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Abstract
Purpose—We previously reported an inverse association between flavonoid intake and breast
cancer incidence, which has been confirmed by others; but no studies have considered
simultaneously potential interactions of flavonoids with multiple genetic polymorphisms involved
in biologically-relevant pathways (oxidative stress, carcinogen metabolism, DNA repair, and one-
carbon metabolism).

Methods—To estimate interaction effects between flavonoids and 13 polymorphisms in these
four pathways on breast cancer risk, we used population-based data (N = 875 cases and 903
controls) and several statistical approaches, including conventional logistic regression and semi-
Bayesian hierarchical modeling (incorporating prior information on the possible biological
functions of genes), which also provides biologic pathway-specific effect estimates.

Results—Compared to the standard multivariate model, the results from the hierarchical model
indicate that gene-by-flavonoid interaction estimates are attenuated, but more precise. In the
hierarchical model, the average effect of the deleterious versus beneficial gene, controlling for
average flavonoid intake in the DNA repair pathway, and adjusted for the three other biologically-
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relevant pathways (oxidative stress, carcinogen metabolism, and one-carbon metabolism), resulted
in a 27% increase risk for breast cancer [Odds Ratio (OR) = 1.27; 95% Confidence Interval (CI) =
0.70, 2.29]. However, the CI was wide.

Conclusions—Based on results from the semi-Bayesian model, breast cancer risk may be
influenced jointly by flavonoid intake and genes involved in DNA repair, but our findings require
confirmation.
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Introduction
We observed a reduction of the risk of breast cancer in relation to flavonoid intake in a
population-based study of American women [1]. Others [2–4] have confirmed these
findings, which increases the attractiveness of using these compounds as potential chemo-
preventives. Intervention trials and public health messaging would be enhanced if we had a
better understanding of whether there are subgroups of women who are potentially more
susceptible to the beneficial effects of flavonoids. However, a comprehensive consideration
of potential interactions between flavonoid intake and multiple, biologically plausible
genetic pathways has not previously been reported.

Flavonoids are a subgroup of more than 4000 polyphenols [5] that are known to have an
inhibitory effect on hormone-related cancers. With six classes of flavonoids (including
flavonols, flavones, flavonones, flavan-3-ols, anthocyanidins, isoflavones, and the related
lignans) the biologic activity of these compounds spans multiple biologic pathways.
Phytoestrogens, a group of flavonoids including the isoflavones and lignans, possess anti-
estrogenic properties, and have demonstrated effects on aromatase inhibition, competition
with estradiol for binding to estrogen receptors, and reduce levels of bioavailable estrogen
via increased production of serum sex hormone binding globulin [6–8]. In addition to
affecting breast cancer risk via an estrogenic pathway, flavonoids also act through other
biologic pathways including: carcinogen metabolism, oxidative stress, and DNA repair. For
example, flavonoids inhibit the activation of carcinogens by cytochromes (Phase 1) and
induce the inactivation of these carcinogenic metabolites (Phase 2) [9]. Flavonoids are also
involved in the oxidative stress pathway via two different mechanisms: first, flavonoids can
act as antioxidants and scavenge free radicals [10, 11] in order to reduce oxidative stress;
and second, flavonoids have also been shown to alter the activity of antioxidant enzymes
[12–15], thereby reducing reactive oxygen species. Flavonoids can also stimulate DNA
repair enzymes thereby preventing tumor initiation [16, 17]. Finally, polyphenols are
methylated via COMT using S-adenosylmethionine (SAM), a product of the one-carbon
methylation pathway, thereby reducing the availability of SAM for DNA methylation [18].
The potential interaction between flavonoid intake and genes involved in the four
biologically-relevant pathways of interest is not limited to a specific flavonoid subtype [13,
16–21]. Thus, it is possible that the effects of total flavonoid intake on breast cancer risk
could be modified by genetic variation in genes involved in carcinogen metabolism,
oxidative stress, DNA repair, and one-carbon methylation pathways.

