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Abstract

Large and comprehensive genomic surveys of head and neck squamous cell carcinomas are now 

greatly increasing our understanding of the diversity of this disease and the key genomic changes, 

which drive these tumors. The results from these studies are beginning to inform the introduction 

of novel therapies for patients with head and neck squamous cell cancers. Here, we review some 

of the key findings from recent genomic studies of head and neck cancers including the most 

comprehensive study to date from The Cancer Genome Atlas Network.
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Introduction

Head and neck squamous cell carcinomas (HNSCC) are the fifth most common malignancy 

world-wide and comprise a diverse set of cancers arising in the upper aerodigestive tract 

mucosa(1). Unlike many other epithelial cancers, the majority of HNSCCs present at a 

locally advanced stage with cervical lymph node metastases. Over 90% of patients are 

treated with curative intent using a combination of surgery, radiation therapy and 

chemotherapy(2). To date, treatment approaches have been dictated by the anatomic site of 

the primary tumor with oral cavity cancers treated primarily with surgical resection and 

pharyngeal and laryngeal tumors with chemoradiation(3). While over one-half of patients 
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are cured with initial therapy, these treatments are highly morbid, and therapeutic options for 

individuals who relapse following initial treatment are limited(4). In the absence of 

information regarding the biologic underpinnings of individual tumors, predictive 

biomarkers have been lacking to guide therapy in both the initial treatment setting and in the 

treatment of relapsed/refractory disease. Establishing robust therapeutic biomarkers in 

HNSCCs has been challenging for several reasons including the heterogeneity of these 

tumors which display diversity in terms of their anatomy, clinical characteristics and in their 

association with conventional risk factors such as tobacco and alcohol exposure as well as 

with infection with the oncogenic Human Papilloma Virus (HPV) and Epstein-Barr Virus 

(EBV)(2, 5). Recent large-scale genomic profiling studies, notably that of The Cancer 

Genome Atlas (TCGA), have shed light on the molecular underpinnings of the diversity of 

HNSCCs. We highlight some of the key insights from this and other studies and the 

implications of these findings on our understanding of HNSCCs and therapeutic approaches.

The Genomic Landscape of non-HPV Driven HNSCCs

Despite advances in surgical approaches, radiotherapy and chemotherapies, treatment 

outcomes for patients with HNSCCs associated with the traditional risk factors of tobacco 

use, alcohol exposure, or both, remain disappointing as compared to patients with HPV-

driven disease(5, 6). This clinical challenge has stimulated genomic studies focusing on this 

high-risk group of patients with the goal of identifying molecular aberrations, which could 

be targeted to improve clinical outcomes. However, at this time there are no agents in 

clinical use in HNSCCs that show enhanced activity associated with a genetic biomarker. 

While EGFR is overexpressed in HNSCC and has been shown to be associated with reduced 

survival, EGFR-directed therapies have not been especially efficacious(7, 8). Cetuximab, a 

monoclonal antibody directed against EGFR, is the only FDA approved targeted 

molecularly targeted agent for HNSCC, but response rates to this agent given as 

monotherapy are approximately 10% and it remains unclear how to predict the subset of 

patients most likely to respond to cetuximab or other EGFR-directed therapies despite a 

large number of studies addressing this topic(7, 9, 10).

Next-generation sequencing studies of non-HPV driven HNSCCs, including the TCGA 

project which characterized nearly 250 of these individuals (TCGA Network, Nature, in 

press), has demonstrated a complex landscape of alterations in gene expression, DNA copy 

number, somatic mutations, gene rearrangements and gene promoter methylation(11–15). 

These tumors are characterized by near-universal loss of TP53 and CKDN2A/RB1 by 

truncating mutation, deletion and/or alternative splicing. A summary of somatic alterations 

in genes regulating a number of key cellular pathways in HPV-negative and HPV-positive 

HNSCCs is presented in Table 1.

