

HHS PUDIIC ACCESS

Author manuscript *Cancer Causes Control.* Author manuscript; available in PMC 2016 October 01.

Published in final edited form as:

Cancer Causes Control. 2015 October ; 26(10): 1495–1499. doi:10.1007/s10552-015-0631-3.

Performance of digital screening mammography in a populationbased cohort of black and white women

Louise M. Henderson^{1,2}, Thad Benefield¹, Sarah J. Nyante¹, Mary W. Marsh¹, MikaelAnne Greenwood-Hickman¹, and Bruce F. Schroeder^{1,3,4}

¹Department of Radiology, The University of North Carolina, Chapel Hill, NC

²Department of Epidemiology, The University of North Carolina, Chapel Hill, NC

³Carolina Breast Imaging Specialists, Greenville, NC

⁴Departments of Radiology and Oncology, The Brody School of Medicine at East Carolina University, Greenville, NC

Abstract

Purpose—There is scarce information on whether digital screening mammography performance differs between black and white women.

Methods—We examined 256,470 digital screening mammograms performed from 2005–2010 among 31,654 black and 133,152 white Carolina Mammography Registry participants aged 40 years. We compared recall rate, sensitivity, specificity, and positive predictive value (PPV_1) between black and white women, adjusting for potential confounders using random effects logistic regression.

Results—Breast cancer was diagnosed in 276 black and 1,095 white women. Recall rates were similar for blacks and whites (8.6% vs. 8.5%), as were sensitivity (83.7% vs. 82.4%), specificity (91.8% vs. 91.9%) and PPV₁ (4.8% vs. 5.3%) (all p-values>0.05). Stratified and adjusted models showed similar results. Despite comparable mammography performance, tumors diagnosed in black women were more commonly poorly differentiated and hormone receptor-negative.

Conclusion—Equivalent performance of digital screening mammography by race suggests that efforts to understand tumor disparities should focus on etiologic factors that influence tumor biology.

Keywords

screening mammography; disparities; sensitivity; specificity; positive predictive value; breast cancer

Conflict of Interest

Ethical Approval

Correspondence: Louise M. Henderson, Department of Radiology, The University of North Carolina, Chapel Hill, NC, Tel. 919-843-7799, Fax. 919-966-0525, Louise_Henderson@med.unc.edu.

The authors declare that they have no conflict of interest.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Introduction

Black women experience higher breast cancer mortality rates than white women and typically present with more aggressive tumors and worse prognosis, even after taking stage at diagnosis into account.[1] Mammography screening is commonly associated with the diagnosis of smaller, earlier stage tumors, suggesting that racial differences in screening-related tumor detection may influence racial differences in the tumor characteristics. Only one prior study assessed differences in screening mammography performance among blacks and whites; however, that study was limited to film-screen mammography, which has largely been replaced with digital mammography in the United States.[2] Compared with film-screen mammography, digital mammography detects more ductal carcinoma *in situ* (DCIS)[3] and has improved performance among women with dense breasts, ages <50 years, or who are premenopausal.[4] Age-specific breast cancer rates and mammographic density vary between black and white women, [5–7] but it is unknown whether there are any racial differences in digital mammography performance. Hence, we sought to determine if digital screening mammography performance. Hence, we sought to women.

Methods

Data Sources

We utilized data from the Carolina Mammography Registry (CMR), a prospective population-based breast imaging registry in 39 counties in North Carolina. This study received Institutional Review Board approval for passive consenting process to enroll participants, link and pool data, and perform analysis. All procedures were Health Insurance Portability and Accountability Act compliant. At the time of the mammogram, women provided information related to demographics and breast health history. For each mammography examination the radiologist recorded the reason for the visit, imaging examination performed, Breast Imaging Reporting and Data System (BI-RADS) breast density [8], BI-RADS mammogram assessment [8], and follow-up recommendations. Patient and radiologist data were linked to breast cancer cases from the North Carolina Central Cancer Registry (NCCCR) and to statewide hospital pathology data. Tumor behavior (*in situ* or invasive), grade, stage at diagnosis, size, nodal status, estrogen receptor (ER) and progesterone receptor (PR) expression were abstracted from NCCCR and pathology reports.

