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Abstract

Intratumoral heterogeneity correlates with clinical outcome and reflects the cellular complexity 

and dynamics within a tumor. Such heterogeneity is thought to contribute to radio- and 

chemoresistance since many treatments may only target certain tumor cell subpopulations. A 

better understanding of the functional interactions between various subpopulations of cells, 

therefore, may help in the development of effective cancer treatments. We identified a unique 

subpopulation of tumor cells expressing mesenchymal-like markers in a p53 null mouse model of 

basal-like breast cancer using fluorescence-activated cell sorting and microarray analysis. Both in 

vitro and in vivo experiments revealed the existence of crosstalk between these “mesenchymal-

like” cells and tumor-initiating cells. Knockdown of genes encoding ligands upregulated in the 

mesenchymal cells and their corresponding receptors in the tumor-initiating cells resulted in 

reduced tumorigenicity and increased tumor latency. These studies illustrate the non-cell 

autonomous properties and importance of cooperativity between tumor subpopulations.
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Introduction

Cell–cell interactions, through paracrine signaling, play critical roles in the regulation of 

mammary morphogenesis. While most of these interactions involve luminal to basal 

signaling (1), a recent study has shown that basal cells may regulate luminal progenitor 

activity during pregnancy and lactation processes through p63-neuregulin signaling (2). 

Similarly, tumorigenesis is a multistep process involving acquired genetic and epigenetic 

alterations that generate individual cell populations with aberrant differentiation and 

proliferation potential. Intratumoral heterogeneity (ITH) has been considered one important 

factor in assessing a patient’s initial response to treatment and selecting drug regimens to 

effectively increase tumor response rates (3, 4). Understanding the molecular interactions 

between various subpopulations of tumor cells, as well as their interaction with the 

microenvironment, may provide new targets for treatment to help in eradicating both 

primary and recurrent tumors. Most studies have focused to date on the latter, i.e. the 

interactions of tumor cells with the microenvironment, e.g. tumor-associated fibroblasts, 

macrophages, endothelial cells, osteoblasts, etc. However, little is known about the 

importance of possible tumor cell-tumor cell and paracrine interactions that may be 

important within the intrinsic tumor cell population.

ITH has long been recognized from a pathological point of view (5) and has been identified 

at the molecular level in the past few years through large scale transcriptome and genome 

analyses (6, 7). ITH is thought to be generated through subclonal evolution during tumor 

progression (8), with different clones displaying various capabilities of tumor propagation 

and responses to therapy (8–12). Such variability within a tumor may be partially explained 

by the cancer stem cell (CSC) theory. Contrary to the monoclonal theory of cancer (5), the 

CSC theory has suggested that a subpopulation of CSCs (a.k.a. tumor-initiating cells, TICs) 

can self-renew and differentiate along a particular lineage to generate the bulk of tumor 

“non-stem” cells (7). Using a strategy of transplanting fluorescence-activated cell sorting 

(FACS) sorted single cells from solid tumors into immunodeficient mice, a small 

subpopulation of TICs has been identified from a variety of solid tumors including breast 

(13). The ability to form secondary mammospheres after plating the cells dissociated from 

primary spheres cultured on a non-adherent substratum also has been utilized as a surrogate 

for an in vivo stem cell self-renewal assay (14). The mammosphere and stem cell 

subpopulations have been shown to be more resistant to chemotherapy and radiation 

treatment as compared with the total cells and non-stem cells, respectively (15–17). This has 

been hypothesized to result in cancer recurrence and metastasis after the initial treatment.

While the CSC theory may apply in many subtypes of cancers, including breast cancer, 

increasing evidence has suggested non-TICs, although less tumorigenic than the TICs, may 

generate aggressive TICs within a tumor (18). Li and Clevers (19) have proposed a theory of 

co-existence of both active and quiescent stem cells in several tissues as both cycling yet 

long-lived populations of stem cells have been identified. However, “gold standard” limiting 

dilution transplantation assays most commonly used in the characterization of stem cells 

from various tissues, might only identify active (cancer) stem cells. Therefore, investigation 

of ITH will provide important insights into the roles of stem cells as well as their 

interactions with other tumor cells in tumor initiation, progression, and treatment resistance.
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Our previous studies defined a Lin−CD29 (β1 integrin)High(H)CD24H subpopulation of TICs 

by both limiting dilution transplantation and in vitro mammosphere assays using a syngeneic 

p53 null mouse mammary tumor model (20). Using FACS and microarray analysis, these 

studies also identified a unique group of cells in these tumors expressing “mesenchymal-

like” cell markers. Factors such as cytokines, chemokines, growth factors and secretory Wnt 

proteins that have been reported to function as niche components in various tissues, were 

significantly increased within the mesenchymal-like tumor cell subpopulation. The stem cell 

niches characterized to date in the mouse use Wnt signaling, Notch signaling, IL6, or 

CXCL12 to regulate stem cell function (21). All these factors are important autocrine or 

paracrine cues that affect diverse processes in normal tissue development and tumorigenesis. 

The functional interaction between niche cells and TICs, therefore, were investigated by 

comparing the properties of the combined “mesenchymal-like” and TIC subpopulations to 

the individual isolated subpopulations alone. Co- and transwell-cultures of putative niche 

cells with TICs in serum-free suspension mammosphere assays revealed that both the in 

vitro self-renewal ability and the proliferation potential of the TICs were enhanced in the 

presence of the niche cells or factors secreted from the niche cells. In vivo co-transplantation 

assays indicated that the niche cells enhanced the TIC tumor initiation potential when a 

limited number of TICs was present. Transduction of niche cells with lentiviral expressed 

short hairpin RNAs (shRNAs) directed against Wingless-type MMTV integration site 

family, member 2 (Wnt2) and Cxcl12 ligands differentially expressed within the niche 

population, resulted in reduced mammosphere frequency and decreased in vivo tumorigenic 

potential with increased latency. Knockdown of the receptors for these ligands in the TIC 

subpopulation also provided additional evidence of the importance of functional interactions 

between these tumor subpopulations.

