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Abstract

N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such 

alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an 

N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With 

concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted 

melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently 

cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of 

N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K 

or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase 

activity and increased stability when compared to N-RasG12D. This work identifies a faithful 

model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of 

N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather 

than differences in the engagement of downstream effector pathways.
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Introduction

One-third of all human cancers harbor activating K-, H- or N-RAS mutations, which localize 

predominantly to codons 12, 13 or 61 (1, 2). RAS proteins function as canonical GTPase 

switches, binding to effectors in the presence of GTP and activating downstream signaling 

pathways to influence cellular proliferation, differentiation and survival. Return of RAS to 

an inactive, GDP-bound state is catalyzed by GTPase activating proteins (GAPs), which 

stimulate the weak, intrinsic GTPase activity of these proteins. Mutations at codons 12 or 13 

render RAS proteins insensitive to GAP activity, resulting in constitutive, oncogenic 

signaling (3). Similarly, mutation of Q61, a catalytic residue required for efficient GTP 

hydrolysis, impedes the return of RAS to an inactive GDP-bound state (4).

Historically, RAS proteins with codon 12, 13 or 61 alterations have been considered 

oncogenic equivalents; however recent clinical observations suggest functional differences 

for each RAS mutation. For example, in colorectal cancer, K-RAS mutational status is used 

as a prognostic indicator of resistance to therapy with EGFR antibodies (e.g. cetuximab) (5–

8). Retrospective analyses, however, of ‘all-comer’ trials suggests mutational specificity in 

this regard: patients harboring K-RAS codon 13 mutations appear to benefit from cetuximab 

therapy, while those with codon 12 mutations were unresponsive (9–13). Moreover, 

progression-free survival on targeted therapies may also be codon-specific in non-small cell 

lung cancer (NSCLC) (14). Here, molecular modeling and reverse phase protein analysis 

pinpointed differential effector engagement and downstream signaling as potential mediators 

of mutation-specific therapeutic response (14). Together, these results suggest that distinct, 

codon-specific properties of RAS mutations have important clinical and biological 

implications.

Cancers display tissue-specific preferences for mutation of the RAS homologs (Table S1). In 

melanoma, N-RAS is by far the most frequently mutated RAS isoform and notably, 84% of 

these mutations localize to codon 61 versus only 7% to glutamine 12 (Table S1). A similar 

preference for codon 61 mutations is noted in thyroid cancer, but is not observed in other 

cancer types. Codon 12 and 13 mutations constitute more than 90% of K-RAS mutations 

observed in human colon, pancreatic, lung and ovarian cancers (Table S1 and (1)). Likewise, 

glycine 12 is the most common site of N-RAS mutation in acute myeloid leukemia (Table 

S1). The mechanistic basis for codon 61 selection in melanoma and thyroid cancer is 

unclear. Some have suggested that cytosine to thymidine transversions caused by ultraviolet 

(UV) light may explain the preference for certain mutations in melanoma, but the majority 

of codon 61 mutations do not exhibit a characteristic UV-damage signature (15). 

Alternatively, it is possible that codon mutation preferences reflect differences in oncogenic 

signaling.

Comparing the oncogenic potential of various RAS mutants is challenging for several 

reasons. RAS gene dosage clearly influences downstream signaling, and artifacts of RAS 
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overexpression are well-described. Likewise, endomembrane localization is critical for 

physiologic RAS signal transduction (16), and may not be adequately recapitulated using 

exogenous protein expression. In addition, genetic alterations private to a given cell line or 

tumor sample could obscure distinct functions of individual RAS mutants. To circumvent 

these issues, we generated a knock-in allele (LSL-N-RasQ61R) allowing for the conditional, 

tissue-specific and somatic expression of N-RasQ61R under control of the endogenous 

promoter. We used this allele in combination with similarly designed knock-in N-RasG12D 

(17) and K-RasG12D (18) models to compare the transforming potential of each mutant when 

expressed at physiological levels in melanocytes.

Results

Generation and characterization of LSL-N-Ras alleles

To compare the ability of N-Ras mutants to promote melanoma formation, we employed 

three conditional knock-in alleles: LSL-N-RasG12D (17), LSL-K-RasG12D (18) and LSL-N-

RasQ61R. Each allele contains a floxed transcriptional stop sequence followed by a single 

missense mutation in the endogenous Ras gene (G12D or Q61R, respectively; Fig. 1A). The 

codon 12 LSL-K-Ras and N-Ras alleles have been previously described (17, 18). We 

generated and confirmed a related LSL-N-RasQ61R allele using standard homologous 

recombination followed by Southern blot, PCR and genomic sequencing (Fig. S1A–D). To 

minimize strain-specific effects, all alleles were backcrossed more than 7 generations to 

C57Bl/6J in the presence of a conditional p16INK4a knockout allele (p16L; (19)) and a 

melanocyte-specific, 4-hydroxytamoxifen inducible CRE recombinase (Tyr-CRE-ERT2; 

(20)). Cohorts of all three alleles were born at normal Mendelian ratios (data not shown) and 

showed no defects in development or fertility.

Using primary melanocytes derived from syngeneic Tyr-CRE-ERT2 p16L/L LSL-N-

RasG12D/G12D (TpN12D/12D) or LSL-N-RasQ61R/Q61R (TpN61R/61R) neonates, we verified the 

functionality of the LSL alleles. Melanocyte purities of >99% were confirmed using 

Tyrosinase-Related Protein 1 (TRP-1) as a marker for flow cytometry ((21); Fig. S2A). In 

culture, melanocytes were treated with ethanol vehicle or 4-hydroxytamoxifen (4-OHT) to 

induce CRE activity. CRE-dependent excision of the transcriptional stop element was 

verified by PCR (Fig. 1B), and resulted in the production of mutant N-Ras mRNA (Fig. 