Of note, HPV-negative HNSCCs most closely resemble lung squamous cell carcinomas in 

terms of their spectra of genomic alterations and contain statistically enriched mutations and 

copy number alterations in genes regulating many of the same pathways in addition to 

widespread loss of both TP53 and CDKN2A/RB1(16). These include regulation of squamous 

differentiation (NOTCH1, RIPK4, IRF6, TP63), oxidative stress (NFE2L2, KEAP1), WNT 

signaling (AJUBA, FAT1), immune evasion (HLA-A, B2M, TGFBR2) and chromatin 
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remodeling (MLL2, NSD1)(15) (TCGA Network, Nature, in press). While twenty percent of 

HPV-negative HNSCCs in the TCGA cohort displayed amplifications of Receptor Tyrosine 

Kinase (RTK) genes such as EGFR, ERBB2, MET and FGFR1, there were no recurrent 

mutations or fusions in RTK genes which have been associated with dramatic responses to 

small molecule kinase inhibitors in other tumor types such as lung adenocarcinoma. One 

possible exception is oncogenic exon 14 skipping in MET, which was reported in two 

HNSCC cases by TCGA and is found in 4–5% of lung adenocarcinoma and which may be 

associated with sensitivity to MET small molecule inhibitors.

Mutually exclusive mutations in RAS family genes, notably RHOA, KRAS and HRAS, are 

present but infrequently found in HNSCC (6% of TCGA cases), though recurrent mutations 

in RHOA at amino acid position 40 are worth noting; however, the biological significance of 

these RHOA mutations is unclear. Amplification of chromosome 3q, a region containing the 

TP63, SOX2 and PIK3CA genes, is seen in the majority of both HPV-negative and HPV-

positive HNSCCs and PIK3CA mutations are commonly found in both HPV-negative and 

HPV-positive disease, in agreement with prior studies(11, 14, 15, 17).

HPV-negative HNSCCs arise from a number of anatomic sites including the larynx, oral 

cavity and oropharynx and generally occur in the setting of heavy alcohol and/or tobacco 

exposure or, less commonly, in patients without these well-established risk factors. The 

TCGA cohort did not identify any mutated genes specific to an anatomic site, though the 

numbers of cases in each of these categories was insufficient to comprehensively address 

this question. It should be noted that a prior report suggested TERT promoter mutations are 

enriched in tongue cancers(18). In contrast to lung cancers in which many targetable 

genomic alterations have been identified specifically in patients who lack exogeneous 

carcinogen exposure in the form of tobacco, two small studies of HNSCCs arising in HPV-

negative individuals with minimal tobacco or alcohol histories did not identify any recurrent 

kinase alterations(19, 20).

HPV-negative HNSCCs demonstrate clear evidence of molecular diversity, as suggested by 

expression profiling studies which clearly demonstrate diverse biologic subclasses within 

HPV-negative disease including a class of tumors without EGFR amplification and/or 

overexpression, previously termed “atypical” HNSCCs, which consist of approximately 

20% of HPV-negative cases and the vast majority of HPV-positive HNSCCs(21, 22). An 

intriguing mutational pattern identified by TCGA was a subset of HPV-negative HNSCCs 

originating in the oral cavity with few to no copy number alterations was statistically 

enriched for HRAS, CASP8 and PIK3CA mutations and lack of TP53 mutation (TCGA 

Network, Nature, in press).

HPV-Positive HNSCC

It has well accepted that the clinical features of patients with HPV-driven HNSCC are 

distinct from HPV-negative disease. This includes distinct sites of origin of the disease (eg. 

tonsil and base of tongue), younger age and improved relapse-free survival following initial 

definitive treatment. Clinically, an emphasis on protocol development for patients with 
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HPV-driven HNSCCs has consisted largely of de-escalation of standard therapy with a 

lower dose of radiation, more limited resection or de-intensification of chemotherapy.

