective of older
biology might predict increased risk of breast cancer. Given that a larger number of
epidemiologic studies are now collecting histologically normal tissue from both diseased
and unaffected individuals, development of novel risk biomarkers from normal tissue may
be possible. Indeed recent studies with peripheral blood T-lymphocytes have demonstrated
that molecular markers of aging do show associations with health behaviors such as physical
activity and smoking status (26), suggesting that biomarkers of aging may lead to
understanding of etiology.

If gene expression microenvironments in younger tissue apply selective pressures or create
optimal conditions for specific subtypes, then (1) these subtypes would be more common in
younger women, and (2) the tumors would be expected to differentially express the
pathways common to young breast tissue. Regarding the first point, several papers have
documented that different subtypes of tumors are more prevalent in younger women (e.g.
ER-negative and basal-like cancer) (3, 4), which is echoed in our data showing that tumors
with young-like signatures had aggressive clinical features. Regarding the second point, our
work illustrates that the young-like tumors have distinct age at incidence patterns and hazard
rates over time, similar to the patterns produced by stratifying on aggressive clinical
characteristics. Thus our work provides a strong biological link between aging processes and
the etiology of aggressive breast cancer subtypes.
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While links between age-associated gene expression and epidemiologic age at incidence
patterns are informative, there are caveats to our analysis. First, we used public microarray
datasets to evaluate our age-associated signature classes in comparison with high grade/
aggressive tumors in SEER data. While the data convincingly recapitulate the SEER patterns
for age-at-incidence and hazard rate over time, it must be noted that these public datasets are
not population-based samples and therefore may have substantial distributional differences
from SEER in both age and tumor characteristics. While we restricted the age-range of
tumors in our analysis to improve the comparability across datasets, the lack of a population-
based tumor gene expression data for evaluating age-dependent signatures limits our
comparability with SEER data. Second, all of the microarray datasets used were moderately
sized. Therefore, it was impossible to stratify on relevant demographic variables such as
race, and we were unable to detect weaker changes in gene expression with age. However,
these analyses are an important first step toward characterizing some of the strongest
changes induced in aging breast. Third and finally, our RM tissues were not microdissected
and thus we identified changes that are common to multiple cell types. However, many
aging changes may be highly stereotyped across tissue and cell types and highly conserved
across organisms, given that our signature correlated with a signature derived from multiple
species and multiple tissues, both stroma and epithelium rich (24).

Continued and future research may consider whether other breast cancer risk factors perturb
particular breast-cancer related pathways in normal tissue. For example, if particular
pathways are altered in normal breast according to body mass index (16) or parity (47),
epidemiologic studies could assay these pathways in tumors and stratify cases according to
whether they express these pathways. This would help to delineate the distinct causal paths
that contribute to heterogeneous breast cancers. Case-only studies can identify etiologic
heterogeneity with respect to particular pathways (48), and more recently, concordance of
phenotypes between first and second primary cancers may help establish etiologic
distinctiveness (49). Our work demonstrates that evaluating pathways in both normal tissue
and in tumors can also advance our understanding of etiologic distinctiveness.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
The authors acknowledge Maureen Lahti at Baystate Medical Center for contributions to patient data collection.

Grant Support: This project was supported by the National Cancer Institute and National Institutes of
Environmental Health Sciences (U01-ES019472, R01-CA138255, R01-ES017400, U01-ES019548, U01-
ES019466, P50CA058223), Avon Foundation, and the University Cancer Research Fund at the University of North
Carolina.

References
1. Edwards BK, Howe HL, Ries LA, Thun MJ, Rosenberg HM, Yancik R, et al. Annual report to the

nation on the status of cancer, 1973-1999, featuring implications of age and aging on U.S. cancer
burden. Cancer. 2002; 94:2766–92. [PubMed: 12173348]

2. Benz CC, Yau C. Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer. 2008;
8:875–9. [PubMed: 18948997]

3. Anderson WF, Jatoi I, Devesa SS. Distinct breast cancer incidence and prognostic patterns in the
NCI's SEER program: suggesting a possible link between etiology and outcome. Breast Cancer Res
Treat. 2005; 90:127–37. [PubMed: 15803359]

Pirone et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. Anderson WF, Pfeiffer RM, Dores GM, Sherman ME. Comparison of age distribution patterns for
different histopathologic types of breast carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;
15:1899–905. [PubMed: 17035397]

5. Yau C, Fedele V, Roydasgupta R, Fridlyand J, Hubbard A, Gray JW, et al. Aging impacts
transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Res. 2007;
9:R59. [PubMed: 17850661]

6. Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y, et al. Young age at
diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared
patterns of gene expression. J Clin Oncol. 2008; 26:3324–30. [PubMed: 18612148]

7. Anders CK, Fan C, Parker JS, Carey LA, Blackwell KL, Klauber-DeMore N, et al. Breast
carcinomas arising at a young age: unique biology or a surrogate for aggressive intrinsic subtypes? J
Clin Oncol. 2011; 29:e18–20. [PubMed: 21115855]

8. Cohen HJ. The cancer aging interface: a research agenda. J Clin Oncol. 2007; 25:1945–8. [PubMed:
17488995]

9. Benz CC. Impact of aging on the biology of breast cancer. Crit Rev Oncol Hematol. 2008; 66:65–
74. [PubMed: 17949989]

10. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the
entire organism. Dev Cell. 2010; 18:884–901. [PubMed: 20627072]

11. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat
Rev Cancer. 2006; 6:924–35. [PubMed: 17109012]

12. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular
characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004; 6:17–32.
[PubMed: 15261139]

13. Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, et al. Age-related
lobular involution and risk of breast cancer. J Natl Cancer Inst. 2006; 98:1600–7. [PubMed:
17105983]

14. Gatenby RA, Gillies RJ, Brown JS. Evolutionary dynamics of cancer prevention. Nat Rev Cancer.
2010; 10:526–7. [PubMed: 21137109]

15. Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment
in restraining cancer progression. Nat Med. 2011; 17:320–9. [PubMed: 21383745]

16. Sun X, Casbas-Hernandez P, Bigelow C, Makowski L, Joseph Jerry D, Smith Schneider S, et al.
Normal breast tissue of obese women is enriched for macrophage markers and macrophage-
associated gene expression. Breast Cancer Res Treat. 2012; 131:1003–12. [PubMed: 22002519]

17. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in
microarray experiments. Statistical applications in genetics and molecular biology. 2004; 3
Article3.

18. Anders C, Carey LA. Understanding and treating triple-negative breast cancer. Oncology
(Williston Park). 2008; 22:1233–9. discussion 9-40, 43. [PubMed: 18980022]

19. van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression
signature as a predictor of survival in breast cancer. N Engl J Med. 2002; 347:1999–2009.
[PubMed: 12490681]

20. Naderi A, Teschendorff AE, Barbosa-Morais NL, Pinder SE, Green AR, Powe DG, et al. A gene-
expression signature to predict survival in breast cancer across independent data sets. Oncogene.
2007; 26:1507–16. [PubMed: 16936776]

21. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular
characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;
12:R68. [PubMed: 20813035]

22. Creighton CJ, Casa A, Lazard Z, Huang S, Tsimelzon A, Hilsenbeck SG, et al. Insulin-like growth
factor-I activates gene transcription programs strongly associated with poor breast cancer
prognosis. J Clin Oncol. 2008; 26:4078–85. [PubMed: 18757322]

23. National Cancer Institute SRP Surveillance Systems Branch. [ASCII file: yr1973_2009.seer9],
Research Data (1973-2009), released April 2012, based on the November 2011 submission. 2012;
Available from: www.seer.gov

Pirone et al. Page 9

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.seer.gov


24. de Magalhaes JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles
identifies common signatures of aging. Bioinformatics. 2009; 25:875–81. [PubMed: 19189975]

25. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM, et al. Stem-cell ageing
modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature. 2006; 443:421–6. [PubMed:
16957735]

26. Tsygankov D, Liu Y, Sanoff HK, Sharpless NE, Elston TC. A quantitative model for age-
dependent expression of the p16INK4a tumor suppressor. Proc Natl Acad Sci U S A. 2009;
106:16562–7. [PubMed: 19805338]

27. Bond JA, Wyllie FS, Wynford-Thomas D. Escape from senescence in human diploid fibroblasts
induced directly by mutant p53. Oncogene. 1994; 9:1885–9. [PubMed: 8208534]

28. Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ. Declining p53 function in
the aging process: a possible mechanism for the increased tumor incidence in older populations.
Proc Natl Acad Sci U S A. 2007; 104:16633–8. [PubMed: 17921246]

29. Geigl JB, Langer S, Barwisch S, Pfleghaar K, Lederer G, Speicher MR. Analysis of gene
expression patterns and chromosomal changes associated with aging. Cancer Res. 2004; 64:8550–
7. [PubMed: 15574761]

30. Tan Q, Zhao J, Li S, Christiansen L, Kruse TA, Christensen K. Differential and correlation
analyses of microarray gene expression data in the CEPH Utah families. Genomics. 2008

31. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, et al. Gene regulation and DNA damage in the
ageing human brain. Nature. 2004; 429:883–91. [PubMed: 15190254]

32. Rodwell GE, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, et al. A transcriptional profile of
aging in the human kidney. PLoS Biol. 2004; 2:e427. [PubMed: 15562319]

33. Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, et al. Skeletal muscle gene
expression profiles in 20-29 year old and 65-71 year old women. Exp Gerontol. 2004; 39:369–77.
[PubMed: 15036396]

34. Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in
human muscle. Physiol Genomics. 2003; 14:149–59. [PubMed: 12783983]

35. Walker RA, Martin CV. The aged breast. J Pathol. 2007; 211:232–40. [PubMed: 17200937]

36. Hutson SW, Cowen PN, Bird CC. Morphometric studies of age related changes in normal human
breast and their significance for evolution of mammary cancer. J Clin Pathol. 1985; 38:281–7.
[PubMed: 3973052]

37. Bazarov AV, Van Sluis M, Hines WC, Bassett E, Beliveau A, Campeau E, et al. p16(INK4a) -
mediated suppression of telomerase in normal and malignant human breast cells. Aging Cell.
2010; 9:736–46. [PubMed: 20569236]

38. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, et al. Race, breast cancer
subtypes, and survival in the Carolina Breast Cancer Study. Jama. 2006; 295:2492–502. [PubMed:
16757721]

39. Santos SJ, Haslam SZ, Conrad SE. Estrogen and progesterone are critical regulators of Stat5a
expression in the mouse mammary gland. Endocrinology. 2008; 149:329–38. [PubMed:
17884938]

40. Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland
development and cancer: beta-catenin. Breast Cancer Res. 2010; 12:213. [PubMed: 21067528]

41. Genander M, Frisen J. Ephrins and Eph receptors in stem cells and cancer. Curr Opin Cell Biol.
2010; 22:611–6. [PubMed: 20810264]

42. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels
between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;
15:117–34. [PubMed: 20490631]

43. Andres AC, Ziemiecki A. Eph and ephrin signaling in mammary gland morphogenesis and cancer.
J Mammary Gland Biol Neoplasia. 2003; 8:475–85. [PubMed: 14985642]

44. Degregori J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer
development with age? Oncogene. 2012

45. Pike MC, Krailo MD, Henderson BE, Casagrande JT, Hoel DG. ‘Hormonal’ risk factors, ‘breast
tissue age’ and the age-incidence of breast cancer. Nature. 1983; 303:767–70. [PubMed: 6866078]

Pirone et al. Page 10

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



46. Rosner B, Colditz GA. Nurses' health study: log-incidence mathematical model of breast cancer
incidence. J Natl Cancer Inst. 1996; 88:359–64. [PubMed: 8609645]

47. Belitskaya-Levy I, Zeleniuch-Jacquotte A, Russo J, Russo IH, Bordas P, Ahman J, et al.
Characterization of a genomic signature of pregnancy identified in the breast. Cancer Prev Res
(Phila). 2011; 4:1457–64. [PubMed: 21622728]

48. Begg CB, Zhang ZF. Statistical analysis of molecular epidemiology studies employing case-series.
Cancer Epidemiol Biomarkers Prev. 1994; 3:173–5. [PubMed: 8049640]

49. Begg CB. A strategy for distinguishing optimal cancer subtypes. Int J Cancer. 2011; 129:931–7.
[PubMed: 20949563]

Pirone et al. Page 11

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Age-associated gene expression in whole tissue (n=76) and in isolated glands (n=30)
(A) 802 probes were collapsed to unique genes by averaging and a hierarchical cluster
analysis (genes-only) shows two distinct gene expression groups. Some heterogeneity is
observed within groups, but an overall trend is evident. (B) The gene expression signature
was then used to predict age in an independent test set of isolated glands. Glands from
younger patients were more likely to show positive correlation with the young signature
from whole glands, while older patients were more likely to have negative correlations.