Study Population and Definitions

In this analysis, we examined all digital screening mammograms performed from 2005 to 2010 among black and white women ages 40 years with no personal history of breast cancer or history of breast augmentation. Screening mammograms were defined as those that were: (i) bilateral; (ii) performed in asymptomatic women; (iii) defined as a "routine screen" by the radiologist; and (iv) >9 months after any prior breast imaging. Positive screening mammograms had an initial BI-RADS assessment code of 0 (needs additional imaging evaluation), 4 (suspicious abnormality), 5 (highly suggestive of malignancy), or 3 (probably benign finding) when the 3 was associated with a recommendation for immediate

follow-up. Negative screening mammograms had an initial BI-RADS assessment of 1 (negative), 2 (benign finding), or 3 with a recommendation for follow-up of >6 months.[9] Positive disease status was defined by diagnosis of DCIS or invasive breast cancer within 12 months of the screening mammogram. Each mammogram was categorized as true positive, false negative, true negative, and false positive according to the BI-RADS assessment and the cancer outcome.

Statistical Analysis

We computed mammography sensitivity, specificity, positive predictive value (PPV₁), and recall rate using standard definitions [10] and compared the statistics for black and white women using an F test. We used a random effects logistic regression model to adjust for differences between radiologists interpreting the images and to account for correlated observations within women who had multiple screening examinations during the study period.[11] We adjusted for age at mammogram, rural/urban residence, education, menopausal status, breast density, prior breast biopsy, family history of breast cancer, and time since last screening examination. We present comparisons overall and stratified by age group and BI-RADS breast density (dichotomized into almost entirely fat or scattered fibroglandular densities versus heterogeneously dense or extremely dense). We also compared tumor characteristics by race using the chi-square test, for all cancers and also stratified by true positive or false negative status.

Results

Of 256,470 digital screening mammograms, 56,239 (21.9%) were performed among black women and 200,231 (78.1%) were performed among white women (Table 1). The majority of women were ages 40–59 years, lived in urban areas, were post-menopausal, had no prior breast biopsy, and no family history of breast cancer. The proportion of black women with some college of higher education was 43.9% compared with 60.1% for white women. BI-RADS breast density of heterogeneously or extremely dense was 40.6% for black women versus 48.0% for white women.

A total of 1,371 breast cancers were diagnosed, including 231 true positives and 45 false negatives among blacks and 902 true positives and 193 false negatives among whites. The number of false positives was 4,607 for blacks and 16,099 for whites. The overall recall rate was 8.5%, sensitivity was 82.6%, specificity was 91.9%, and PPV₁ was 5.1%, similar to digital mammography performance previously reported among women in the Breast Cancer Surveillance Consortium.[12] The recall rate, sensitivity, specificity, and PPV₁ were similar for blacks and whites in both crude (Table 2) and adjusted models (p-values for adjusted rates were 0.1773, 0.4869, 0.3194, and 0.3992, respectively). Furthermore, stratification by age group or breast density did not reveal any differences in performance by race.

Although performance was similar between blacks and whites, black women were diagnosed with significantly higher proportions of DCIS with comedo necrosis (p-value=0.04), poorly differentiated invasive tumors (p-value=0.024), and ER-negative (p-value<0.001) and PR-negative (p-value=0.004) tumors (Table 3). There was limited power to evaluate whether racial differences in tumor characteristics by race differed if the tumor

was detected by mammography or not (true positive versus false negative); however, racial disparities in tumor grade, ER, and PR expression were similar for true positive and false negative tumors.

Conclusions

Our finding of no difference in the performance of digital screening mammography between black and white women, even after controlling for possible confounders, is in agreement with a previous report of no difference in film-screen mammography performance by race. [2] Although we found the performance was similar, the types of tumors identified by digital screening mammography differed by race. As has been reported in previous studies of film-screen detected breast cancers, black women were more likely to be diagnosed with higher grade tumors among both DCIS and invasive lesions and with ER or PR-negative tumors [1], suggesting that these differences are likely not caused by the rate of screening-related detection. Our study is the first to compare the performance of digital mammography by race and included over 160,000 women with over 1,300 breast cancers. Future work seeking to explain racial differences in tumor characteristics in a screening population should focus on etiologic risk factors that may influence tumor biology.