Results

A Lin−CD29HCD24Low(L) subpopulation from p53 null mammary tumors displays a 
mesenchymal-like gene expression profile

Cell surface markers CD29 and CD24 separated dissociated p53 null tumor cells into four 

subpopulations: CD29HCD24H, CD29HCD4L, CD29LCD24H, and CD29LCD24L. The 

lineage (Lin)−CD29HCD24H subpopulation displayed a significantly increased tumorigenic 

potential as compared to the other subpopulations (20). PCR genotyping performed using 

p53 primers (X7/X6.5 defining p53 wild-type, and X7/NEO19 defining p53 null) confirmed 

the p53 null status of all the individual subpopulations suggesting their non-host cell of 

origin when 30-cycle of PCR was performed (Supplementary Figure S1A, left). A small 

trace of p53 wild type product was detected when a 35-cycle of PCR was performed most 

likely due to infiltrating immune cells within the tumors (Supplementary Figure S1A, right).

To determine whether there exist genomic copy-number differences among the four 

subpopulations, we performed high resolution mouse whole-genome bacterial artificial 

chromosome (BAC)-based comparative genomic hybridization (CGH) array which covers 

the entire mouse genome (22, 23). The syngeneic Balb/c mouse tail DNA was used as 

control. The chromosomal copy-number profiles performed on the four subpopulations of 

the p53 null tumor did not show significant variations (Supplementary Figure S1B).
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We have previously shown that the Lin−CD29HCD24L subpopulation identified in most of 

the heterogeneous p53 null tumors studied (including estrogen receptor positive (ER)+ and 

negative (ER−) tumors, tumors expressing basal/myoepithelial markers K5/K14, as well as 

those only expressing luminal marker K8), was usually <5% of the total cell population. The 

TIC subpopulation (i.e. Lin−CD29HCD24H) was able to generate tumors with as few as 10 

cells. The Lin−CD29HCD24L subpopulation was also able to generate tumors, but only 

when more cells were transplanted indicating a reduced tumorigenic potential as compared 

to the TIC population (20). Nevertheless, such cells displayed increased tumorigenicity 

when compared with the Lin−CD29LCD24H and Lin−CD29LCD24L subpopulations which 

represented the bulk (>90%) of the tumor cells. However, FACS analysis of tumors arising 

from the Lin−CD29HCD24L showed that they did not mimic the phenotype of the parental 

tumor, instead, an expansion of the TICs was observed from the Lin−CD29HCD24L-derived 

tumors (Supplementary Figure S2A and (20)). TIC-derived tumors, like the primary tumors 

(Supplementary Figure S2Ba), express SMA mainly in the ductal structures (Supplementary 

Figure S2Bb), however, a high level of SMA also was observed in the stromal compartment 

in the CD29HCD24L derived tumors (Supplementary Figure S2Bc).

Microarray analysis (described in details in the Supplementary Information (SI) and reported 

previously (20)) to compare the expression of the CD29HCD24L cells with those of the other 

three subpopulations identified an increased expression of Wnt proteins, including Wnt 

ligands Wnt2, Wnt9a, and Cxcl12 and Il6 in this subpopulation (Supplementary Table S1). 

Interestingly, the TICs in the p53 null tumor T1, a squamous adenocarcinoma expressed a 

higher level of both Axin2 and Tcf7, both of which are known targets of Wnt signaling as 

demonstrated by qPCR (Figure 1A & 1B), suggesting the possible interaction between the 

TICs and the CD29HCD24L cells. The expression of Fzd7, one of the Wnt ligand receptors, 

and Cxcr4, the receptor for CXCL12 was also upregulated in the TIC population as 

compared with the non-TIC population (Figure 1C & 1D).

CD29HCD24L subpopulation is less proliferative compared with the TIC population

Cell cycle analysis performed on TICs and CD29HCD24L cells using 7-AAD and pyronin Y 

and showed that 8.6±1.3% (mean±SD) of TICs were in G0/G1 phase (Figure 2Aa), while 

21.5±3.3% of CD29HCD24L were in the G0/G1 phase (Figure 2Ab). A more detailed 

characterization of the 20% cells in the G0/G1 phase showed that 17.4±3.7% of the 

CD29HCD24L cells were in the G0 phase and 3.2±0.3% in the G1 phase (Figure 2Ba&b), 

indicating that a group of CD29HCD24L cells were quiescent. However, this cannot explain 

the low tumorigenic potential of this subpopulation as the CD29HCD24L cells contain more 

cells in the G0 phase, and have a higher tumorigenic potential than the CD29LCD24H 

(Supplementary Figure S3A, G0/G1: 9.6±2.1%; Supplementary Figure S3B, G0: 7.8±1.9%), 

and CD29LCD24L cells (Supplementary Figure S3C, G0/G1: 12.6±1.9%; Supplementary 

Figure S3D: G0: 8.9±1.6%), respectively. We further measured the proliferative potential of 

the individual populations after FACS and cytospin centrifugation followed by Ki67staining. 

While 60% of TICs (Figure 2Ca) were proliferative, only 30% of CD29HCD24L (Figure 

2Cb) cells were Ki67 positive (Figure 2D).
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CD29HCD24L niche population has features of mesenchymal and claudin-low

Since several genes expressed in the CD29HCD24L niche population have been associated 

with cells undergoing an epithelial to mesenchymal (EMT) transition, we performed a 

comprehensive analysis of the RNA expression profiles of the individual populations using 

previously identified mesenchymal (24), and claudin-low gene signatures (25, 26). This 

analysis strongly supports the observation that the CD29HCD24L population expresses 

mesenchymal markers (Figure 2Ea). The mesenchymal gene expression signature was 

highly correlated with the claudin-low tumor subtype, with the claudin-low subtype defining 

signature showing high expression in the CD29HCD24L subpopulation that also displays an 

increased expression of EMT features (Figure 2Eb&2Ec).

CD29HCD24L promotes in vitro self-renewal capacity of TICs

Co-culture of CD29HCD24L cells (labeled with red fluorescent cell linker dye, PKH 26) 

with TICs (labeled with green fluorescent cell linker dye, PKH 67) in serum-free 

mammosphere assays generated both larger and an increased number of mammospheres as 

compared with culturing the TICs or CD29HCD24L cells alone (Figure 3A & 3B). However, 

the co-culture of TIC and CD29L cells did not result in increased mammosphere frequency 

indicating the unique interaction between the TIC and CD29HCD24L cells (Figure 3B). 