S2B). Activation of either allele did not induce changes in melanocyte morphology or 

pigmentation (Fig. S2C), but induced a decrease in melanocyte proliferation as measured by 

EdU incorporation (Fig. 1C). Despite co-deletion of p16INK4a, physiological expression of 

either N-Ras mutant caused comparable anti-proliferative effects (Fig. 1C). Additionally, 

both TpN12D/12D and TpN61R/61R melanocytes failed to bypass senescence in the presence of 

4-OHT, and the cells invariably ceased proliferating after 2–3 passages in culture (data not 

shown). Therefore, when expressed under the control of an endogenous promoter, neither N-

RasG12D nor N-RasQ61R was capable of immortalizing p16INK4a-deficient melanocytes.

N-RAS-driven melanomagenesis is codon-specific

We next sought to examine the phenotypic effects of melanocyte-specific Ras mutations in 

vivo. Toward that end, we generated contemporaneous colonies of p16INK4a-deficient K-Ras 
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or N-Ras mutant mice in a common genetic background. We elected to study N-Ras 

mutations in the homozygous state for two reasons: i) we noted no melanoma formation 

despite 80 weeks of monitoring in a large cohort of Tyr-CRE-ERT2 p16L/L LSL-N-

rasG12D/WT (TpN12D/WT) animals (Fig. S3A), and ii) deep sequencing of nine N-RAS mutant 

human melanoma cell lines failed to detect the presence of a wild type allele, demonstrating 

consistent N-RAS loss of heterozygosity in vivo (22). Prior work from our group has 

demonstrated that melanocytic expression of K-RasG12D efficiently promotes melanoma in 

vivo in the setting of p16INK4a inactivation (19, 23). Herein, syngeneic Tyr-CRE-ERT2 

p16L/L LSL-K-RasG12D/WT (TpK12D/WT), were maintained in a heterozygous state due to the 

homozygous lethality of K-Ras deletion (24). All mice in these cohorts were treated 

neonatally with 4-OHT (19) to induce melanocyte-specific expression of the desired Ras 

mutant and delete p16INK4a.

Initial examination of the skin, paws and tails of these mice revealed the presence of nevi 

and hyperpigmented regions on the paws and tails (Fig. S4A). The penetrance and severity 

of these phenotypes was allele-specific with TpK12D/WT animals having the most 

pronounced effect and the N-Ras codon 12 mutation producing the least (TpK12D/WT > 

TpN61R/61R > TpN12D/12D). To quantify nevi frequency, nevi presence was scored weekly 

for 10 weeks. As expected, nevi were rarely observed on Tyr-CRE-ERT2 p16L/L (Tp) mice, 

but consistently found on TpK12D/WT animals (Fig. S4B). Members of both the TpN12D/12D 

and TpN61R/61R cohorts had more nevi than control, Tp mice (p<0.001). However, the 

frequency with which N-RasQ61R triggered nevus formation was significantly higher than 

that observed in TpN12D/12D animals (p = 0.03). These data suggest that in p16INK4a-

deficient melanocytes, physiological N-RasQ61R expression more efficiently promotes nevus 

formation than N-RasG12D mutation.

These established colonies of syngeneic TpN12D/12D, TpN61R/61R and TpK12D/WT mice were 

aged and serially assessed for melanoma formation. In accordance with previous data, 

TpK12D/WT animals developed tumors with high penetrance ((19); Fig. 2A, Table 1). Tumors 

were very rare in TpN12D/12D mice (1 tumor found in 29 mice observed for 80 weeks), 

whereas TpN61R/61R mice readily developed melanoma with high penetrance and a median 

latency of 26.3 weeks (Fig. 2A, B and Table 1). To explain this result, we considered the 

possibility that the LSL-N-RasQ61R and LSL-N-RasG12D alleles had different recombination 

efficiencies. Toward that end, we examined allelic recombination in primary melanocyte 

cultures and noted that if anything, the codon 61 allele recombined with lower efficiency 

than the codon 12 allele (Fig. S5A). We also considered the possibility that the recombined 

LSL-N-RasG12D allele was poorly expressed. Sequencing of cDNA from treated melanocytes 

confirmed 4-OHT-dependent expression of N-RasG12D mRNA (Fig. S2B). Lastly, functional 

validation of the LSL-N-RasG12D allele was accomplished by inducing allelic recombination 

in the hematopoietic lineage using an interferon-inducible Mx1-CRE driver. Expression of 

N-RasG12D in the hematopoietic compartment efficiently induced a myeloproliferative 

syndrome in accord with prior findings ((25) and data not shown). These data establish that 

when expressed at physiological levels in melanocytes, N-RasQ61R and K-RasG12D are 

inherently more transforming than N-RasG12D.
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We performed additional analyses to determine if there were phenotypic differences in the 

tumors of TpN12D/12D, TpN61R/61R and TpK12D/WT mice. Similar growth rates were observed 

in tumors from TpN12D/12D, TpN61R/61R and TpK12D/WT mice, albeit only one tumor was 

found in the TpN12D/12D cohort (Fig. S5B). Moreover, melanomas from all three groups 

were histologically similar; containing both spindle-cell and desmoplastic cell types with no 

overt signs of macrometastatic spread (Fig. 2C, Table 1). In the TpN61R/61R tumors, we 

confirmed the presence of the recombined LSL-N-rasQ61R allele (Fig. S5C) and used 

quantitative real-time PCR to look for potential gene amplifications. Compared to 

TpK12D/WT tumors, in which endogenous N-Ras expression is unaltered, TpN61R/61R 

melanomas displayed no significant change in N-Ras mRNA levels, suggesting that the 

allele was not amplified during tumorigenesis (Fig. S5D). These data show that N-RasQ61R, 

N-RasG12D and K-RasG12D tumors, once established, are phenotypically similar, and 

suggests that oncogenic differences between the alleles is most pronounced during tumor 

initiation.