Initial next-generation sequencing studies of HPV-positive patients confirmed that these 

individuals harbor few genomic alterations in TP53 and/or CDKN2A, presumably due to the 

activity of the HPV E6 and E7 viral oncoproteins(11). These studies also suggested that 

HPV-driven HNSCCs display less genomic complexity as compared to HPV-negative 

disease, though the TCGA and other more recent cohorts did not confirm this finding, 

perhaps due to tobacco use in the HPV-positive individuals in these studies. This possibility 

is supported by the prevalence of both the virally associated Tp*Cp(A/C/T) substitution 

mutation in the HPV-positive individuals as well as CpG transversions, a mutation class 

typically associated with smoking. A major limitation in most studies reported to date has 

been the relatively small numbers of characterized HPV-positive tumors.

HPV-driven HNSCCs are distinct from HPV-negative disease in that they lack focal RTK 

amplifications but do display a higher rate of focal PIK3CA amplification and mutation. 

PIK3CA alterations have been reported as therapeutic biomarkers in this patient population 

based on cell line and patient-derived xenograft studies(14). HPV-associated HNSCCs also 

demonstrate enrichment for copy number gains in TRAF3 and E2F1 and a lack of CCND1 

amplification when compared with HPV-negative disease.

HPV-driven cancers display both mutations and fusions in the FGFR3 gene with mutations 

at position 249 reported at 14% in one study of 50 cases of locoregionally advanced disease 

and FGFR3-TACC3 fusions have been reported in multiple cases by TCGA and other 

groups(15, 23). These two FGFR3 alterations have been associated with therapeutic 

response to FGFR small molecule inhibitors in pre-clinical (24) and clinical studies (25, 26) 

TCGA did not detect any genes displaying statistical enrichment for mutation in HPV-

positive individuals as compared to HPV-negative though B2M truncating mutations most 

closely approached significance. In addition to FGFR3 mutation, other studies have 

identified the RNA helicase DDX3X, which is mutated in medulloblastoma and is a 

regulator of beta-catenin, as a gene more commonly altered in HPV-positive individuals(15). 

HPV-positive disease shares many common altered genes and pathways with HPV-negative 

HNSCC (eg. NOTCH, MLLs, RAS, WNT)(15).

In addition to the genomic context in which HPV resides it has become increasingly clear 

that the virus itself plays an important role in oncogenesis beyond expression of E6 and 

E7(27, 28). Studies of the interaction of HPV with the human genome in HNSCCs have 

shown that HPV may be present in integrated or non-integrated forms, may be associated 

with the presence of absence of ongoing E6/E7 expression and also may be present in 

extrachromosomal elements. Sites of HPV integration are non-random, occurring in gene- 

and micro-RNA-rich areas of the genome as well as in sites, which are commonly associated 

with somatic copy number alterations. HPV integration can have a profound impact on local 

gene structure and function and result in high-level amplifications, gene disruptions, 

alternative splicing, novel gene fusions and changes in global promoter methylation and 

transcription. An intriguing finding in the field of HPV integration is recurrent disruptive 

integration in the RAD51 gene, perhaps facilitating further HPV integration by hindering 
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DNA repair(29). While the study of host genome-HPV interactions is still maturing it is 

clear that the role of HPV extends beyond the production of E6 and E7 in HNSCCs.

A very important feature of the TCGA data and other cohorts is the demonstration that HPV 

may be detected in HNSCCs using a number of methods including mass spectrometry and 

massively parallel RNA and DNA sequencing and that these methods are far more sensitive 

than those currently applied in the clinic. These methods identify patients without 

conventional clinical features (e.g. larynx cancers, p16 negative) who appear to have HPV-

driven disease. As next-generation sequencing methods are increasingly applied in the clinic 

it will be a challenge moving forward to further define the sensitivity and specificity of these 

newer methods for HPV detection and if there is any significance related to quantitative 

differences in the amount of HPV detected in a given tumor. While p16 

immunnohistochemistry is a simple assay, these recent studies suggest that it should not be 

regarded as an appropriate surrogate for direct assessment of HPV status. p16 assessment 

alone will misclassify individuals in whom HPV is present in the absence of E6/E7 

expression, and more importantly, will overlook HPV in tumors in which both HPV in 

present and in which p16 is lost by an independent mechanism, an especially relevant issue 

in patients with both HPV and a tobacco history. For studies moving forward it will be 

critical to accurately determine HPV status by direct measurement of HPV to avoid 

systematic errors in patient classification and stratification.