These results suggest that both the in vitro self-renewal ability and proliferation potential of 

the TICs are enhanced in the presence of the niche cells. To directly test this hypothesis, the 

levels of CXCL12 expression under different culture conditions were measured 

(Supplementary Figure S4). The levels of CXCL12 secreted by CD29HCD24L cells, either 

cultured alone or together with TICs, were significantly higher than observed with TICs 

alone, indicating that CXCL12 is both regulated and functioning via a paracrine mechanism 

to promote the in vitro self-renewal ability of TICs.

Next, we used a transwell assay to determine whether direct cell–cell contact or secreted 

factors are required to enhance the self-renewal potential of TICs when cultured under the 

serum-free condition. A 0.4 μm filter was employed to prevent the passage of both cell types 

through the membrane. Under these conditions, TICs cultured with the putative niche cells 

resulted in an increased number (Figure 3C), but not size of mammospheres as compared 

with that of the TICs with themselves. A marginal significantly (**p=0.051) higher 

mammosphere forming efficiency of TICs was observed in the presence of niche cells alone 

as compared to that in the presence of TIC and niche cells. This result suggests that soluble 

factors secreted from the putative niche cells support the self-renewal of TICs, but possibly 

not their proliferation. When TICs, after transwell-culture with or without CD29HCD24L 

cells, were transferred to Growth Factor Reduced Matrigel, branching structures were 

observed if the TICs were previously transwell-cultured with the putative niche cells, while 

no branching structures were observed if they were transwell-cultured with the TICs alone 

(Figure 3D), suggesting the secreted molecules from the niche cells were able to affect the 

differentiation potential of the TICs.

Zhang et al. Page 5

Cancer Discov. Author manuscript; available in PMC 2015 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Downregulation of preferentially expressed genes in the putative niche cells 
(CD29HCD24L) inhibited the self-renewal of TICs

We next determined the functional role of secreted factors previously identified by our 

microarray studies. Since Wnt signaling and CXCL12 secretion are known to increase the 

self-renewal potential of TICs (27–29), we hypothesized that repression of Wnt2 and Cxcl12 

expression in the niche cells alone might be inhibitory. FACS sorted CD29HCD24H TICs 

have increased expression of Fzd7, Tcf7 and Axin2, components of the Wnt signaling 

pathway as compared with the non-TICs (Figure 1). This finding is consistent with the 

previous studies showing the TIC subpopulation identified using cell surface markers (CD29 

and CD24) overlapped with active canonical Wnt signaling cells identified using a Wnt 

reporter system (17). We thus performed co-culture experiments using different 

combinations of Wnt reporter-marked TOP-GFP+ TICs, and niche cells with Wnt2 shRNA 

knockdown. CD29HCD24H TICs were used to co-culture with the niche cells with Cxcl12 

shRNA knockdown.

FACS sorted CD29HCD24L niche cells were transduced with a lentivirus expressing two 

different shRNAs to knock down expression of either Wnt2 or Cxcl12 differentially 

expressed in the niche population. Two clones targeting Wnt2 and one targeting Cxcl12, and 

their corresponding non-silencing controls were included. Real-time qPCR confirmed the 

down-regulation of Wnt2 and Cxcl12 in the p53 null T1 tumor at levels ranging from 50 to 

60% (Figure 4A & 4B). Genetically modified knockdown niche cells were then co-cultured 

with TICs in serum-free mammosphere medium under non-adherent conditions for 7 days. 

A reduced mammosphere forming ability was observed for both knockdowns, indicating 

that the functional interaction between two cell types was disrupted, and the self-renewal 

potential of the TICs was inhibited (Figure 4C & 4D).

Downregulation of Fzd7 and Cxcr4 in the TICs (CD29HCD24H) in combination with 
downregulation of Wnt2 and Cxcl12 in the niche cells significantly inhibited the in vitro 
self-renewal of TICs

A higher expression of Fzd7 in the Wnt responsive TIC population as compared to the non-

TIC population has suggested that Fzd7 may play a role in the interaction of TIC with the 

surrounding cells through Wnt signaling. To determine the functional interaction between 

TICs and niche cells, Fzd7 and Cxcr4, Wnt2 and Cxcl12, were knocked-down, respectively, 

in the TIC and niche population, and their in vitro self-renewal potential were analyzed 

using mammosphere assays. Both Fzd7 and Cxcr4 expression were decreased by 75% and 

55%, respectively, in the TICs as confirmed by qRT-PCR (Figure 4E & 4F). When 

genetically modified TICs and niche cells were co-cultured, a significant decrease of the 

mammosphere forming ability was detected in both knockdowns, with the co-culture of the 

knockdown in both TIC and niche population exhibiting a greater reduction of 

mammosphere forming ability as compare with the ligand knockdown alone (Figure 4G & 

4H). In addition, when Il6 was knocked-down in the niche cells (Supplementary Figure 

S5A), and such modified niche cells were co-cultured with TICs, a decrease mammosphere 

forming efficiency was observed (Supplementary Figure S5B).
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CD29HCD24L niche cells enhanced TICs tumor initiation potential shown by limiting 
dilution co-transplantation assay

These in vitro assays were suggestive of a functional interaction between the TICs and niche 

cells. This was confirmed using an in vivo limiting dilution analysis. Transplantation of 10 

CD29HCD24L niche cells alone did not initiate tumor formation, while in contrast at least 10 

TICs were capable of initiating tumor formation (Table 1A and Supplementary Table S2). 