Surprisingly, few investigators [22, 23] have considered gene-flavonoid interactions with
breast cancer risk, and none have considered multiple polymorphisms in multiple pathways
simultaneously. Conventional approaches to considering gene-environment interactions
generally examine genetic variants in a single gene with varying levels of exposure. For
example, using a conventional approach, we could analyze the varying levels of flavonoid
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intake among myeloperoxidase (MPO) genetic subgroups on breast cancer risk. However,
these conventional models fail to consider the biologic similarity of MPO with other
oxidative stress genes (e.g. MnSOD, CAT) [24]. Another option involves including all
exposures, genes, and interactions in a single model. This method is not statistically optimal,
since the model will often be over-parameterized, yielding imprecise estimates [24].
Alternatively, a semi-Bayesian approach using hierarchical modeling, as proposed by Witte
et al. [25], can help further elucidate the effects of multiple exposures, multiple genes, and
their interactions on breast cancer incidence by incorporating prior biologic information. In
this ancillary study, we utilized population-based data to examine both interactive effects of
total flavonoid intake and multiple genes (random effects) and the effect of biologic
pathways (fixed effects) and breast cancer incidence adopting the hierarchical modeling
approach.

Materials and methods
Details of the parent study, the population-based case-control component of the Long Island
Breast Cancer Study Project (LIBCSP), have been published previously [26]. Institutional
Review Board approval was obtained for the parent study and this ancillary project.

Study Population
Cases were women newly diagnosed with either primary in situ or invasive breast cancer
between 1 August 1996 and 31 July 1997, and were English-speaking residents of Long
Island, New York (Nassau and Suffolk counties) at the time of diagnosis. Newly diagnosed
cases were ascertained using a ‘super-rapid’ identification network where study personnel
contacted the pathology departments from participating hospitals either 2–3 times per week
or daily (for hospitals with the largest numbers of newly diagnosed cases). Permission to
contact eligible case women was obtained via physicians. Control women were randomly
sampled from the same two Long Island counties, using Waksberg’s method of random digit
dialling [27] for those under 65 years of age, and the Health Care Finance Administration
(HCFA) rosters for those 65 years and older. Controls were frequency matched by 5-year
age group to the expected age distribution of the cases.

Sample Size
Respondents to the main case-control interview included 1508 cases and 1556 controls [23].
Among these, 98% of cases (N=1481) and controls (N=1518) also completed the self-
administered 101-item modified Block food frequency questionnaire (FFQ), which had been
previously validated [28–30]. The instrument was specifically modified to include additional
food sources of flavonoids [31]. Approximately 73% of cases (N=1045) and controls
(N=1098) completed the FFQ, donated a blood sample and had available genotyping data
for this project. The following exclusions were made for this ancillary study: (1) missing
data on total energy intake (n=31); (2) subjects with total energy intake ±3 standard
deviations from the mean (n=28); and (3) missing genetic data on any of the 13 SNPs of
interest (n=306). Thus, the final complete-case analysis included 1778 subjects (cases = 875,
controls = 903).

Risk Factor Assessment
The main case-control study questionnaire was administered at each subject’s home by a
trained interviewer. On average, study participants were interviewed within three months of
their diagnosis date (cases) or within 5.5 months of identification (controls). Respondents
were asked about their demographic characteristics, pregnancy history, menstrual history,
hormone use, medical history, family history of cancer, body size changes, alcohol use,
active and passive cigarette smoking, physical activity, occupational history, and other
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environmental exposures previously [26]. For the 98% of participants who self-completed
the FFQ, flavonoid intake was estimated by linking data from the FFQ responses to US
Department of Agriculture databases [31].

Genotyping
For the 73% of participants who donated a blood sample, DNA was isolated in the
laboratory of Dr. Regina Santella at Columbia University using standard phenol and
chloroform isoamyl alcohol extraction and RNase treatment [32].

The 13 genes selected for this ancillary project were chosen to represent the four biologic
pathways (carcinogen metabolism, oxidative stress, DNA repair, and one-carbon
methylation) that could potentially interact with flavonoids to affect breast carcinogenesis
[11, 13–15, 17, 19–21, 33–35]. In addition, our polymorphism selection was influenced by
our previous findings of modest effect estimates for the associations between each of the 13
presumed functional polymorphisms of these genes and breast cancer incidence [36–43].