Acknowledgments

Funding

This work was supported by the National Cancer Institute funded Breast Cancer Surveillance Consortium (HHSN261201100031C) and the National Cancer Institute funded Risk-Based Breast Cancer Screening in Community Settings grant (P01CA154292).

The collection of cancer and vital status data used in this study was supported by the North Carolina state public health department and cancer registry. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. We thank the participating women, mammography facilities, and radiologists for the data they have provided for this study.

References

- Wheeler SB, Reeder-Hayes KE, Carey LA. Disparities in breast cancer treatment and outcomes: biological, social, and health system determinants and opportunities for research. Oncologist. 2013; 18(9):986–93. Epub 2013 Aug 12. 10.1634/theoncologist.2013-0243 [PubMed: 23939284]
- Gill KS, Yankaskas BC. Screening mammography performance and cancer detection among black women and white women in community practice. Cancer. 2004 Jan 1; 100(1):139–48. [PubMed: 14692034]
- 3. Bluekens AM, Holland R, Karssenmeijer N, Broeders MJ, den Heeten GJ. Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology. 2012 Dec; 265(3):707–14. [PubMed: 23033499]
- Pisano ED, Gastonis C, Hendrick E, et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med. 2005 Oct 27; 353(17):1773–83. [PubMed: 16169887]
- American Cancer Society. Breast Cancer Facts & Figures 2013–2014. Atlanta: American Cancer Society, Inc; 2013.
- Habel LA, Capra AM, Oestreicher N, et al. Mammographic density in a multiethnic cohort. Menopause. 2007 Sep-Oct;14(5):891–9. [PubMed: 17414171]

- Conroy SM, Butler LM, Harvey D, et al. Physical activity and change in mammographic density: the study of Women's Health Across the Nation. Am J Epidemiol. 2010 May 1; 171(9):960–8. [PubMed: 20354074]
- 8. American College of Radiology. The American College of Radiology Breast Imaging Reporting and Data System (BI-RADS). 4. Reston, VA: American Coll Radiology; 2003.
- Yankaskas BC, Taplin SH, Ichikawa L, Geller BM, Rosenberg RD, Carney PA, et al. Association between mammography timing and measures of screening performance in the United States. Radiology. 2005; 234:363–73. [PubMed: 15670994]
- Breast Cancer Surveillance Consortium. [Accessed April 4, 2015] (BCSC): performance benchmarks for screening mammography. http://breastscreening.cancer.gov/data/benchmarks/ screening/
- 11. McLean RA, Sanders WL, Stroup WW. A Unified Approach to Mixed Linear Models. The American Statistician. 1991; 45:54–64.
- Kerlikowske K, Hubbard RA, Miglioretti DL, et al. Comparative Effectiveness of Digital Versus Film-Screen Mammography in Community Practice in the United States: A Cohort Study. Ann Intern Med. 2011; 155:493–502. [PubMed: 22007043]

Table 1

Characteristics of women undergoing digital screening mammography by race, Carolina Mammography Registry 2005–2010

Characteristic	Black W N=56,		White W N=200,	
	Ν	%	Ν	%
Age Group				
40–49	16,391	29.2	52,034	26.0
50–59	18,560	33.0	56,395	28.2
60–69	12,505	22.2	50,868	25.4
70–79	6,815	12.1	31,037	15.5
80+	1,968	3.5	9,897	4.9
Rural/Urban Residence				
Rural	14,238	25.3	58,944	29.4
Urban	41,995	74.7	141,282	70.6
Missing	6		5	
Educational Level				
< High school	3,380	18.8	5,726	7.3
High school graduate	6,717	37.3	25,650	32.6
Some college/technical school	4,574	25.4	24,194	30.8
College graduate	3,318	18.4	23,120	29.4
Missing	38,250		121,541	
Menopausal Status				
Pre or peri menopausal	19,877	35.5	62,131	31.1
Post menopausal	36,162	64.5	137,467	68.9
Missing	200		633	
BIRADS Breast Density*				
Almost entirely fat	4,958	9.2	13,316	7.0
Scattered fibroglandular densities	27,199	50.3	85,963	45.1
Heterogeneously dense	20,063	37.1	79,992	41.9
Extremely dense	1,877	3.5	11,558	6.1
Missing	2,142		9,402	
Prior Breast Biopsy				
Yes	10,637	23.9	46,346	25.9
No	33,954	76.2	132,758	74.1
Missing	11,648		21,127	
Family History of Breast Cancer				
Yes	6,789	12.1	28,168	14.1
No	49,241	87.9	171,643	85.9
Missing	209		420	