However, transplantation of 2 TICs, with a tumor formation frequency of 2 of 8, was able to 

initiate tumorigenesis when co-transplanted with 10 niche cells. Co-transplantation of 

increasing numbers of niche cells resulted in increasing numbers of tumors (Supplementary 

Table S3 and Figure 5A). This limiting dilution analysis involving several doses of TICs, 

revealed significant differences between groups defined by the numbers of niche cells: 

Chisq 10.1753 on 2 degrees of freedom (DF), p-value=0.006. Co-injection of 10 niche cells 

vs 0 niche cells showed a 4.7-fold increase in tumor formation (p=0.0017), while the effect 

of co-injection of 2 niche cells was intermediate (about 3-fold) and not clearly different from 

either 10 or 0 niche cells (co-injection of 0 niche cells vs. 2 niche cells: p-value=0.09372; 2 

niche cells vs. 10 niche cells: p-value=0.0523). These results suggest that the 

“mesenchymal-like” niche cells (CD29HCD24L) were able to enhance TIC tumor initiation 

by secreting factors that perhaps provide an improved microenvironment.

The time to tumor formation curves were also estimated and compared (Figure 5B). Across 

all 8 groups, there was a significant difference between groups (p<0.001). Two groups 

(TICs=0/Niche=10 and TICs=5/Niche=0) did not have any tumors, but differences remained 

significant even after eliminating these 2 groups (P=0.002). For fixed numbers of niche cells 

(i.e. niche cells=10), tumor latency was decreased with increasing numbers of TICs 

(Supplementary Table S4a). In order to investigate whether niche cells reduced the time to 

tumor formation, two sets of comparisons were undertaken. With 10 TICs, tumor formation 

was more rapid with 10 niche cells as compared to 0 (p=0.02, Supplementary Table S4b), 

while 2 niche cells was not different from either 0 or 10. Finally, with 20 TICs, tumor 

formation was faster with 10 niche cells as compared to 0 (p=0.02, Supplementary Table 

S4c).

Co-transplantation of the fluorescence labeled TICs (pEIT-TICs) and CD29HCD24L niche 
cells (pEIZ-niche cells) suggested that the TICs contributed to the majority of tumor 
growth

TICs and putative niche cells (CD29HCD24L) were individually infected with the lentiviral 

expression system ZsGreen and Tomato red, and were individually or separately co-

transplanted into the 3-wk-old cleared fat pad recipient mice. FACS analysis demonstrated 

that majority of the resulting tumor cells were derived from the TICs when TICs and niche 

cells were mixed at different combinations of 200/0 (Supplementary Figure S6Ba&b); 

120/80 (Supplementary Figure S6Bc&d); 68/132 (Supplementary Figure S6Be&f); and 

32/168 (Supplementary Figure S6g&h), consistent with their self-renewal and differentiation 

ability.
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Downregulation of Wnt2 in the niche cells (CD29HCD24L) inhibited the in vivo self-renewal 
of TICs through limiting dilution transplantation assay

To determine if the in vivo tumor initiating ability of TICs was affected when secreting 

factors were repressed, we also co-transplanted the genetically modified (shRNA knocked-

down of Wnt2) niche cells, together with the TICs (Wnt-responsive cells), into the cleared 

fat pads of recipient mice. A decreased tumorigenic potential and a longer latency were 

observed with different combinations of TOP-GFP transduced GFP+ TICs and Wnt2 shRNA 

knockdown niche cells as compared with those of co-transplantation of TICs and control 

niche cells, suggesting the tumorigenic potential of the TICs was affected by decreasing 

paracrine factors, such as Wnt2 in the niche cells (Table 1B and Supplementary Table S2). 

With 10 Wnt responsive TICs, different types of niche cells were associated with different 

tumor forming frequencies (see Supplementary Table S5 with p-value of 0.03 and Figure 

5C). shRNA knockdown resulted in about a 4-fold decrease in tumor forming frequency, as 

compared to the control shRNA.

Kaplan-Meier curves were also generated for TICs=10 groups in Table 1B (Figure 5D). 

Across all 8 groups, there is a significant difference between groups (p<0.001). In order to 

test whether shRNA niche cells reduced the time to tumor formation, relative to the control 

shRNA, four comparisons were undertaken. There was no difference observed between 

shRNA groups for 0 or 2 niche cells, a marginal difference for 10 niche cells, and a 

significant difference detected for 20 niche cells (Supplementary Table S6a–d).

In summary, limiting dilution analyses and, alternatively, tumor latency analyses show that 

niche cells increased both the incidence and decreased the latency of tumor formation in a 

dose dependent manner, and futhermore, that shRNA knockdown of Wnt2 reduced tumor 

formation, most noticeably in the presence of increased numbers of niche cells.

Discussion

Intratumoral heterogeneity correlates with clinical outcome (30), which also poses 

considerable challenges for tumor prognosis and therapy (31). Increasing evidence has 

emerged to show that various subpopulations of cells within solid tumors may respond 

differently to both conventional and targeted therapies. In a clinical study, residual breast 

cancer cells following treatment with either an aromatase inhibitor or chemotherapy showed 

an enrichment of TIC subpopulation (32). However, whether cells are in a dynamic state 

under treatment conditions has not been determined. In addition, studies from glioblastoma, 

in which CD133+ has been identified as a stem cell marker, have shown a population of 

CD133− cells can generate both CD133+ and CD133− progeny (33), suggesting a dynamic 

exchange between the CD133+ and CD133− cells. Thus, plasticity has to be considered as a 

factor that may influence tumor development. However, the mechanisms by which the 

different types of tumor cells interact with each other during tumor progression remain to be 

elucidated. Similarly, using the combined analyses of cellular differentiation markers 

(CD24, CD44, human epidermal growth factor receptor 2 (HER2) etc.) and genotypic 

alterations such as copy number variation, Polyak and colleagues uncovered a high level of 

genetic heterogeneity between stem-like cells and more differentiated cancer cell 

populations. These results questioned the validity of a unidirectional simple differentiation 
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stem cell hierarchy (34). Therefore, the elucidation of the dynamic and functional 

relationship between various breast tumor cells may provide new therapeutic targets for drug 

development with the goal of both preventing breast cancer and reducing relapse, metastasis.