Genomics to Targeted Therapeutics

The application of targeted therapeutics in HNSCCs has been disappointing to date as 

compared to other cancer types. This has been due in part to the slower development of 

therapeutic biomarkers and a lack of understanding of the genome landscape of these 

diseases. As noted above, cetuximab is the only targeted agent approved for HNSCC and its 

use in the metastatic setting is associated with a low response rate of 10–15% and most 

studies have failed to find an association between EGFR expression and/or gene 

amplification with response to EGFR inhibitors including cetuximab in HNSCC cohorts. 

There are no prospectively validated biomarkers to enable the selection of patients for 

EGFR-directed therapy.

Prior to the TCGA and other recent studies, earlier reports noted the prevalence of a number 

of genomic alterations in HNSCCs, which are associated with therapeutic response to 

targeted agents in other cancers types. These include EGFR mutations and ALK and ROS1 

fusions. It is now clear that these events are extremely rare in HNSCC, if present at all, and 

that the therapeutic opportunities in HNSCCs more closely resemble squamous cell cancers 

from other tissue types. A few specific examples are discussed below.

Fibroblast Growth Factor Receptors

FGFRs have been shown to be activated by amplification, mutation and translocation in a 

wide range of cancer types. In HNSCC FGFR1 amplifications are found in HPV-negative 

patients at a rate of approximately 10% and appear to be enriched in non-oropharynx 

tumors. FGFR1 amplification has been associated with therapeutic response to FGFR TKIs 

in lung squamous cell cancers, though response rates represent only a modest improvement 
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as compared to chemotherapy(30–32). Multiple explanations for this disappointing result 

have been reported including the presence of co-mutations activating the RAS/MAPK 

pathway, a lack of correlation with FGFR1 amplification and expression or activation of the 

protein and difficulty in standardizing assays for detection of amplification by FISH or NGS 

methods. Several early-phase clinical trials are ongoing or planned in HNSCC patients with 

FGFR1 amplifications who have relapsed/refractory HNSCC (eg. NCT01962532, 

NCT01004224, NCT01948297) though no public data have been reported on efficacy. 

Given that FGFR inhibitors appear to be well-tolerated and may also be radiosensitizers, the 

combination of these agents in the curative treatment setting with the current standard of 

care may be reasonable in high-risk HPV-negative patients.

FGFR2 and FGFR3 mutations and FGFR3-TACC3 fusions are of particular interest as these 

genetic lesions have been associated with dramatic responses to FGFR TKIs in pre-clinical 

models and in early phase clinical settings including a case report of a dramatic response to 

pazopanib in a patient with a FGFR2 mutated tongue cancer(24). In contrast to FGFR1 

amplification, FGFR2/3 mutations and FGFR3 fusions appear to occur largely in HPV-

positive individuals at a prevalence of 10–20% and clinical trials are currently targeting this 

patient population. However, given that these trials are focusing on patients with relapsed/

refractory disease they may encounter difficulty with accrual as the number of HPV-positive 

patients who are candidates for such studies is small.

PI3K/AKT Pathway

PIK3CA is commonly amplified and/or mutated in patients with HNSCCs (37% of cases in 

TCGA), and PIK3CA alterations are enriched in HPV-positive patients. If one examines the 

PI3K/AKT/mTOR pathway in detail more than one-half of patients with HNSCC have a 

somatic alteration, which can activate this pathway. As such, there is tremendous interest in 

developing small molecule inhibitors of components of this pathway for individuals with 

HNSCC and ample pre-clinical data suggest that this may be an effective therapeutic 

strategy, though it should be noted that the activity of PI3K inhibitors as monotherapy in 

lung squamous cell cancers in patients with PIK3CA or PTEN mutations has been 

disappointing. However, initial data have been more encouraging when combining these 

agents with chemotherapy or other targeted agents.