Genotyping for the oxidative stress genes (manganese superoxide dismutase –MnSOD
rs1799725, myeloperoxidase – MPO rs2333227, catalase – CAT rs1001179, and catechol-O-
methyltransferase – COMT rs4680) and for the phase two metabolism genes (glutathione S-
transferases – GSTA1 rs3957356, GSTP1 rs1695) was conducted using BioServe
Biotechnologies in Laurel, MD, using Sequenom’s high throughput matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry [36–39, 41].
Genotyping for deletion of GSTM1 and GSTT1 was carried out by multiplex PCR [41]. The
DNA repair enzymes (excision repair cross-complementing group 1 – ERCC1 rs3212986,
xeroderma pigmentosum group A – XPA rs1800975, xeroderma pigmentosum group D –
XPD rs1799793) was conducted using either a fluorescence polarization method (ERCC1) or
Taqman assays (XPA, XPD) [42]. Genotyping for polymorphisms for genes involved in the
one-carbon methylation pathway (methylenetetrahydrofolate reductase - MTHFR C677T
rs1801133, MTHFR A1298C rs1801131) were conducted using a modification of the PCR-
RFLP method of Frosst et al. [44].

Tests for Hardy-Weinberg equilibrium (HWE) among the controls were conducted
previously. Polymorphisms were reported to be in HWE for MnSOD (p=0.86) [36][38], CAT
(p=0.85) [38], GSTA1 (p=0.84) [40], GSTP1 (p=0.38) [45], ERCC1 (p=0.75) [42], XPA
(p=0.68) [42], XPD (p=0.83) [42], MTHFR C677T (p=0.96) [43], MTHFR A1298C (p=0.84)
[43], and COMT (p=0.85) [39]. The MPO polymorphism was not in HWE (p=0.03),
however the observer agreement in 8% of the randomly selected sample was high (kappa
statistic=0.91), and the failure rate of the assay was less than 1% [37]. Also, genotypes and
frequencies for the MPO polymorphism were reported to be similar to those observed in
other studies [37].

Statistical Analyses
We examined the effects of flavonoid-gene interactions on breast cancer risk focusing on
presumed functional polymorphisms in 13 genes in four biologically relevant pathways,
including: (1) increased oxidative stress (MnSOD, MPO, GSTA1, COMT); (2) reduced Phase
2 metabolism (GSTA1, GSTM1, GSTP1, GSTT1); (3) reduced DNA repair capability
(ERCC1, XPA, XPD); and (4) reduced methyl group formation (MTHFR C677T, MTHFR
A1298C, COMT). Gene alleles were dichotomized using a dominant model, with the
proposed “high risk” genotype given a value of “1,” and the “low risk” genotype assigned a
value of 0; the one exception was COMT, where the genotype according to dominant model
reduces oxidative stress, and therefore for the Z-matrix it was coded as “ −1” (see below).
High risk genotypes were determined for each SNP based on prior literature regarding its
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function within the four biologic pathways of interest [44, 46–66]. In order to maintain
adequate cell sizes for examining the interaction, total flavonoid intake was dichotomized at
the median, based on the distribution among controls.

To examine the gene-by-flavonoid interactions on breast cancer risk, three modeling
approaches were employed: a single interaction term within a logistic regression model; all
13 interaction terms within a multivariate logistic regression model; and hierarchical
regression, that simultaneously estimates the 13 interaction effects, but considers them
clustered within the four pathways. A single referent coding scheme was used for all three
models. Those with low flavonoid intake and the variant genotype (for most SNPs this
genotype is thought to have deleterious effect, with the exception of the COMT, as discussed
above) were considered the highest risk subgroup; this group was considered the referent
category for the analysis. Confidence Limit Ratios (CLR), a measure of precision for ratio
effect measures [67], was calculated for all estimates by dividing the upper 95% confidence
limit by the lower 95% confidence limit. All analyses were conducted using PROC
GENMOD (single interaction and multivariate models) or PROC GLIMMIX (hierarchical
model) in SAS version 9.2 (SAS Institute, Cary, NC).

Unconditional logistic regression was used for the single interaction and multiple interaction
models [68]. All models included the frequency matching factor age. In addition, the single
interaction models included the main effect for the gene, the main effect for total flavonoid
intake, the multiplicative interaction term, and potential confounders (see below). The
multivariate models also included the main effects of all 13 genes, the main effect of total
flavonoid intake, all multiplicative interaction terms between the 13 genes and total
flavonoid intake, and potential confounders. Potential confounders (including age, total
energy intake, body mass index, hormone replacement therapy, oral contraceptive use,
alcohol intake, physical activity, family history of breast cancer) for this analysis were
identified using a Directed Acyclic Graph (DAG) [69] and 10% change in effect estimate.
Only total energy intake was found to change the effect estimates by more than 10%.
Therefore, the final covariates in the three models included the matching factor age, and
total energy intake.