Using both in vitro co-culture, transwell-culture and in vivo co-transplantation together with 

the shRNA knockdown technologies, we identified a group of mesenchymal-like tumor cells 

from the p53 null mammary tumors. Factors that have been reported to function as niche 

components in various tissues, such as cytokines, chemokines and secretory Wnt proteins, 

were significantly increased within our mesenchymal-like cell subpopulation. Wnt2 

expression has been detected at high levels in both epithelium and stroma in infiltrating 

carcinomas and fibroadenomas, indicating an autocrine Wnt signaling loop might exist 

within the tumor cells (35). Stem cells may generate their own niche or interact with the 

surrounding microenvironment via Wnt signaling (36). We have demonstrated a marked 

overlap of the Wnt positive cells with the TIC population characterized as CD29HCD24H 

using a Wnt reporter system (17). Consistently, a decreased self-renewal potential of the 

TICs when co-transplanted with the niche cells that were transduced with shRNAs 

mediating knockdown of Wnt2 indicated that the functional interaction between the TICs 

and the niche cells was disrupted. Thus, these various cell types functionally interact with 

each other using a mechanism similar to that employed in the normal mammary gland. 

CXCL12 together with its receptor CXCR4 constitutes the chemokine/receptor axis that 

plays an important role in mammary tumorigenicity and metastasis (37). The interaction 

between CXCL12 and CXCR4 also plays an important role in maintaining the 

hematopoietic stem cell pool in the bone marrow (38). CXCL12 is also expressed in the 

cytoplasm of the malignant ovarian epithelial cells (39). In our study, the ligand CXCL12 

and its receptor, CXCR4, are highly expressed, respectively, in the tumor-derived niche cells 

and the TICs, suggesting the possible interaction between TICs and the mesenchymal like 

niche. Therefore, the knockdown of both CXCR4 in the TICs and the CXCL12 in the niche 

subpopulation were performed in order to investigate the role of CXCL12 and CXCR4 in 

the interaction of our various tumor cells. The reduction in the mammosphere forming 

efficiency when Wnt2/Fzd7 were knocked down is not as dramatic as that in the Cxcl12/

Cxcr4 knockdown (Figures 4G&4H) although the expression level of Fzd7 was decreased 

by 70% as compared to 50% for Cxcr4 (Figures 4E&4F). This most likely is due to the 

presence of multiple redundant ligand/receptor components for Wnt signaling as compared 

to the specific interaction between CXCL12 and CXCR4.

Our data also support a role for IL6 in TIC self-renewal as demonstrated by the reduced 

mammosphere forming ability observed following IL6 knockdown. These results are 

consistent with previous findings that IL6 regulates the breast TIC population through both 

autocrine and paracrine mechanisms (40, 41). Tumor cells have been shown to secrete IL-6 

to promote tumor growth (42) via an autocrine mechanism. It is also likely that the TICs 

produce factors that regulate the mesenchymal population. However, the level of CXCL12 

secretion was extremely low when TICs were cultured alone suggested that a potential 

paracrine feedback pathway regulating CXCL12 expression may be important in this tumor 

model.
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Both tumor formation frequency and tumor latency time after limiting dilution 

transplantation experiments reflect the process of tumor initiation, with the formation 

frequency representing the relative number of stem cells and/or the ability of the cell 

population to establish a niche to allow replication, while tumor latency represents the 

proliferative potential of these cells. In vivo co-transplantation demonstrated that such niche 

cells enhanced TICs tumor initiation likely by providing an improved microenvironment, 

especially for those tumors initiated from extremely low numbers of the TICs. The 

shortened latency observed in the presence of niche cells is consistent with the findings that 

Wnt signaling promotes cell proliferation (43).

While studies have suggested that there is a dynamic equilibrium among various cell 

subpopulations it is unknown the relevance of this “plasticity” in influencing treatment 

response, metastasis, and recurrence (44). It remains to be determined what factors 

contribute to intratumoral heterogeneity in solid cancers, and if plasticity in these 

subpopulations contributes to treatment resistance, metastasis, minimal residual disease and 

recurrence. One method to define self-renewal and differentiation properties of cancer stem 

cells is through limiting dilution transplantation to identify cells capable of forming tumors 

that recapitulate the characteristics of the original tumor. Our results suggest that p53 null 

tumors contain cells with different degrees of self-renewal capacity. While cell plasticity 

may exist between TICs and non-TICs, a majority of the resulting tumor cells were derived 

from the TICs (Supplementary Figure S6 and Figure 6 (1)). Mesenchymal cells resulting 

from an EMT are usually more migratory and less proliferative than their epithelial 

counterparts (45). Thus, it is likely that the widely used limiting dilution transplantation 

assay may preferentially identify the rapidly proliferative TICs, but not the less proliferative, 

more quiescent population that may also initiate tumor growth. Previous limiting dilution 

transplantation assays have shown that the niche cell population is 30-fold less tumorigenic 

than the TICs (17), and the niche cells, indeed, are more quiescent and less proliferative than 

the TICs. Notwithstanding these studies, in the absence of appropriate lineage tracing 

experiments, it is not feasible to definitively know the origin of these primary tumor cells. 

When TICs were co-transplanted with the mesenchymal-like tumor cells, the mesenchymal-

like tumor cells increased the self-renewal and tumorigenic potential of the TICs, causing 

the expansion of the TIC population especially during the early tumor development (Figure 

6 (2)). CD29HCD24L cells fail to generate tumors with a low number of cells, and the 

resulting tumors exhibit a different phenotype and FACS profile as compared to the TIC-

derived tumors, suggesting that these cancer cell subpopulations may interact and 

collaborate differently with the host microenvironment. Interactions of self-renewing tumor 

cells both with the microenvironment and surrounding tumor cells determine the progression 

and phenotypic features of the tumors. The generation of the cells with less self-renewal, but 

with mesenchymal feature was able to fuel tumor growth. Recently, using approaches 

including whole genome sequencing, and reverse phase protein arrays (RPPA), Li et al (46) 

thoroughly characterized 13 patient-derived xenograft (PDX) lines along with their 

advanced primary breast tumors. The studies showed that while PDXs have relatively stable 

genomes without a significant accumulation of DNA structural rearrangements, minor 

mutant clones are retained in PDXs during multiple transplants, indicating the possibility of 

cooperation of clones during tumor evolution. Further characterization of the individual 
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subpopulations using PDX lines will help us better understand the complexity of the human 

breast cancer. Eliminating multiple subpopulations, and blocking the transition between 

these populations will be an important consideration when designing effective cancer 

therapies.