Lkb1 loss promotes melanoma metastasis in TpN61R/61R mice

Melanoma mortality is predominantly attributed to metastatic disease, however very few 

RAS-driven genetically engineered mouse models, including the TpN61R/61R model, show 

evidence of macrometastases (Tables 1 and (26)). We recently demonstrated that the loss of 

Liver Kinase 1 (Lkb1/Stk11) promotes widespread macrometastases in a K-Ras12D-driven 

mouse melanoma model (23). LKB1 is mutated in ~10% of malignant human melanomas 

(15, 27, 28) and functionally inactivated by oncogenic BRAF (22, 29, 30). To test whether 

Lkb1 loss promotes metastasis in TpN61R/61R tumors, we crossed these animals to a 

previously described conditional Lkb1 knockout allele (Lkb1f; (31)). TpLN61R/61R mice were 

treated neonatally or at adulthood with 4-OHT to stimulate melanocyte-specific deletion of 

both Lkb1 and p16INK4a and induce N-Ras61R expression. The onset of tumor formation in 

TpN61R/61R neonates was not affected by Lkb1 loss (Fig. 3A; Table 1); however, the 

propensity for distant metastasis was markedly affected. TpLN61R/61R animals, treated as 

adults or neonates, exhibited enhanced nevus formation relative to Lkb1-proficient 

counterparts (compare Fig. S4A to Fig. 3B). Upon sacrifice due to increasing tumor burden, 

many of TpLN61R/61R showed signs of metastasis. We performed thorough autopsies on 14 

TpLN61R/61R mice, noting noting lymph node enlargement and other signs of macroscopic 

disease (Fig. 3C) in the majority of animals. The presence of visceral metastatic disease to 

the lung, spleen and/or liver was confirmed in 5 of these animals by histologic examination 

(36%; Fig. 3D, Table 1). Metastastases appeared similar in morphology and incidence to 

those observed in a prior K-Ras-driven, Lkb1−/− melanoma model (23). Flow cytometric 

analyses of TpLN61R/61R mice with primary melanomas showed the presence of infiltrating 

tumor cells expressing the melanocyte marker, Trp1 (Fig. 3E; Note that CD45+ cells were 

excluded from splenic analyses). Unlike cells from TpN61R/61R tumors, we were able to 

culture TpLN61R/61R melanoma cells in vitro. These cells lines exhibited varied 

morphologies, but were invariably Trp-1 positive (Fig. S6). Together, these findings 

establish TpLN61R/61R as a faithful murine model of metastatic, cutaneous melanoma driven 

by an endogenous, oncogenic N-RAS allele.
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N-RASQ61R and N-RASG12D similarly bind melanogenic effector pathways

The distinct oncogenicity of H-, K- and N-RAS is often attributed to the isoform-specific, 

preferential engagement of downstream effector pathways (17, 32–35). We postulated that a 

similar mechanism might also drive codon-specific melanomagenesis. To this end, the 

interaction of purified K-RAS, N-RAS, N-RASG12D and N-RASQ61R with PI3K and RAF 

(i.e. the BRAF RBD) was examined in vitro. Each GTPase was first loaded with a 

fluorescent GTP analog (mant-GMPPNP). Next, purified PI3K or RAF-RBD was titrated 

into reactions containing a constant amount of GMPPNP-RAS protein at both 5 mM and 

100 µM Mg2+ concentrations. Fluorescence quenching, caused by effector binding was 

monitored to determine the Kd for each protein-protein interaction. In these assays, N-

RASQ61R bound both PI3K and the RAF-RBD with a lower affinity than either wild-type N-

RAS or N-RASG12D (Table 2). However, the noted differences were small (<1-fold for 

PI3K; ~4-fold for the RAF-RBD) and unlikely to translate to an in vivo phenotype. 

Likewise, isothermal titration calorimetry experiments did not reveal significant differences 

in the RAF-RBD binding affinities of N-RASQ61R, N-RASG12D and wild-type N-RAS 

(Figure S8). These data indicate that distinct engagement of the oncogenic RAS effector 

pathways frequently targeted in melanoma (i.e. RAF and PI3K), is not the cause of codon-

specific melanomagenesis.

Activation of MAPK and ERK is codon-independent in NRAS mutant melanomas

The distinct subcellular localizations of H-, K- and N-RAS are suggested to influence 

effector availability and contribute to isoform-specific RAS oncogenicity (17, 32–35). To 

determine whether the availability of specific effector pools in vivo contributes to codon-

specific signaling, we examined MAPK and PI3K activation in a variety of human 

melanoma cell lines harboring a mutation in N-RAS codon 12, 13 or 61 (n=11). These cell 

lines exhibited variable levels of activated ERK and AKT that did not correlate with 

genotype (Fig. 4A and B). NRASG12/13-mutant cell lines exhibited a moderate increase (<2-

fold) in total ERK and AKT expression; however, the significance of this observation is 

unclear (Fig. 4A and B, right) and this finding would not explain the increased transforming 

activity of codon 61 mutants. In addition, no difference was observed in the proliferation of 

N-RAS codon 12/13 and 61-mutant cell lines as measured by EdU incorporation (Fig. S9).

Due to the confounding potential of secondary mutations acquired in human melanoma cell 

lines, we also examined ERK and AKT activation in primary and immortalized melanocytes 

derived from the TpN12D/12D and TpN61R/61R models. Expression of each N-RAS allele was 

induced in vitro using CRE recombinase and verified by genomic PCR (Fig. S810A and B, 

top). Immortalized TpN61R/61R melanocytes were particularly resistant to sustained allelic 

recombination (Fig. S10B, top). Therefore, we analyzed these cells at an early time point 

following CRE induction (2 days). In both cases, we found that phospho-ERK and AKT 

levels were variable and codon-independent (Fig. S10A and B, bottom). These data, along 

with observations in human melanoma cell lines, demonstrate that melanomageneic and 

non-melanomageneic N-RAS mutants similarly activate the MAPK and PI3K pathways.
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NRASQ61R exhibits distinct biochemical properties

Surprised by the finding that NRAS codon 12, 13 and 61 mutants appear equally to engage 

the oncogenic PI3K and MAPK effector pathways, we further investigated the biochemical 

properties that differentiate these two mutants. We observed during mant-GMPPNP-based 

binding assays, that the nucleotide exchange rate of NRASQ61R was significantly retarded 

compared to WT or NRASG12D (data not shown). To follow up on this observation, we 

measured the intrinsic and SOS-mediated nucleotide disassociation rates of purified NRAS, 

NRASG12D and NRASQ61R. To monitor exchange, each NRAS variant was pre-loaded with 

either mant-GMPPNP (mimicking the GTP bound state) or mant-GDP and then incubated 

with 1000-fold excess unlabeled nucleotide. The resulting change in fluorescence over time 

was used to monitor exchange rates. NRAS, NRASG12D and NRASQ61R showed a similar 

ability to exchange GDP (Table 3). However, the GMPPNP exchange rate of NRASQ61R 

was significantly slower than NRAS and NRASG12D (Table 3). This distinction became 

more pronounced when SOS was added to each reaction (Table 3). Specifically, SOS was 

unable to stimulate either GDP or GMPPNP exchange in the codon 61 variant (Table 3). 