Hierarchical regression models were based on the indicator-term approach for assessing
gene-environment interactions [24]. The following model represents the first stage of the
hierarchical model:

(1)

where p = risk of breast cancer, X is the matrix of indicator variables for the gene-flavonoid
interaction, β is the effects for the gene-flavonoid interaction, and W is the matrix of
covariates (age and total energy intake). To improve our estimates of breast cancer risk, we
used a hierarchical regression incorporating prior knowledge regarding biologic pathways.
The second level of the hierarchical regression for the logistic coefficients β of the indicator-
terms was:

(2)

where Z is the second-stage design matrix (see Table 1), which includes our prior
information about the indicator terms and their respective roles in the biologic pathways; π
is the vector of coefficients corresponding to the effects of the second stage covariates on
breast cancer (i.e. the independent effect of each biologic pathway on breast cancer risk),
and δ is the residual association of each indicator term on breast cancer which is not
explained by the Z-matrix. The residual association, δ, was assumed to be normally
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distributed with mean = 0 and variance = τ2. A semi-Bayes approach was used in the
hierarchical regression analysis and τ2 was set at a constant of 0.1225 (τ = 0.35), which
allows the corresponding 95% confidence intervals to have a range of e(3.92*τ) ≈ 4.0 if τ =
0.35 [25]. Setting τ = 0.35 provides adequate 95% CI coverage for residual effects that are
not accounted for by the first and second stage in this analysis of 39 first-stage covariates
(interaction terms) and 5 second-stage covariates (genetic pathways and indicator of high
flavonoid intake) [70].

The columns of the Z-matrix represented each of the four biologic pathways of interest (i.e.
increased reactive oxygen species, reduced phase 2 metabolism, reduced DNA repair
capability, and reduced methyl group formation), with a fourth column representing the
exposure (i.e. high flavonoid intake). If the indicator term contained the deleterious allele
then a score of “1” was given in the appropriate column of the Z matrix. A score of “−1”
was given to those indicators where the high risk genotype was proposed to have an opposite
effect within the same biologic pathway (e.g. COMT). If the indicator term contained high
flavonoid intake, then a score of “1” was given in the flavonoid intake column. The first
(equation 1) and second-stage (equation 2) estimates are then combined to provide posterior
estimates of each indicator term’s effect (according to which pathway they belong) and
breast cancer risk:

(3)

where the X, Z, W matrices are the same as defined previously, the π and γ coefficients are
fixed, and the δ coefficient is random.

Results
The effect estimates and 95% confidence intervals for the single interaction and multivariate
logistic regression models, and the hierarchical models are presented in Table 2. Compared
to the estimates from the single interaction model, the estimates of the multivariate model
tend to be less precise, as measured by the CLR. For example, the estimates for the
beneficial MnSOD allele and high flavonoid intake indicate a five percent risk reduction
(OR = 0.95, 95% CI = 0.70, 1.30) when examined using the single interaction logistic
regression model. This same estimate in the multivariate logistic regression model for
MnSOD increases slightly (OR = 1.18, 95% CI = 0.48, 2.90), but is less precise (CLR =
6.01), in comparison to the estimate derived from the single interaction model (CLR = 1.86).
In the hierarchical model, the effect estimates shows a seven percent risk reduction seen in
this MnSOD grouping, and the estimates are more precise (CLR = 2.92), when compared to
the multivariate model. As shown in Table 2, similar trends were seen across other SNPs
involved in the oxidative stress pathway, with risk reductions across all interaction terms.