Pirone et al. Page 12

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Age-at-incidence distribution and hazard rate over time are similar for aggressive
tumors in Surveillance Epidemiology and End Results and young-like tumors in public tumor
gene expression data
(A) Grade was used to stratify ‘aggressive’ (poorly differentiated, grade 3) tumors and ‘less
aggressive’ tumors, with a left shift in the age distribution for ‘aggressive tumors. (B) The
young-like tumors mirror the left shift seen with aggressive tumors, providing a biological
link between age and tumor aggressiveness. (C) Aggressive tumors have a unique hazard
function in SEER data, with an early peak in hazard rate (2-5 years depending on tumor
characteristic modeled) followed by a decreasing hazard rate, while less aggressive tumors
(grade 1 or 2 in this example), have linearly increasing hazard rate with years following
diagnosis. (D) Similarly, young-like tumors have a peak hazard early (prior to 5 years
following diagnosis). Tumors with older-like gene expression show the characteristic linear
increase in hazard rate over time. These hazard rate curves show that young-like tumors
represent more aggressive breast cancer.
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Table 1
Demographic characteristics of women*

Cases

N %

Menopausal Status†

Premenopausal‡ 62 81.6

Perimenopausal§ 14 18.4

Missing 0

Race & Hispanic Ethnicity

White, non-Hispanic 48 63.2

Black, non-Hispanic 6 7.9

Hispanic 19 25.0

Other 3 3.9

Missing 0

Age#

20-29 20 26.3

30-39 33 43.4

40-49 17 22.4

>=50 6 7.9

Missing 0

* Only included individuals >= 20 who are not menopausal

† 23 women who were postmenopausal were analyzed in pre/peri vs. postmenopausal analyses, but excluded from age analyses and from Table
1.

‡ Premenopausal if reports regular periods, or very young age on exogenous hormones, or very young age with hysterectomy, both ovaries
preserved

§ Perimenopausal if last menstrual period < 1 year before interview

# excluded are those < 20 years of age.

Table 1a: Average Body Mass Index (BMI) by age category

N BMI

Age

20-29 15 30.4

30-39 16 29.4

40-49 13 30.1

>= 50 2 30.5

Missing 30
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Table 2
Gene Ontology Categories Enriched Among Age-Associated Genes

Ingenuity Category p-valuea Molecules

Functions Annotation

Aging of cells 9.4e-5 NOX4, PDCD4, SOD1, TBX2, TP53

Cell flattening of cell lines 9.4e-5 CDKN2A, FIS1, PLD1, SMARCA4, SMARCB1

Shape change 1.2e-4 ANGPT1, AP1S2, ARFIP2, ARHGAP15, CASP10, CD28, CDC42EP4,
CDKN2A, DLC1, EFNA1, EPHA2, EPHB4, FADD, FIS1, KITLG, MARK2,
MYH9, NEDD4L, PACSIN2, PLD1, PLXNB1, RAP1B, RAP2C, ROCK2,
RPS6KB1, SEMA3A, SLIT2, SMARCA4, SMARCB1, TEK, TNFSF11

Developmental process of melanocytes 3.2e-4 CTNNB1, EFNA1, KITLG, MITF, TP53

Nectortizing enterocolitis 3.2e-4 PDE11A, PDE3B, PDE4A, PDE4D, TLR4

Assembly of cellular protrusion 5.8e-4 ARFIP2, CCDC88A, RALA, RHOQ, SLC9A3R1, SLIT2

Retraction of cellular protrusion 6.6e-4 ARHGAP32, EFNA1, IL6R, ITGA3, MYH9, RHOQ, ROCK2

Canonical Pathways

Role of JAK2 in Hormone-Like Cytokine
Signaling

1.1e-3 SHC1, STAT5A, GHR, TYK2, SOCS2, JAK2

Wnt/β-catenin Signaling 2.9e-3 TP53, SOX4, CDKN2A, SOX12, MARK2, SOX17, CSNK1E, FZD8, FZD4,
SOX8, DVL2, CTNNB1, ACVR1C, WNT5B, SOX5

Ephrin Receptor Signaling 5.2e-3 RAP1B, ACTR2, EPHB4, ANGPT1, GNB2L1, LIMK2, JAK2, ITGA3, GNG7,
GNG10, EFNA1, ROCK2, SHC1, SDCBP, GRIN2C, EPHA2

a
Benjamini-Hochberg, multiple testing adjusted p-value.
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Table 4

Association between published age signatures based classification (columns), chronological age, and reduction
mammoplasty age signature class.

Older-like (N) Young-like (N) p-value

de Magalhaes*

RM Older-like 28 10

RM Young-like 13 25 1.3 e-3

20-29 4 16

30-39 15 18

40-49 12 5

50+ 2 4 0.018

Yau†

RM Older-like 22 16

RM Young-like 11 27 0.02

20-29 11 9

30-39 14 19

40-49 11 6

50+ 5 1 0.21

*
de Magalhaes et al. (24) meta-analysis of aging signature includes 52 intersecting genes with RM signature.

†
Yau et al (5) includes 85 intersecting genes with RM signature.
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