Clinical concepts moving forward include both recruiting patients with relapsed/refractory 

disease with PI3K pathway lesions as well as using these agents in “window of opportunity” 

trials in the up-front setting or in combination with chemoradiotherapy (eg, NCT01816984, 

NCT01195922, NCT01852292, NCT01133678). Pre-clinical data have shown that 

inhibition of the PI3K pathway may sensitize cancer cells to radiation and that PI3K 

inhibitors may be most efficacious as radiosensitizers in patients with NFE2L2 or KEAP1 

mutations, genomic events commonly seen in high-risk HPV-negative individuals(33). A 

clinical trial in this high-risk population is now ongoing based on these pre-clinical data 

(NCT02113878).
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Cyclin Dependent Kinases

In the TCGA study 32% of HNSCCs displayed an amplification or mutation of CCDN1, 

CDK4 or CDK6 with the majority of these alternations found in HPV-negative patients. It 

should be noted that the genomic region on chromosome 11 containing the CCND1 locus 

also contains other cancer-related genes such as FADD and it is not clear that CCND1 is the 

focus of amplification in all cases with chromosome 11q13 amplification. However, 

impressive early clinical data in breast cancer have suggested that CDK4/6 inhibitors may be 

effective in patient cohorts with high rates of CCND1 amplification and that these agents are 

well-tolerated as both single agents and in combination with other therapies. Clinical trials 

are moving forward at this time in other cancer types with frequent alterations of CCND1/

CDK4/CDK6 and a subset of these trials will include patients with relapsed/refractory 

HNSCC (NCT02101034). Many HPV-negative patients with CCND1/CDK4/CDK6 

amplifications also harbor RTK amplifications, suggesting that combination strategies may 

be needed in this setting.

Immunotherapy

Immunotherapy approaches have garnered a great deal of excitement in the oncology 

community based on the early clinical success of immune checkpoint inhibitors in 

melanoma, renal cell carcinoma and lung cancer. Trials of immunotherapeutic agents are 

ongoing in HNSCC in both the initial treatment setting with ipilimumab and for recurrent 

disease with agents targeting the PD1:PDL1 checkpoint and other immune effectors (eg. 

NCT01860430, NCT01935921) with promising data presented recently with pembrolizumab 

in relapsed/refractory disease(34). PDL1 expression is a biomarker reported by some groups 

to enrich for response to blockade of the PD1:PDL1 checkpoint, and it has been reported in 

other cancer types, including lymphoma and gastric cancer, that PDL1 expression is 

associated with virally-induced cancers(35). While there are several reports on this topic in 

HNSCCs with variable results, RNA sequencing data from TCGA are consistent with higher 

levels of PDL1 expression in HPV-negative individuals. However, it should be noted that 

these samples contain both tumor and stroma and it is still unclear what the optimal methods 

are for PDL1 measurement in the context of patient stratification. In addition to variable 

expression of PDL1, HNSCCs display a wide range of somatic alterations in genes involved 

in antigen presentation, inflammation and immune evasion including HLA-A, B2M, TGFBR2 

and TRAF3. While the mechanisms governing immune evasion in HNSCCs remain poorly 

understood it is likely that somatic alterations in these and other genes are likely to play a 

key role in immune surveillance of HNSCCs and may impact the responsiveness of cancers 

to specific immunotherapeutic approaches. One particular pathway of interest in this regard 

is PI3K given reports in other cancer types that it may be associated with response to 

PD1:PDL1 checkpoint inhibitor therapy(36).

Other targets and strategies

A number of additional therapeutic targets have been proposed for HNSCC based on 

genomic discovery studies and pre-clinical models. HNSCCs frequently display 

hyperactivation of STAT3 via a variety of mechanisms and STAT3 pathway inhibitors are 

currently being explored in both pre-clinical models and in early phase clinical trials. 
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HNSCCs display frequent degregulation of pro- and anti-apoptotic genes such as CASP8 

and cell line studies have suggested that inhibitors of BCL2 family proteins may 

demonstrate activity against HNSCCs. HNSCCs also commonly display concurrent 

amplification of two or more putative “drivers” and pre-clinical studies have demonstrated 

synergy in combining inhibitors in cell lines with demonstrate multiple activated kinase 

pathways such as concurrent EGFR and FGFR pathway activation. Novel EGFR-targeting 

strategies with more potent anti-EGFR TKIs and antibodies are moving forward in HNSCCs 

as are efforts to better define the subset of patients most likely to benefit from anti-EGFR 

therapy.