These results indicate that NRASQ61R possesses a clear affinity for GTP that cannot be 

overcome by GEF interaction at the concentrations used in our assays.

These data, along with previous observations in other RAS isoforms (36), suggest a 

decreased intrinsic GTPase activity of NRASQ61R. Indeed, when directly assessed, the 

intrinsic GTP hydrolysis rate of NRASQ61R was much slower than NRASG12D or NRAS 

(1,150 and 2,300 times slower, respectively; See Table 3). These results, taken together, 

suggest that NRASQ61R has higher affinity for GTP relative to NRAS and NRASG12D. 

Therefore, we examined the relative stability of NRAS, NRASG12D and NRASQ61R using 

thermal unfolding measurements for both GDP- and GMPPCP-bound proteins. NRASQ61R 

remained stable until reaching 80 ± 5°C, whereas the wild type and NRASG12D proteins 

were destabilized at much lower temperatures (67 ± 3°C and 70 ± 3°C, respectfully; See 

Table S2). The thermostability of NRASQ61R was lower in the GDP-bound versus 

GMPPCP-bound state (74 ± 4°C versus 80 ± 5°C, See Table S2), suggesting that 

NRASQ61R adopts a conformation which stabilizes nucleotide binding, especially in the 

GTP-bound state. Together, our work reveals that NRASQ61R exhibits distinct nucleotide 

binding capacity, stability and GTPase resistance likely responsible for its exceptional 

melanomagenic properties.

Discussion

Our data explain a long-standing mystery in the field, demonstrating through biochemical 

and genetic analyses that the predominance of codon 61 mutants in human melanoma can be 

attributed to their distinct oncogenic properties. In our novel suite of mouse models, 

endogenous levels of NRasQ61R, but not NRasG12D were able to efficiently drive in vivo 

melanomagenesis (Fig. 2). Although prior work has linked isoform-specific RAS 

oncogenicity to differential effector binding (17, 32–35), we found that NRASQ61R and 

NRASG12D similarly engaged the PI3K and MAPK pathways (Table 2, Fig. 4, Fig. S8, Fig. 

S10). Our data suggest an alternative model for codon-specific oncogenicity, demonstrating 
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that the melanomagenic NRASQ61R mutant possesses distinct biochemical properties not 

found in NRASG12D (Table 3).

Prior to this study, it was unclear whether the prevalence of NRAS codon 61 mutations in 

melanoma reflected a preferential pattern of mutagenesis or codon-specific differences in the 

biological function of each allele. We now show that NRASG12D does not efficiently drive 

cutaneous melanomagenesis (Fig. 2), and therefore, codon-specific RAS biology influences 

tumorigenic potential. Tissue- and temporal-specificity are also likely to affect oncogenic 

RAS activity. For instance, activation of the LSL-NRASG12D allele in hematopoietic stem 

cells and early melanocyte progenitors drives leukemogenesis and melanoma of the central 

nervous system ((25, 37, 38), data not shown). Moreover, it is possible that our experimental 

system, which relies upon p16INK4a loss to facilitate melanomagenesis, is biased to favor N-

Ras codon 61 mutations. Patient studies have suggested exquisite cooperation between N-

RAS codon 61 mutations and p16INK4a inactivation (39, 40), and N-RasQ61K transgenic mice 

appear to be ‘addicted’ to the activity of CDK4/6, which is enhanced by p16INK4a loss (41). 

Therefore, perhaps other cooperating oncogenic events commonly found in melanoma 

would more efficiently synergize with N-RasG12D in tumor formation. Nonetheless, 

p16INK4a loss is found in the majority of human melanomas, occurring through a variety of 

mechanisms (i.e. epigenetic silencing, mutation and deletion). Given the significance of this 

event in the clinical setting, we believe the choice of the p16INK4a-deficient genetic context 

is highly relevant to the human disease.

Widely efficacious and durable treatment options are not available for the 17–30% of 

patients with NRAS mutant, metastatic melanomas (1, 15, 42). With mounting data to 

suggest that genetically engineered mouse models of cancer more faithfully report 

therapeutic efficacy (43–45), a number of RAS-mutant melanoma models have been 

developed (See Table S3). Most of these models employ transgenic technologies that can 

alter the expression, subcellular compartmentalization, intracellular signaling and 

transforming potential of RAS (16). To this end, the activation of endogenous RAS 

oncogenes triggers minimal ERK and AKT activation in our system and others (Fig. S10 

and (17, 18, 25)); yet, transgenic RAS alleles robustly stimulate these pathways (46, 47). 

Other murine melanoma models employ oncogenic RAS isoforms rarely observed in human 

melanomas (i.e. H-RAS and K-RAS mutants). As each RAS isoform can initiate a unique 

set of downstream signals, it is unclear to what degree these models faithfully recapitulate 

the oncogenic mechanisms found in human melanomas. For these reasons, we believe that 

the TpN61R and TpLN61R models will be extremely valuable for pre-clinical drug testing, 

especially given the metastatic nature of the Lkb1-deficient tumors.