For phase II metabolism, the observed risk reduction for the interaction between the
presence of GSTM1 (which indicates increased detoxification) and high flavonoid intake is
similarly reduced in both the single-interaction model (OR = 0.78, 95% CI = 0.59, 1.02) and
the multivariate model (OR = 0.81, 95% CI = 0.34, 1.93). The hierarchical model reported a
6% risk reduction when the gene is present and high flavonoid intake (OR = 0.94, 95% CI =
0.55, 1.61). The hierarchical estimate, however, was more precise (CLR = 2.93) compared
to the multivariate model (CLR = 5.69). This similar pattern in estimates was observed with
GSTA1. For both GSTP1 SNP and GSTT1 deletion, the multivariate model for the beneficial
genotype and high flavonoid intake indicator term resulted in increased risk for breast
cancer. However, the hierarchical model reported effect estimates suggesting a risk
reduction, and these estimates were more precise when compared to multivariate model.
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For the genes involved in the one-carbon methylation pathway, we observed risk reductions
of 12% for the MTHFR C677T (OR = 0.88, 95% CI = 0.51, 1.51) and COMT (OR = 0.88,
95% CI = 0.49, 1.58) SNPs in the hierarchical models for the indicator term for beneficial
genotype and high flavonoid intake. There was null association reported for this same
grouping for the MTHFR A1298C SNP (OR = 1.03, 95% CI = 0.60, 1.78).

For DNA repair, among those with the beneficial genotype for ERCC1 and high flavonoid
intake, risk for breast cancer was increased in the multivariate model (OR = 1.07, 95% CI =
0.44, 2.57), whereas the single interaction model estimates an approximately 20% risk
reduction (OR = 0.79, 95% CI = 0.61, 1.04). The hierarchical model reports a null effect of
high flavonoid intake and beneficial genotype on breast cancer risk. For the other SNPs
involved in DNA repair pathways, risk reductions were evident in the hierarchical model for
XPA and XPD for this same grouping. The deleterious and high flavonoid intake grouping
reported increased risk (ranging from 10–24%) in the hierarchical model for all three SNPs
involved in the DNA repair pathway.

Table 3 provides fixed effect estimates from the hierarchical model. The fixed effects from
the hierarchical model provide an estimate of the relative importance of the individual
biologic pathways. The strongest effect can be seen among the DNA repair genes. The effect
of having a deleterious versus beneficial genotype averaged over total flavonoid intake in
the DNA repair biologic pathway, while adjusting for the genes involved in the other three
pathways, increases risk for breast cancer by 27% (OR = 1.27, 95% CI = 0.70, 2.29),
although the confidence interval is wide. There are essentially no effects seen for the fixed
effects for the three other biologic pathways. Additionally, fixed effects were estimated for
gene-only hierarchical models stratified by high and low flavonoid intake. Similar patterns
were seen for both sets of fixed effect estimates (Supplementary Tables 4–5). Also, stronger
effects were seen for the fixed effect estimates for reduced DNA repair capability among
postmenopausal women (Supplementary Tables 6–7).

Discussion
Using population-based data from the LIBCSP, we found that the hierarchical model
incorporating multiple flavonoid-gene interactions improved the precision of the effect
estimates for the associations with breast cancer risk compared to the multivariate model.
The results from the hierarchical model suggest that high flavonoid intake along with
beneficial genotypes for MnSOD, MPO, CAT, GSTA1, GSTP1, XPA, MTHFR C677T, and
COMT SNPs, may reduce the risk for breast cancer, although confidence intervals were
wide for most observations.

Interestingly, high flavonoid intake appeared to enhance the activity of the deleterious SNPs
of DNA repair genes. Also, the average effect of deleterious genotypes (compared to
beneficial genotypes) in the DNA repair pathway (independent of the other two pathways)
was suggested to increase breast cancer incidence by 27% for average total flavonoid intake,
though the CI was wide. A recent study [20] suggested that soy intake could inhibit DNA
repair capability inducing a toxic environment for non-small cell lung cancer. Thus, it is
possible that high flavonoid intake could increase the activity of a deleterious genotype for
DNA repair genes. While soy is only one source of flavonoids, it is still possible that this
effect persists when considering total flavonoid intake. This may provide some insight into
the results observed for the interactive effect of high flavonoid intake and deleterious alleles
on increasing risk for breast cancer among the SNPs involved in the DNA repair pathway.
However, our results require confirmation.
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The benefits of this analysis include examining gene-environment interactions in a large
case-control study with data available on total flavonoid intake and SNPs that are involved
in multiple biologic pathways. We considered three different statistical modeling approaches
to examining gene-environment interactions (single interaction, multivariate, and
hierarchical models). The benefit of the hierarchical modeling approach includes allowing
us to consider multiple biologically related genes simultaneously along with the ability to
incorporate prior information regarding the biologic similarity of different genes. In addition
to the random effects – in other words the individual effects of each of the gene-by-
flavonoid interactions, the hierarchical model also provides fixed effects estimates for the
independent effects of biologic pathways on breast cancer risk.