Conclusions and Recommendations

HNSCCs are less common than other cancer types in which substantial strides in biomarker-

based clinical trials have been made and the number of clinical trials currently available for 

individuals with HNSCCs is approximately one-half the number of trials for patients with 

lung or breast cancers. Further, there are no genetic tests routinely incorporated into the 

management of HNSCC and patient stratification is largely done based on clinical features 

and HPV status. With the widespread incorporation of next-generation sequencing 

diagnostics into the routine care of patients with a wide array of cancer types it will be 

important to consider how this information can be used to improve the efficacy of therapies 

for HNSCCs and here we propose a few possible approaches.

First, the molecular alterations identified in the HNSCC TCGA project and other cohorts are 

not unique and are shared with a number of other epithelial cancer types, most notably lung 

squamous cell carcinoma. We suggest that clinical trials of novel agents in lung SCCs also 

include patients with HNSCCs given this overlap and that “basket trial” approaches be 

considered across these disease types. Natural candidates for this approach include agents 

targeting FGFRs, PIK3K/AKT, CDKs and immunotherapies. Second, HNSCC would seem 

to be an ideal cancer type for “window of opportunity” trials, given the relative accessibility 

of tumor to sample and the widespread use of surgical resection as a standard curative 

approach. In this study approach, a novel agent could be deployed prior to definitive therapy 

to assess its efficacy with biopsy samples taken before and during treatment to identify 

biomarkers of response and resistance. Third, given that we have now defined a number of 

potential targets in HNSCC the use of these agents in the definitive setting with analysis of 

tissue before and after therapy should be conducted so that we might better define cohorts of 

patients for specific therapy approaches in which novel agents may be used in combination 

with chemoradiotherapy in the initial or adjuvant setting. Finally, it will be critical for the 

HNSCC community of Surgeons, Radiation Oncologists and Medical Oncologists to 

appreciate the value of a molecular understanding of HNSCCs to facilitate moving the field 

forward in the era of genomic medicine.
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Significance

There has been limited success in the use of targeted therapies of patients with head and 

neck squamous cell carcinomas. Large scale genomic studies have now been conducted 

which have defined the genomic alterations which drive these cancers. The studies have 

demonstrated the unique genomic features and diversity of head and neck squamous cell 

carcinomas and have suggested some initial potential therapeutic targets.
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Table 1

Comparison of the common genomic pathway alterations and of specific genomic alterations by functional 

category in HPV-negative versus HPV-positive HNSCCs.

Genetic Pathways and Alterations HPV− HPV+

RTK Amplification >20% with ERBB family, FGFR, INS1R Rare

RTK mutations/fusions Rare FGFR2/3 mutations in >10%, FGFR3-TACC3 
fusions

H/K/NRAS, NF1 5–10%, HRAS may be most common 5–10%, NF1 loss may be more common

PIK3CA amplification/mutation Common ~30% Very common >50%

TP53 Genomic loss in nearly all cases HPV-driven loss

Cell cycle deregulation Loss of CDKN2A/RB1 by multiple mechanisms in 
nearly all cases, CCND1/CDK4/CDK6 amplification 
common (30%)

HPV-driven CDKN2A loss, E2F1 
amplification (20%)

Oxidative Stress Regulation Common activation of NRF2/KEAP1/CUL3 (25%) Rare

Differentiation Common loss of NOTCH1/FAT1/AJUBA, TP63 
gain

NOTCH1 loss less common, TP63 gain more 
common

Immune evasion Uncommon HLA mutations, <10% HLA, B2M mutations and TRAF3 loss
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