NRASQ61R exhibits unique biochemical properties

In contrast to prior studies showing that preferential effector usage drives isoform-specific 

RAS oncogenesis (17, 32–35), we found that distinct biochemical properties inherent to 

each RAS mutant likely drives codon-specific melanomagenesis (Tables 2 and S2). Nearly 3 

decades ago, Der and colleagues reported that HRAS codon 61 mutants, regardless of their 

transforming potential, exhibited a ~10-fold decrease in intrinsic GTP hydrolysis (48). Later, 

Donovan, Shannon and Bollag used predicted RAS-GTP levels to form the hypothesis that 
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defects in intrinsic GTPase activity and nucleotide exchange dictate the transforming 

potential of individual RAS mutants (49). Our experimental results are consistent with this 

model, demonstrating that the melanomagenic NRASQ61R variant exhibits high affinity GTP 

binding, increased stability and reduced intrinsic GTPase activity when compared to 

NRASG12D (Tables 2 and S2).

These results suggest that NRASQ61R may more efficiently activate downstream effectors in 

vivo. However, the activation of ERK and AKT were similar in both primary melanocytes 

and human melanoma cultures harboring an NRAS codon 12 or 61 mutation (Figs. 4 and 

S10). Moreover, even through unbiased probes of the kinome using PhosphoScan 

technology (Cell Signaling), we were unable to detect consistent differences between 

NRasG12D and NRasQ61R signaling in primary melanocytes (data not shown). Due to 

feedback mechanisms within many pathways downstream of RAS, changes in signaling flux 

may not be readily apparent. Alternatively, enhanced cooperation with secondary oncogenic 

events during the initial stages of tumor development may be responsible for the initial 

selection of NRASQ61R mutants in melanoma. In line with this observation, RAF activation 

is a common event in both thyroid carcinomas and melanomas, the two major tumor types 

wherein NRAS codon 61 mutations predominate (1, 2). Mounting evidence supports the 

idea that the intensity of oncogenic RAS signaling can influence transformation potential 

(38). In addition, RAF binding in conjunction with unidentified allosteric regulators is 

speculated to further reduce the intrinsic GTPase activity of HRAS codon 61 mutants (36). 

These findings, along with our work, suggest that NRAS codon 61 mutants exhibit unique 

biochemical properties which promote the transformation of RAF-responsive tissues. 

Parsing the mechanism of this specific dependency will require the structural analyses of 

multiple NRAS mutants as well as comprehensive functional screens using endogenous 

RAS expression systems and relevant cell types. However, our data suggest that this work 

would be extremely valuable, identifying codon-specific tumor vulnerabilities for 

therapeutic targeting.

Methods

Murine Alleles and Husbandry

Animal work was conducted in accordance with protocols approved by the Institutional Care 

and Use Committee for animal research at the University of North Carolina and the Ohio 

State University. The Tyr-CRE-ERT2, p16L, Lkb1f, LSL-K-ras12D and LSL-N-Ras12D alleles 

have been previously described (17–20, 31). All animals in this study were backcrossed 

more than 7 generations to C57BL/6. The Lkb1f allele was initially established on an albino 

C57BL/6J background and then crossed into the TpN61R colony. Therefore, some of the 

mice in this cohort are albino. Analysis of tumor-free survival was conducted using 

GraphPad Prism software. To determine statistical significance, a Logrank (Mantel-Cox) 

test was performed for each experimental pairing.

Generation of the LSL-N-RasQ61R Allele

Standard homologous recombination procedures were used to insert a conditionally 

excisable transcriptional stop codon and point mutation into the endogenous N-Ras locus 

Burd et al. Page 9

Cancer Discov. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(See Fig. S1A). Founding mice were first crossed to C57Bl/6 FlpE mice (Jackson Labs 

#005703) to remove the neomycin resistance cassette. Southern blotting was performed on 

ES cells and founder DNA using standard procedures. PCR primers and cycling conditions 

used for genotyping LSL-N-RasQ61R were as follows: Q61R GENO2- 5'-

GCAAGAGGCCCGGCAGTACCTA-3' (0.15 µM); Primer 1 – 5'-

AGACGCGGAGACTTGGCGAGC-3' (0.15 µM); Primer 2 – 5'-

GCTGGATCGTCAAGGCGCTTTTCC-3' (0.15 µM); Cycling - 95°C 15 min, 35 × [94°C 

30s, 62°C 30s, 72°C 45s], 72°C 5 min. The resulting PCR products were 487 (wild type), 

371 (LSL-N-rasQ16R), and 562 (LSL-N-rasQ16R+ CRE) base pairs in size.

Primary Melanocyte Culture

Skin was isolated from newborn pups and placed dermis side down in 0.25% trypsin, 0.1% 

EDTA for 3 hours at 37°C and 5% CO2. Using forceps, the epidermal layer was separated 

from the dermis. Using surgical scissors, epidermal cells were minced finely in phosphate 

buffered saline supplemented with 0.02% EDTA. To further dissociate the cell suspension, 

each sample was subjected to 2 rounds of program A on the GentleMACs dissociator 

(Miltenyi). The resulting samples were spun down and plated on rat tail collegen-coated 

dishes in melanocyte growth medium (Ham’s F10, 10 µg/mL insulin, 0.5 ng/mL bovine 

serum albumin, 5% fetal bovine serum, 1 µM ethanolamine, 1 µM phophoethanolamine, 10 

nM sodium selenite, 20 nM TPA, 50 pM cholera toxin, 1× penicillin/streptomycin, 100 nM 

melanocyte stimulating hormone, and 0.05 mM di-butyril cyclicAMP). Media was changed 

every other day.

Induction of CRE Recombinase

For neonatal induction, pups were painted dorsally (postnatal days 2–4) with 25mg/mL 4-

hydroxytamoxifen (4-OHT) dissolved in DMSO. Adult induction of CRE was performed as 

previously described (50). For cell culture studies in primary melanocytes, 4-OHT was 

dissolved in ethanol and added to the growth media. Cells were treated for 6 consecutive 

days replacing the media and 4-OHT every other day. In the immortalized TpN61R cultures, 

which were resistant to recombination, an adenoviral CRE recombinase was employed 

(Ad5-MCV-Cre-GFP, Baylor College of Medicine Vector Development Lab). Prior to 

proliferation or morphological assessment, melanocyte cultures were returned to untreated 

media for 3 days. Allelic recombination in tumors and primary cultures was confirmed by 

genomic PCR using the genotyping primer sets and conditions described for each allele.