Only a limited number of studies to date have been able to demonstrate the importance of 

functional intratumoral heterogeneity. For example, Gunther and colleagues reported 

recently that both the luminal and basal populations were required for efficient tumor 

formation in the MMTV-driven Wnt1 genetically engineered mouse model, which was 

dependent on luminal Wnt1 expression (47). In this transgenic mouse model Hras mutations 

were used as clonal markers identifying both distinct basal Hras mutant and luminal wild 

type tumor subclones. A similar requirement for Wnt signaling was observed in our 

stochastic p53 null Balb/c tumors that are also a model for basal-like breast cancer (25). 

However, in the p53 model a distinct TIC population has been identified, and as discussed 

previously the interaction with the mesenchymal-like subpopulation enhanced, but was not 

essential for tumor formation.

To better understand clonal heterogeneity, Polyak and colleagues recently developed an 

experimental model in which factors previously implicated in tumor progression were 

overexpressed in the indolent MDA-MB-468 cell line. These investigators then generated 

sub-lines expressing different cytokines and used these to model how sub-clonal cooperation 

was required for metastasis (48). These studies support the conclusion that there are non-cell 

autonomous drivers of tumor growth, and importantly that inter-clonal interactions can lead 

to new phenotypic properties.

In our studies, no large-scale genomic deletions or insertions among individual 

subpopulations of CD29HCD24H, CD29HCD24L, CD29LCD24H and CD29LCD24L were 

detected using CGH analysis. Therefore, in the p53 null Balb/c tumors it appears that 

epigenetic factors may influence clonal heterogeneity, and that intratumoral heterogeneity 

may not be exclusively due to genetic differences among various subpopulations. Thus, 

epigenetic modifications may allow them to develop into cells with both markedly different 

tumorigenic potential, as well as to become different types of cells when they give rise to 

phenotypically different tumors when introduced into the similar microenvironment. DNA 

sequencing has demonstrated an increased mutation frequency in human triple negative 

breast cancers as compared to ER positive luminal breast cancers (49), but many of these 

mutations occurred at low frequency. So it is likely that both genetic and epigenetic factors 

will play a role in generating intratumoral heterogeneity and this may only be detected by in 

depth single cell sequencing. It is also likely that the stochastic tumors resulting in the 

germline p53 null mouse model are under different selection pressures from those observed 

in somatic p53 null and mutant human breast cancers.

Materials and Methods

Materials

TOP-eGFP, and its control vector, FOP-eGFP, were kind gifts from Dr. Irving. Weissman 

(Stanford University, Stanford, CA). pEIZsGreen and pEITomato Red vectors were kindly 
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provided by Dr. Bryan Welm (Oklahoma Medical Research Foundation, Oklahoma City, 

OK). The highly transfectable 293T cell line, which was used routinely for virus 

propagation, was purchased from ATCC. No test and authentication was done by the 

authors. All other antibodies, lentiviral particles, and primers were purchased from 

commercial sources as listed in SI “Materials and Methods”.

Preparation of single mammary tumor cells

Mice were maintained in accordance with the National Institutes of Health Guide for the 

Care and Use of Experimental Animals. All animal protocols were reviewed and approved 

by the Animal Protocol Review Committees of University of Pittsburgh and Baylor College 

of Medicine. P53 null mammary tumors were generated as previously described (20).

Mammosphere and transwell co-culturing assays

The protocol for mammosphere assays was as described by Dontu (14) and in SI.

For mammosphere co-culture, 5,000 TICs, 5,000 CD29HCD24L niche cells, or 2,500 TICs 

plus 2,500 niche cells, 2,500 TICs plus 2,500 CD29L cells, or 2,500 TICs plus 2,500 niche 

cells with Cxcl12 or Wnt2 knockdown, and 2,500 TICs with Cxcr4 or Fzd7 knockdown plus 

2,500 niche cells were cultured after dissociation of the primary mammospheres in 2 ml 

serum-free mammosphere medium under a non-adherent condition for 7 days. PKH26 (Red 

fluorescence) and PKH67 (Green fluorescence) cell linker kits (Sigma) were used to label 

individual cell subpopulations according to manufacturer’s protocol.

For transwell culture of mammospheres, 5,000 TICs, 5,000 CD29HCD24L niche cells, or 

2,500 TICs plus 2,500 niche cells were transwell cultured with 5,000 dissociated TICs after 

dissociation of the designated cell types from the primary mammospheres in 3.6 ml serum-

free mammosphere medium under a non-adherent condition in Transwell plates (Corning, 

NY) for 7 days.

Lentiviral transduction

Lentiviral transduction was performed as described (17). The pEIZsGreen and pEITomato 

Red lentivirus reporters were driven by an EF1α promoter, and the lentiviruses were 

packaged in 293T cells by co-transfection of pEIZsGreen (or pEITomato Red), pRSV-rev, 

pMDLg-pRRE and pCMV-VSVG using Fugene transfection reagent (Roche, Indianapolis, 

IN). For bioluminescence tracking, enzymatically digested p53 null tumor cells (20,000/per 

well) were suspended into 24-well ultra low attachment plates, and transduced with 

lentiviruses expressing either pEIZsGreen or pEITomato Red allowing stable integration of 

ZsGreen and Tomato Red fluorescence reporter at a multiplicity of infection (MOI) of 10, 

respectively, for 24 hrs in a final volume of 1 ml serum-free mammosphere medium. After 

transduction, ZsGreen or Tomato Red positive cells were FACS sorted and collected in 

HBSS medium, prior to transplantation.