*BI-RADS breast density refers to the Breast Imaging Reporting and Data System

Table 2

Unadjusted digital mammography performance in black and white women in the Carolina Mammography Registry, 2005–2010

		Ra	nce	
		Black		White
	%	(95% CI)	%	(95% CI)
All mammogra	ams			
Recall Rate	8.6	(8.4, 8.8)	8.5	(8.4, 8.6)
Sensitivity	83.7	(79.3, 88.1)	82.4	(80.1, 84.6
Specificity	91.8	(91.5, 92.0)	91.9	(91.8, 92.0
PPV_1	4.8	(4.2, 5.4)	5.3	(5.0, 5.6)
Stratified by a	ge at m	ammogram:		
40–49 years				
Recall Rate	10.9	(10.4, 11.3)	10.9	(10.6, 11.1
Sensitivity	81.8	(70.4, 93.2)	78.8	(72.4, 85.1
Specificity	89.3	(88.9, 89.8)	89.3	(89.1, 89.6
PPV_1	2.0	(1.4, 2.7)	2.3	(1.8, 2.6)
50–59 years				
Recall Rate	8.3	(7.9, 8.6)	8.3	(8.0, 8.5)
Sensitivity	76.9	(67.6, 86.3)	81.1	(76.3, 86.0
Specificity	92.0	(91.7, 92.4)	92.1	(91.8, 92.3
PPV_1	3.9	(3.0, 4.9)	4.3	(3.8, 4.9)
60–69 years				
Recall Rate	7.5	(7.0, 7.9)	7.7	(7.4, 7.9)
Sensitivity	85.6	(78.6, 92.6)	84.1	(80.3, 88.0
Specificity	93.2	(92.7, 93.6)	92.9	(92.6, 93.1
PPV_1	8.9	(7.1, 10.7)	7.5	(6.6, 8.3)
70 years				
Recall Rate	6.8	(6.3, 7.3)	6.8	(6.6, 7.0)
Sensitivity	91.2	(83.9, 98.6)	83.2	(79.3, 87.2
Specificity	93.8	(93.3, 94.3)	93.8	(93.6, 94.1
PPV_1	8.7	(6.5, 11.0)	10.2	(9.1, 11.3)
Stratified by b	reast de	ensity:		
Almost entirely	fat or s	cattered fibrogi	landular	r densities
Recall Rate	7.4	(7.1, 7.7)	7.1	(7.0, 7.3)
Sensitivity	86.4	(80.9, 91.9)	85.1	(82.0, 88.2
Specificity	93.0	(92.7, 93.2)	93.3	(93.1, 93.4
PPV_1	5.3	(4.4, 6.2)	6.1	(5.6, 6.7)
Heterogeneous	ly dense	or extremely d	ense	
Recall Rate	10.1	(9.7, 10.5)	9.9	(9.7, 10.1)
Sensitivity	80.8	(73.8, 87.9)	79.8	(76.4, 83.2

Henderson et al.

		Ra	ice	
		Black		White
	%	(95% CI)	%	(95% CI)
Specificity	90.3	(89.9, 90.7)	90.5	(90.3, 90.7)
PPV_1	4.4	(3.5, 5.2)	4.7	(4.3, 5.2)

 $PPV_1 = positive predictive value; CI = confidence interval$

Table 3

Pathologic characteristics of breast cancers in black and white women in the Carolina Mammography Registry, 2005–2010