Scoring of Murine Nevi

Nevi on a 4 cm2 dorsal area were counted by staff, blinded of the animal’s genotype, every 

week for 10 weeks. So as not to interfere with melanomagenesis, we chose not to depilate or 

shave these animals during the study. The presence of a single nevus at any time point was 

scored as a ‘1’. If no nevus was observed a ‘0’ was entered for that time point. The 

percentage of time nevus positive was calculated as: (sum of all 10 measurements/10)* 100. 

Each dot represents 1 animal with the mean indicated by a line. Comparisons between 

sample pairs were conducted using a student’s t-test.
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Culture of Murine and Human Melanoma Cell Lines

The NZM24 and NZM63 cell lines were developed in the laboratory of Dr. Bruce C. 

Baguley (51) and obtained from the Cell Line Collection maintained by the Auckland 

Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of 

Auckland. The MaMel27II cell line was generated by Drs. G. Finlay, C. Posch and S. Ortiz 

(Mount Zion Cancer Research Center, San Francisco; (52)). WM3670, WM3629 and 

WM1366 cells were created in the Heryln lab and obtained from the Wistar Institute (53). 

VMM39 cells were the kind gift of C. Slingluff (U. Virginia)(54). The SK-Mel-119, SK-

Mel-103 and SK-Mel-147 cell lines were generously provided by Dr. A. Houghton 

(Memorial Sloan-Kettering)(55). The Mel224 cell line was produced and supplied by J. 

Hansson (Karolinska Institutet). Tumor-derived murine cell lines form the TpLN61R/61R and 

TpK12D/WT models were generated, genotyped and maintained as previously described (23).

Authentication of Cell Lines

All cell lines were obtained from their original sources or authorized distributors and 

maintained as previously described (51–56). Cell lines from the Wistar institute (WM3670, 

WM3629 and WM1366) are routinely validated by short tandem repeat (STR) profiling 

using the AmpFISTR Identifiler PCR Amplification kit (Life Technologies) and were used 

for the experiments shown within 3 months of receipt. For primary cell lines where original 

STR data is not currently available, N-RAS mutations were validated by PCR followed by 

Sanger sequencing.

Flow Cytometry

Cell cycle analysis of primary melanocytes: After 10 days in culture, 4.4×105 primary 

melanocytes were seeded onto collagen coated 60mm dishes. A day later, the media was 

changed and cells were allowed to recover overnight. EdU was added to each culture at a 

concentration of 2.5ug/mL for a period of 16 hours. Cells were harvested and processed as 

described in the Click-iT EdU Flow Cytometry Assay Kit (Invitrogen) using saponin for 

permeabilization. Cell cycle analysis of human melanoma cell lines: Human melanoma cell 

lines grown to 50–70% confluence were treated with 10 µM EdU for a period of 6 hours. 

Cells were harvested, processed, stained for EdU incorporation and analyzed on a Flowsight 

cytometer (Amnis). Trp1 Staining: To validate that our cultures contained a pure population 

of melanocytes and verify the identity of TpLN61R metastases, PEP1 antibody (αTrp1; (21)) 

was added at a 1:100 dilution to saponin permeabilized cells followed by incubation with an 

AlexaFluor488 conjugated anti-rabbit secondary (Molecular Probes, 1:1000 dilution). In the 

analysis of splenic tissues (Fig. 3E), co-staining with CD45 was first used to gate out any 

CD45+ cells.

In vitro protein purification

A vector encoding human N-RAS (1-172) was acquired from Addgene (vector #25256, 

NRAS-A). The G12D and Q61R mutations were each introduced into this vector using 

standard quick change mutagenesis. All proteins were expressed and purified from Rosetta 2 

BL21(DE3) cells (Novagen, Madison, WI, USA). Briefly, cells were grown at 37°C in a 

shaking culture of Terrific Broth media supplemented with kanamycin. Once the cells 
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reached an OD600 between 0.6–1.0, the culture was chilled in an ice bath (to ~20°C) and 

0.1mM IPTG added. The cultures were then shaken for an additional 12–15 hours at 18°C. 

Cells were harvested by centrifugation and pellets stored at −80°C. N-RAS proteins were 

purified on Ni Sepharose6 columns following the manufacturer’s protocol (GE Life 

Sciences, Piscataway, NJ, USA). To further purify the proteins from contaminants, size-

exclusion chromatography was performed (Superdex 75 10/300 GL; GE Life Sciences, 

Piscataway, NJ, USA). Purity exceeding 95% was confirmed by SDS-PAGE analysis.

The minimum catalytic domain of the human protein Son of Sevenless (SOScat) was 

expressed in the pQlinkH vector (Addgene) and purified as previously described (57). The 

E.coli codon-optimized RAS-binding domain of BRAF (amino acids 149–232) containing 

an N-terminal purification tag (MGHHHHHHSSGVDLGTENLYFQS) was synthesized by 

Genewiz (South Plainfield, NJ), sub-cloned into pET28a and expressed in BL21 (DE3) cells. 

The resulting BRAF-RBD was purified on Ni Sepharose6, cleaved overnight with TEV 

protease and then subjected to subtractive Ni column purification. The tag-less BRAF-RBD 

was further purified using size exclusion chromatography and verified to be > 95% pure by 

SDS-PAGE analysis. Purified PI3Kγ (amino acids 144-1102) was kindly provided by 

Genentech.

Loading of N-RAS with nucleotide derivatives

To observe nucleotide dissociation activity in the GTP-bound state, N-RAS was loaded with 

2’−/−3’-O-(N’methylanthraniloyl) -guanosine-5'-[(β,γ)-imido]triphosphate (mantGMPPNP). 