Another benefit of our study is our use of population-based data that was collected using
incidence density sampling [26]. This superior approach permits stronger inferences
regarding the impact of our findings on breast cancer incidence, as compared to other case-
control sampling designs, which have more limited interpretations [69].

This analysis also has limitations. Since the LIBCSP study population is predominately
Caucasian women, reflecting the underlying population of the two counties on Long Island,
NY studied [26], the examination of racial subgroups is not possible. Thus, the
generalizability of the study results is limited to Caucasian American women for whom the
risk of breast cancer is high [71]. Only 13 polymorphisms were examined in this analysis,
and inclusion of more genes in the analysis could potentially change the estimates of both
the random and fixed effects. Incorporating additional genes within each pathway may help
to better represent the functional effect of each pathway on breast cancer. However, a larger
sample size would be more optimal to estimate interactive effects of flavonoid intake and
additional polymorphisms when utilizing either a conventional or hierarchical approaches.
In addition, a larger, more racially heterogeneous sample size would permit examination of
effects within breast cancer subtypes. An additional concern is our reliance on the FFQ
responses to estimate flavonoid intake, rather than employment of a more objective
biomarker, for example. However, the half-life of flavonoids in plasma is less than three
hours [72], which limits the usefulness of this exposure assessment tool in a population-
based study such as ours. Additionally, a more detailed specification of the Z-matrix in the
hierarchical regression models could be achieved by incorporating information regarding
enzyme kinetics for each genetic polymorphism. For example, within the oxidative stress
pathway, distinguishing polymorphisms that may result in greater enzymatic activity
compared to other polymorphisms within the Z-matrix may help to improve estimation of
the effect of biologic pathways on breast cancer risk. However, the available laboratory data
on enzyme kinetic parameters for the genetic polymorphisms of interest to our study was too
limited for use in our current analysis. Future epidemiologic studies would benefit from an
improved understanding of these genes in the laboratory.

In conclusion, the findings reported here – which suggest a possible interaction between
flavonoid intake and the DNA repair pathway on breast cancer risk -- are derived from an
innovative method for understanding the impact of flavonoid intake on genes involved in
multiple pathways, although a null association could not be ruled out. The results from this
ancillary study highlight the importance of examining the interaction of multiple genes with
total flavonoid intake to better understand which combinations of genetic subgroups and
flavonoid intake confer the greatest impact in breast cancer risk for women. Future studies
that examine gene-environment interactions should consider larger, more racially diverse
populations that would enhance examination of effects by breast cancer subtype. Additional
information regarding the effect of genetic variation on resulting enzymatic activity could
help to improve the specification of the Z-matrix, and thus may provide further insight into
the effect of biologic pathways on breast cancer risk. Future researchers should also consider
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alternative approaches for modeling complex gene-environment interactions. However,
using a hierarchical model, as we did here, may help to elucidate the biologic pathways that
modulate the effect of flavonoids on breast cancer risk. This information could help to
identify subgroups of women that may be more susceptible to the effects of increasing total
flavonoid intake.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 3

Fixed effects odds ratios (OR) and 95% confidence intervals (95% CI) from hierarchical logistic regression
models for flavonoid-gene interaction in association with breast cancer risk in the LIBCSP (N=1778)

Gene pathways OR1 95% CI2

Increased oxidative stress 1.00 0.62, 1.63

Reduced Phase 2 Metabolism 0.97 0.58, 1.65

Reduced DNA repair capability 1.27 0.70, 2.29

Reduced methyl group formation 0.983 0.53, 1.82

Note: Odds ratios and 95% confidence intervals estimated using fixed effects coefficients from hierarchical model: logit (p|X, W, Z) = α + XZπ +
Xδ + Wγ

1
OR = exp[π]

2
95% CI = exp[π ± 1.96*SE(π)]

3
Example interpretation for fixed effects OR for reduced methyl group formation: “The average effect of deleterious versus beneficial gene,

controlling for average flavonoid intake in the reduced methyl group formation pathway, and adjusted for the three other pathways, results in a 2%
reduced risk for breast cancer.”
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