For knockdown analysis, dissociated and FACS sorted TICs and niche cells from the p53 

null tumors (20,000/per well) were suspended into 24-well ultra low attachment plates, and 

were transfected with empty shRNA vector control, panels of shRNA lentiviruses against 
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Cxcr4, Fzd7, or two different Wnt2 shRNA lentiviruses, one Cxcl12 shRNA, and two 

different Il6 shRNA lenviruses, respectively as designated in the main text, for 48–72 hrs in 

a final volume of 1 ml serum-free mammosphere medium. The shRNA sequences 

(antisense) used in this study are listed in SI. Cells infected with viruses were selected in the 

presence of 2 ug/ml puromycin. Downregulation of the target genes were verified by RT-

PCR using Taqman primer and probe sets (Life Technologies, Grand Island, NY). Lentiviral 

pLKO.1 empty vector control (Dharmacon, Lafayette, CO) was used as the control vector.

In vivo transplantation into the cleared mammary fat pad

Clearance of mammary fat pad and transplantation procedures were performed as originally 

described (20). For co-transplantation studies, FACS sorted CD29HCD24L cells and TICs 

were mixed at designated numbers in HBSS medium.

FACS-sorted TICs and niche cells were also collected and transfected with lentiviruses as 

described in Lentiviral transduction. Then these two populations of cells were mixed and 

co-transplanted into the cleared fat pads of 3-wk-old female recipient mice (Balb/C mice 

from Harlan) at the designated ratios of 200/0, 120/80, 68/132, and 32/168 (with a total 

number of cells of 200). The resulting tumors were FACS analyzed based on expression of 

ZsGreen and TomatoRed.

For gene knockdown studies, after transduction with the anti-Wnt2, the designated number 

of cells were washed once with 1 X PBS and co-transplanted with the freshly sorted Wnt 

responsive GFP positive cells into the cleared fat pads of 3-wk-old female Balb/C mice. For 

all in vivo transplantation assays, 50% Growth Factor Reduced Matrigel (BD Biosciences, 

San Jose, CA) was added to make the final volume of 2 μl prior to injection. Two weeks 

after transplantation, tumor formation was monitored daily. Mammary tumor tissues were 

removed when tumor size reached 1cm in diameter.

Quantitative reverse transcriptase –polymerase chain reaction (qRT-PCR)

RNA (300 ng) each was used to generate cDNA with the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems) according to the company’s protocol. qRT-PCR 

reactions were performed as described in SI.

Immunostaining and microscopic analysis

Paraffin embedded and paraformaldehyde (PFA) fixed tumor tissues, and FACS sorted and 

cytospun cells were stained with the antibodies against K5 (1:5,000), SMA (1:250) and Ki67 

(1:200) as described in SI. Microscopic analysis was done on an Olympus BMAX 50 

fluorescence microscope with details described in SI.

Microarray analysis

Statistical analyses for microarray were performed in the biostatistics core facility of the 

Dan L. Duncan Cancer Center at Baylor College of Medicine (A.T.), and University of 

North Caroline (C.F.). Detailed analysis was described in (20) and in SI. The complete array 

data can be accessed at Gene Expression Omnibus (GEO, GSE8863).
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Mesenchymal and claudin-low signature analysis on individual populations

RNA microarray data obtained from the four individual subpopulations (CD29HCD24H, 

CD29HCD24L, CD29LCD24H, CD29LCD24L) were analyzed. Each signature/module was 

built using the median expression of the gene lists published in corresponding papers as 

referenced. Boxplots of the signatures were constructed and ANOVA analysis for the 

signatures in the 4 different groups was performed using the R software package. Three 

independent tumors from the p53 null model were included in this analysis, for each box 

plot category.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

Intratumoral heterogeneity has been considered one important factor in assessing a 

patient’s initial response to treatment and selecting drug regimens to effectively increase 

tumor response rate. Elucidating the functional interactions between various 

subpopulations of tumor cells will help provide important new insights in understanding 

treatment response and tumor progression.
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Figure 1. qPCR analysis using p53 null tumors suggested (A) Axin2, (B) Tcf7, (C) Fzd7 and (D) 
Cxcr4 were upregulated in TICs
Total RNA isolated from FACS-sorted subpopulations based upon the expression of CD29 

and CD24 were extracted using the RNA purification kit as mentioned in SI “Microarray 

Analysis”. *p<0.01.
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Figure 2. Molecular characterization of the individual tumor cell subpopulations
(A) and (B) Cell cycle analyses of the FACS sorted TIC (2Aa, 2Ba) and CD29HCD24L 

(2Ab, 2Bb) subpopulations. (C) The cells (a. TICs; b. CD29HCD24L) were also cytospun 

and analyzed using an antibody against Ki67. (D) Quantification of Ki67-positive cells 

within the TIC and niche populations. (E) The CD29HCD24L niche population has features 

of mesenchymal cells and claudin-low tumors. The CD29HCD24L population expresses (Ea) 

core mesenchymal signature, (Eb) claudin-low high gene expression signature, and (Ec) 

claudin-low low gene expression signature as compared with all three other populations. 

Individual subpopulations of RNAs were isolated from pooled tumors of the same subtypes 

after FACS isolation. Three independent p53 null tumors (T1 ▪; T2 ● T7 ▲) were included. 

CD29HCD24H (Blue), CD29HCD24L (Red), CD29LCD24H (Black) and CD29LCD24L 

(green).
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Figure 3. Co-culture and transwell-culture of TICs with CD29HCD24L cells or CD29L cells
All cells used were dissociated from the primary mammosphere culture and labeled with 

green: PKH67 fluorescence or red: PKH26 fluorescence as designated. (A) and (B) Co-

culture of TICs and CD29HCD24L cells display larger and an increased number of 

mammospheres compared with their individual cultures alone. (Aa) TICs (Green); (Ab) 

CD29HCD24L (Red); (Ac) TICs (Green) and CD29HCD24L (Red) were mixed; (Ad) TICs 

(Green) and CD29L(Red) were mixed. (B) Mammosphere forming efficiency of TICs 

cultured alone, CD29HCD24L alone, a mixture of TICs and CD29HCD24L, and a mixture of 

TICs and CD29L. Six repeats for each group. T1 tumors were used in the study. 

Mammosphere formation was determined and quantitated at day 7. (C) and (D) Transwell-

cultures of the CD29HCD24L and TICs display increased self-renewal and differentiation 

potential of the TICs. (C) TICs, CD29HCD24L niche cells, and a mixture of TICs and niche 

cells were transwell cultured with dissociated TICs from the primary mammospheres in 

serum-free mammosphere medium under a non-adherent condition for 7 days. 