N-RAS was exchanged out of excess MgCl2 into a buffer containing 20 mM HEPES, 50 

mM NaCl, 125 mM (NH4)2SO4, 1 mM MgCl2 at pH 7.4. The concentration of N-RAS was 

adjusted to 100 µM and a 5-molar excess of mantGMPPNP was added. Alkaline phosphatase 

conjugated to sepharose beads was added to 1:10 volume and EDTA was added to 1 mM to 

increase the nucleotide exchange rate. The protein mixture was incubated at 4°C until all 

unlabeled nucleotide was converted to guanosine. The alkaline phosphatase beads were 

removed by centrifugation and 10 mM MgCl2 was added to induce nucleotide binding. The 

concentration of mantGMPPNP-bound RAS was determined by measuring the absorbance of 

the mant fluorophore (ε350 = 5700 M−1cm−1). For assays requiring unlabeled N-RAS in the 

GTP-bound state, N-RAS·GMPPCP was prepared in an identical manner.

For assays observing N-RAS nucleotide dissociation activity in the GDP-bound state, the 

protein was loaded with mantGDP (2’−/−3’-O-(N’methylanthraniloyl) –guanosine 

diphosphate) as previously described (58). N-RAS was exchanged into a buffer containing 

20 mM HEPES, 125 mM (NH4)2SO4, 100 µM EDTA, 200 µM DTPA at pH 8.0 to remove 

excess MgCl2 and nucleotide. A 5-molar excess of mantGDP was added to the protein and 

the mixture was incubated for 30 min at 37°C to increase the nucleotide exchange rate. 

MgCl2 was then added to 20 mM and the protein was placed at 4°C for 2 hours to induce 

binding, after which N-RAS was exchanged into a buffer containing 20 mM HEPES, 50 

mM NaCl, 5 mM MgCl2, 100 µM DTPA, pH 7.4 for storage.
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Quantitative Real-time PCR

RNA from melanocytes or melanomas was isolated using the Qiagen All-Prep Kit. Equal 

amounts of RNA were subjected to reverse transcription using a PrimeScript First Strand 

cDNA Synthesis kit (Takara). Real-time PCR was run in triplicate and a standard curve of 

known plasmid concentration was included on every plate (ABI Taqman primer set 

#Mm00477878). Molecules of N-RAS/µg total RNA were calculated assuming a cDNA 

conversion efficiency of 100%.

Determination of N-RAS binding to BRAF-RBD and PI3Kγ

For quantitative binding to BRAF-RBD and PI3Kγ (amino acids 144-1102), N-

RAS·mantGMPPNP was incubated with different concentrations of the desired effectors in a 

buffer containing 50 mM HEPES, 50 mM NaCl, 5 mM MgCl2 at pH 7.4. Nucleotide 

dissociation was initiated by the addition of 1000-molar excess of unlabeled nucleotide and 

the rate of dissociation was determined by monitoring the change in fluorescence of 

the mantGMPPNP loaded protein (excitation and emission wavelengths of 365 and 435 nm, 

respectively) using a Spectramax M2 plate reader (59). Each nucleotide dissociation curve 

was fit to a one-phase single exponential to determine kobs. The dissociation rates were 

plotted against the effector concentrations and fit to the equation:

Y: Observed rate, A: Maximum rate, B: Minimum rate, P1: Concentration of protein 1 

(cell), P2: Concentration of protein 2 (ligand/effector), which was used to determine the N-

RAS·mantGMPPNP : effector binding constant (KD) (60).

Nucleotide exchange in the absence and presence of SOScat

Nucleotide dissociation rates were measured using a PerkinElmer LS50B fluorimeter as 

previously reported (58). N-RAS was loaded with mant-labeled nucleotide and added to a 

final concentration of 1 µM in 1 mL of exchange buffer (20 mM HEPES, 50 mM NaCl, 5 

mM MgCl2, 100 µM DTPA, pH 7.4). A 1000-fold excess of unlabeled nucleotide was added 

to initiate the dissociation reaction and the rate of nucleotide dissociation was measured by 

monitoring the change in fluorescence (λex = 365 nm, λem = 435 nm). For reactions that 

showed dissociation rates too slow to reach completion within the time frame of the assay, 

25 mM EDTA was added to induce complete nucleotide dissociation. For GEF-facilitated 

nucleotide exchange, the minimum catalytic domain of son of sevenless (SOScat) was added 

to a 1:2 RAS-to-SOScat ratio (chosen to limit RAS binding to the allosteric site in SOScat). 

The fluorescence data was normalized and fit to one-phase exponentials to determine rates.

Determination of intrinsic GTP hydrolysis activity of N-RAS

To measure GTP hydrolysis rates, the phosphate sensor FLIPPi (Addgene, Cambridge, MA, 

USA) was used for the reaction, which binds to free phosphate in solution (61). Due to the 

nature of the assay, all trace phosphate was removed from buffers prior to use to minimize 
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background fluorescence. N-RAS was exchanged into a buffer containing 20 mM HEPES, 

20 mM (NH4)2SO4, 1 mM EDTA, 1 mM inosine, pH 8.0. N-RAS was incubated with GTP 

and passed through a PD-10 column to remove trace Mg2+ (62). N-RAS was diluted to 10 

µM and combined with 10 µM FLIPPi, and 2 mM MgCl2 was added to initiate the 

hydrolysis reaction. A phosphate standard curve was used to convert the raw fluorescence 

output to a measurement of [GTP] hydrolyzed.

Thermal Melting Analysis by Circular Dichroism (CD) Spectroscopy

A Jasco J-815 CD Spectrometer was used for CD measurements. N-RAS was exchanged 

into a buffer containing 10 mM KH2PO4/K2HPO4 at pH 7.45 and diluted to 15 µM. MgCl2 

and guanine nucleotide (GDP or GMPPCP) was added to a final concentration of 500 µM 

and 80 µM respectively, immediately before analysis. A thermal melt scan from 20° to 90°C 

was performed to determine the temperature (Tm) at which half of the protein is unfolded.