		AI	ALL CANCERS	CERS		Í	TRUE POSITIVE CANCERS	VITI	E CAN	CERS	FA	LSE NI	EGATI	IVE CA	FALSE NEGATIVE CANCERS
Pathologic Characteristic	BI	Black	Wh	White		Bl	Black	IW	White		Bl	Black	IM	White	
	Z	*%	Z	*%	p-value	Z	°%*	Z	*%	p-value	Z	*%	Z	*%	p-value
Total cancers	276		1,095			231		902			45		193		
Type															
Invasive	201	72.8	840	76.7	0.041	160	69.3	674	74.7	0.093	41	91.1	166	86.0	0.36
Ductal Carcinoma In-Situ	75	27.2	255	23.3		71	30.7	228	25.3		4	8.9	27	14.0	
DCIS															
Grade															
Well differentiated	6	14.8	36	17.4	0.88	6	15.5	30	16.0	06.0		n/a	n/a		n/a
Moderately differentiated	25	41.0	80	38.7		24	41.4	71	38.0						
Poorly differentiated	27	44.3	91	44.0		25	43.1	86	46.0						
Missing	14		48			13	ł	41	I						
Histologic Subtype															
Comedo	20	29.0	40	17.6	0.04	19	29.2	35	17.2	0.036		n/a	n/a		n/a
Non-Comedo	49	71.0	187	82.4		46	70.8	168	82.8						
Missing	9	I	28			9	ł	25	!						
Invasive															
Late Stage															
Yes	49	25.3	229	28.4	0.38	37	23.7	176	27.2	0.37	12	31.9	53	33.1	0.86
No	145	74.7	577	71.6		119	76.3	470	72.8		26	68.4	107	60.9	
Missing	~		34	1		4	ł	28	I		S	1	9	I	
Grade															
Well differentiated	42	22.7	233	30.2	0.024	36	24.7	198	31.9	0.059	9	15.4	35	23.0	0.44
Moderately differentiated	78	42.2	338	43.8		64	43.8	280	45.2		14	35.9	58	38.2	
Poorly differentiated	65	35.1	201	26.0		46	31.5	142	22.9		19	48.7	59	38.8	
Missing	16	ł	68	1		14	ł	54	!		2	!	14	I	
Size															
<=10 mm	57	28.8	244	29.9	0.47	50	31.9	212	32.4	0.24	٢	17.1	32	19.9	0.14

Author Manuscript

Author Manuscript

Henderson et al.

		AL	ALL CANCERS	CERS		ŦŦ	TRUE POSITIVE CANCERS	NITIV	E CAN	CERS	FAJ	LSE NE	GATI	IVE CA	FALSE NEGATIVE CANCERS
Pathologic Characteristic	B	Black	Wh	White		Bl	Black	Wh	White		Bl	Black	IW	White	
	Z	*%	Z	*%	p-value	Z	°%*	Z	*%	p-value	Z	*%	Z	°%*	p-value
11 - 20 mm	99	33.3	270	33.1		58	36.9	212	32.4		×	19.5	58	36.0	
21 - 30 mm	36	18.2	115	14.1		24	15.3	82	12.5		12	29.3	33	20.5	
>30 mm	39	19.7	186	22.8		25	15.9	148	22.6		14	34.2	38	23.6	
Missing	ŝ	ł	25	1		ŝ	ł	20	ł		0	ł	5	ł	
Nodal status															
Positive	56	30.11	187	24.3	0.10	43	28.9	137	22.2	0.087	13	35.1	50	32.5	0.76
Negative	130	68.69	583	75.7		106	71.1	479	77.8		24	64.9	104	67.5	
Missing	15	ł	20			11	ł	58	I		4	I	12	ł	
Estrogen receptor status															
Positive	127	70.6	624	83.8	<0.0001	105	73.4	512	85.9	0.0003	22	59.5	112	75.2	0.057
Negative	53	29.4	121	16.2		38	26.6	84	14.1		15	40.5	37	24.8	
Missing	21	ł	95			17	ł	78	l		4	ł	17	ł	
Progesterone receptor status															
Positive	111	62.0	541	72.8	0.0044	92	64.8	445	74.9	0.015	19	51.3	96	64.4	0.14
Negative	68	38.0	202	27.2		50	35.2	149	25.1		18	48.7	53	35.6	
Missing	22	I	97			18	l	80	I		4	I	17	l	
* Percentages are of the non-missing	٥														

n/a = not applicable as the numbers are too small to report