Mammosphere formation was determined and quantitated as above at day 7. *<0.05, ** 

p>0.05. (D) Mammospheres formed from the TICs after transwell culturing with the TICs or 

niche cells were collected, and transferred to the 8-well chamber slides precoated with the 

Growth Factor Reduced Matrigel. Pictures were taken after 14 days. Scale bar, 50 μm.
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Figure 4. Inhibition of Wnt2 and Cxcl12 signaling in the niche cells, and Fzd7 and Cxcr4 in the 
TICs with shRNAs, respectively, reduced the self-renewal of the TICs
(A) and (B) Wnt2 and Cxcl12 shRNA lentiviruses (shRNA) and control lentivirus (Ctrl) 

were introduced into the dissociated CD29HCD24L after being FACS sorted from p53 null 

T1 tumors. After 72 hrs of selection with puromycin, levels of Wnt2 and Cxcl12 were 

determined by qPCR. (C) and (D) Dissociated tumor niche cells from T1 tumor, infected 

with control and Wnt2-shRNA or Cxcl12-shRNA were plated under mammosphere 

condition. The designated dissociated single cells from the primary sphere culture were co-

cultured with the dissociated TICs cells after primary culture in the mammosphere medium. 
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▪ TICs were co-cultured with control (CD29HCD24L infected with the empty vector); TICs 

were co-cultured with CD29HCD24L infected with Wnt2 shRNA1 (C); TICs were co-

cultured with CD29HCD24L infected with Wnt2 shRNA2 (C) or Cxcl12 shRNA (D). (E) 

and (F) Fzd7 and Wnt2 shRNA lentiviruses (shRNA) and control lentivirus (Ctrl) were 

introduced into the dissociated TICs after being FACS sorted from p53 null T1 tumors. 

After 72 hrs of selection with puromycin, levels of Fzd7 and Cxcr4 were determined by 

qPCR. (G) Dissociated tumor cells from T1 tumor, infected with control and Fzd7-shRNA, 

were plated under mammosphere condition. The dissociated cells were then co-cultured with 

niche cells either infected with the empty vectors or with Wnt2-shRNA, respectively after 

primary mammosphere culture, in the mammosphere medium. ▪ TICs infected with the 

control vector were co-cultured with CD29HCD24L infected with the empty control vector; 

TICs infected with Fzd7 shRNA were co-cultured with CD29HCD24L infected with the 

control shRNA; TICs infected with Fzd7 shRNA were co-cultured with CD29HCD24L 

infected with Wnt2 shRNA. (H) Dissociated tumor cells from T1 tumor, infected with 

control and Cxcr4-shRNA were plated under mammosphere condition. The dissociated cells 

were then co-cultured with niche cells either infected with the empty vectors or with 

Cxcl12-shRNA, respectively after primary mammosphere culture, in the mammosphere 

medium. ▪ TICs infected with the control vector were co-cultured with CD29HCD24L 

infected with the empty control vector; TICs infected with Cxcr4 shRNA were co-cultured 

with CD29HCD24L infected with the control shRNA; TICs infected with Cxcr4 shRNA 

were co-cultured with CD29HCD24L infected with Cxcl12 shRNA. Three repeats for each 

group (N=3). The number of mammospheres formed was determined and quantitated at day 

7. *<0.0002. **<0.01. ***<0.02.
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Figure 5. CD29HCD24L niche cells enhanced TICs tumor initiation potential shown by limiting 
dilution co-transplantation assays
(A) Co-transplantation of increased numbers of niche cells caused increased TIC tumor 

forming frequencies; (B) Niche cells reduce time to tumor formation; (C) shRNA 

knockdown-niche cells are associated with different tumor forming cell frequencies shown 

by limiting dilution co-transplantation assays; and (D) A significant difference between 

groups (p<0.001) as shown by Kaplan-Meier curves among co-transplatntation of the 10 

TICs and the shRNA knockdown niche groups (cell number in parenthesis) vs that of 10 

TICs and control vector groups.
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Figure 6. Tumor cell plasticity and intratumoral heterogeneity within the tumors
(1) The TIC population of cells is responsible for the generation of the vast majority of cells 

within a tumor. (2) The other tumor cells derived from the TICs presumably as a function of 

both symmetric and asymmetric division and resulting epigenetic changes due to the 

microenvironment and factors such as hypoxia and TGFβ may promote tumor formation 

especially when there are only a limited number of TICs.
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Table 1

Co-transplantation of CD29HCD24L putative niche cells with TICs

(A) Cells Co-transplanted Efficiency of Tumor 
Formation (# of Tumors 
Formed /Transplants)

Latency of Tumor Formation 
(wk.) (Palpable ~ 2–3mm)Niche Cells (CD29HCD24L) TICs (CD29HCD24H)

0 5 0/8

10 2 2/8 21, 27

10 0 0/8

0 10 2/8 17,19

2 10 4/8 14,19,23,25

10 10 6/8 8,12,13,15,17,27

0 20 3/8 14,16,19

10 20 6/8 8,8,10,12,13,15

(B) Cells Co-transplanted Efficiency of Tumor 
Formation (# of Tumors 
Formed /Transplants)

Latency of Tumor Formation 
(wk.) (Palpable ~ 2–3mm)Ctrl shRNA Transduced Niche 

Cells (CD29HCD24L)
Wnt Responsive Cells (GFP

+)

0 10 1/4 18

20 0 0/4

2 10 1/4 15

10 10 3/4 9,11,11

20 10 4/4 8,8,11,11

Cells Co-transplanted Efficiency of Tumor 
Formation (# of Tumors 
Formed /Transplants)

Latency of Tumor Formation 
(wk.) (Palpable ~ 2–3mm)Wnt2 shRNA Transduced Niche 

Cells (CD29HCD24L)
Wnt Responsive Cells (GFP

+)

0 10 1/4 20

20 0 0/4

2 10 1/4 20

10 10 1/4 15

20 10 2/4 13,15
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