RAS Mutational Analysis in Human Cancers

Data were downloaded from COSMIC (release v64, March 26, 2013)(1). Cell lines and 

cultured cells were removed from the analysis to prevent inclusion of events secondary to 

culture. Remaining events were limited to observations of somatic missense mutations in 

codons 12, 13 or 61 of HRAS, NRAS or KRAS. Multiple subtypes and histologies were 

then summed to give information for the displayed tumor types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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4-OHT 4-hydroxytamoxifen

AKT v-akt murine thymoma viral oncogene

BRAF v-raf murine sarcoma viral oncogene homolog B

CDK4/6 cyclin dependent kinase 4/6

DMSO dimethyl sulfoxide

DTPA diethylene triamine pentaacetic acid
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EDTA Ethylenediaminetetraacetic acid

EdU 5-ethynyl-2’-deoxyuridine

EGFR epidermal growth factor receptor

ERK extracellular signal-regulated kinases

FLIPPi fluorescence resonance energy transfer (FRET) sensors for phosphate 

(P(i))

GAP GTPase-activating protein

GEF guanine nucleotide exchange factor

GMPPNP guanosine-5'-[(β,γ)-imido]triphosphate

GMPPCP guanosine-5'-[(β,γ)-methyleno]triphosphate

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

H-RAS Harvey rat sarcoma viral oncogene homolog

K-RAS Kirsten-rat sarcoma viral oncogene homolog

LKB1/STK11 liver kinase B1/serine threonine kinase 11

MAPK mitogen-activated protein kinase

N-RAS neuroblastoma RAS viral oncogene homolog

PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase

RAF rapidly accelerated fibrosarcoma

SOS Son of Sevenless

TEV tobacco etch virus protease cleavage site

TPA 12-O-Tetradecanoylphorbol-13-Acetate

TRP-1 Tyrosinase-Related Protein 1
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Significance

This work explains the curious predominance in human melanoma of mutations of codon 

61 of N-RAS over other oncogenic N-RAS mutations. Using conditional ‘knock-in’ 

mouse models, we show that physiological expression of N-RASQ61R, but not N-

RASG12D, drives melanoma formation.
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Figure 1. Activation of LSL-N-RasQ61R or LSL-N-RASG12D slows melanocyte proliferation
(A) Diagrammatic representation of the LSL-N-RASG12D (17) and LSL-N-RasQ61R alleles in 

the presence or absence of CRE recombinase. Green triangles denote lox P sites and 

unnumbered black boxes represent FRT sites. Blue boxes indicate the location of a 

puromycin (PURO) resistance cassette. SA-splice acceptor; SD-splice donor; 3×STOP- 

transcription and translational stop sequence. (B) PCR genotyping of melanocytes treated 

for 6 days with ethanol vehicle (E; lane 7) or 1.0 µM 4-OHT (lane 7). DNA from mice of the 

indicated genotypes is included as a control (lanes 3–5). (C) Melanocytes cultured as in ‘B’ 
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were incubated with EdU, a thymidine analog, for 16 hours and then analyzed by flow 

cytometry. EdU incorporation in vehicle treated cells was set to 100%. Each dot represents a 

biological replicate with the mean and standard error of the mean indicated by black lines.

Burd et al. Page 22

Cancer Discov. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. In vivo melanomagenesis is isoform and mutation-specific
(A) Kaplan-Meier curve of melanoma-free survival. Animals were followed for a total of 80 

weeks. Survival of each strain was compared pairwise to that of TpN61R/61R animals using a 

log-rank (Mantel-Cox) test. The following significant p-values were determined: Tp and 

TpN12D/12D - p<0.0001; TpK12D/WT- p<0.0027. (B) Representative images of the amelanotic 

tumors found throughout the skin of TpN12D/12D, TpN61R/61R and TpK12D/WT animals. White 

arrowheads indicate the tumor location. (C) Hematoxylin and eosin staining of 
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representative tumors of the indicated genotypes. Black bars represent a length of 20µm. 

White arrowheads indicate areas of melanin deposition.
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Figure 3. Lkb1 deficiency promotes metastasis in TpN61R/61R tumors
(A) Kaplan-Meier curve comparing the melanoma-free survival of TpN61R/61R and 

TpLN61R/61Rmice treated neonatally with 4-OHT. A log-rank (Mantel-Cox) test revealed no 

significant difference in disease onset in these models (p>0.05). (B) Representative 

photographs showing severe melanocytic hyperproliferation in the ears, tails and paws of 

TpLN61R/61Rmice. (C) Images of macrometastases in the lung, spleen and lymph nodes (LN) 

of TpLN61R/61Rmice. (D) Representative hematoxylin and eosin stained TpLN61R/61Rtissues 

showing tumor invasion into the liver, spleen and lymph node. (E) Expression of TRP1 in 
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the spleen and liver of TpLN61R mice with primary melanomas. The aqua line designates 

tissue from a wild type animal and the red line shows TRP1 expression in a 

TpLN61R/61Rmouse with observed macrometastases. For splenic tissues, CD45+ cells were 

excluded prior to analysis.
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Figure 4. Activation of ERK and AKT in human melanoma cell lines is not codon-specific
Shown are immunoblots for total and phosphorylated ERK (A), or AKT (B) in established 

human melanoma cell lines harboring the indicated NRAS mutations. Protein expression 

levels were quantified using LI-COR ImageStudio software. Each dot represents a single 

cell line. The mean is indicated by a line, and the standard error is shown as whiskers. * 

p<0.05
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Table 1

Comparative summary of melanomagenesis and macrometastasis in LSL-Ras-driven models.

Genotype Tumors/Treated
Mice (%)

Median Tumor
Latency (wks) Macrometastasis

Tp 1/24 (4.1%) > 80 None

TpN12D/12D 1/29 (3.4%) > 80 None

TpN61R/61R 14/20 (70%) 26.3 None

TpK12D/WT 16/21 (76%) 36.3 None

TpLN61R/61R 17/20 (85%) 22.1 5/14 (36%)
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Table 2

Binding affinities of RAS-mant-GMPPNP to PI3Kγ and RAF-RBD.

RAS
Mutant

mant-GMPPNP Binding

KD to bRaf-RBD (µM) KD to PI3K (µM)

NRASWT 0.07 ± 0.03 2.2 ± 0.4

NRASG12D 0.08 ± 0.04 1.8 ± 0.5

NRASQ61R 0.28 ± 0.04 2.7 ± 1.2

KRASG12D 0.06 ± 0.03 2.5 ± 0.8
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