
Association of germline microRNA SNPs in pre-miRNA flanking
region and breast cancer risk and survival: the Carolina Breast
Cancer Study

Jeannette T. Bensen1,2,*, Chiu Kit Tse1, Sarah J. Nyante3, Jill S. Barnholtz-Sloan4, Stephen
R. Cole1, and Robert C. Millikan1,2

1Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 2Lineberger Comprehensive Cancer Center of the University of North Carolina at Chapel
Hill, Chapel Hill, North Carolina 3Division of Cancer Epidemiology and Genetics, National Cancer
Institute, National Institutes of Health, Department of Health and Human Services, Bethesda,
Maryland 4Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland,
Ohio

Abstract
Purpose—Common germline variation in the 5′ region proximal to precursor (pre-) miRNA
gene sequences is evaluated for association with breast cancer risk and survival among African
Americans and Caucasians.

Methods—We genotyped 9 single nucleotide polymorphisms (SNPs) within 6 miRNA gene
regions previously associated with breast cancer, in 1972 cases and 1776 controls. In a race-
stratified analysis using unconditional logistic regression, odds ratios (OR) and 95% confidence
intervals (CI) were calculated to evaluate SNP association with breast cancer risk. Additionally,
hazard ratios (HR) for breast cancer-specific mortality were estimated.

Results—2 miR-185 SNPs provided suggestive evidence of an inverse association with breast
cancer risk (rs2008591, OR = 0.72 (95% CI = 0.53 – 0.98, p-value = 0.04) and rs887205, OR =
0.71 (95% CI = 0.52 – 0.96, p-value = 0.03), respectively) among African Americans. Two SNPs,
miR-34b/34c (rs4938723, HR = 0.57 (95% CI = 0.37 – 0.89, p-value = 0.01)) and miR-206
(rs6920648, HR = 0.77 (95% CI = 0.61 – 0.97, p-value = 0.02)), provided evidence of association
with breast cancer survival. Further adjustment for stage resulted in more modest associations with
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survival (HR = 0.65 (95% CI = 0.42 – 1.02, p-value = 0.06 and HR = 0.79 (95% CI = 0.62 – 1.00,
p-value = 0.05, respectively).

Conclusions—Our results suggest that germline variation in the 5' region proximal to pre-
miRNA gene sequences may be associated with breast cancer risk among African Americans and
breast cancer-specific survival generally, however further validation is needed to confirm these
findings.
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INTRODUCTION
MicroRNAs (miRNAs), small non-coding RNAs, are one of the largest classes of gene
regulators [1]. miRNAs regulate the stability or translational efficiency of targeted
messenger RNAs (mRNAs) most commonly by binding to 3′-untranslated region (UTR)
sequences to silence their target genes. miRNAs undergo a complex, multi-step process of
biogenesis recently summarized by Schanen and Li [2]. Within the nucleus, a primary
miRNA transcript (pri-miRNA), usually several hundred nucleotides (nt) to several
kilobases (kb) in length, is cleaved to create a precursor miRNA (pre-miRNA)
approximately 70 nt in length, which folds to form a stem-loop intermediate [2–4]. This
intermediate is exported from the nucleus and further processed to form a mature single-
stranded miRNA approximately 22 nt in length. Cleavage and processing of the pri- and pre-
miRNA requires sequence and secondary structure recognition by RNA binding proteins and
their partners [2]. Because mature miRNA seed sequences are small and only partial
complimentary binding is required to the 3′-UTR, each miRNA may bind up to as many as
200 target genes [5]. Furthermore, target genes may contain binding sites for many different
miRNAs, thus it is estimated that miRNAs may regulate the expression of as many as one-
third of all human mRNAs [5].

miRNAs may be located within the introns of `host' protein coding genes (intragenic) and
may be co-transcribed by the host's promoter or may lie between genes within the genome
(intergenic) under other mechanisms of transcriptional control. Transcriptional regulation of
miRNAs has recently been reviewed [2]. Direct experimental evidence has confirmed that
miRNA genes can be transcribed by polymerase II and III promoters [6, 7] and recent
evidence suggests that miRNAs can `self-transcript' in the absence of promoters [8].
Through computational methods and experimental verification, clustered polycistronic
transcripts have also been observed [9, 10] providing evidence that miRNAs in clusters may
be encoded by the same pri-miRNA transcript [2].

Recently a comprehensive survey of genomic variation associated with miRNAs and their
predicted target sequences was performed [11]. This survey focused on variation within the
pre- and highly conserved mature miRNA as well as complementary 3′-UTR sequences in
predicated target genes that may impact miRNA processing or targeting. While information
about the sequence and structure of pre- and mature miRNAs and associated variation is
beginning to emerge, little is known about the genomic structure or sequence variation in the
5′ region proximal to the pre-miRNA gene sequence that includes the 5′ pri-miRNA and
promoter regions. Sequence variation in this region may play an important role in
influencing miRNA processing and transcription, especially since key RNA binding proteins
and their partners require specific sequence and secondary structure for miRNA biogenesis.

miRNAs have been shown to influence numerous molecular pathways and pathological
conditions including cancer [12–15] and may prove to be clinically valuable biomarkers.
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Recently in breast cancer, miRNAs have been associated with genes involved in critical
pathways including apoptosis, cell cycle checkpoints, and cell invasion [4, 16, 17].
Currently, germline mutations in genes including BRCA1 and 2 explain 20% of the familial
aggregation of breast cancer; suggesting numerous other susceptibility gene variants have
yet to be uncovered. Several molecular epidemiologic studies have assessed the association
of common germline miRNA gene variation with disease risk including breast cancer [11,
18–24]. Of these studies, several show association between SNP variants in mature and
precursor miRNAs and breast cancer risk in women of various racial-ethnic-religious
background (US Caucasian, Chinese, and high-risk Jewish women in Israel). Some have
evaluated the association of common germline miRNA variation with cancer survival [25–
27] although none have reported on the association of miRNA germline variation with breast
cancer risk and survival among African Americans. We sought to identify common variation
in the 5′ region proximal to pre-miRNA gene sequences associated with breast cancer
incidence and breast cancer-specific survival among African American and Caucasian
women participating in the Carolina Breast Cancer Study (CBCS).

MATERIALS AND METHODS
Study Population

The CBCS is a population-based case-control study of breast cancer in North Carolina that
has been previously described [28–30]. Briefly, eligible cases, were defined as women, ages
20–74, who were diagnosed with primary invasive breast cancer between 1993 and 2001
and resided within a 24 county area. African American cases and cases younger than 50
years old were oversampled using randomized recruitment [31]. Between 1996 and 2001,
eligible women with breast carcinoma in situ (CIS) were also enrolled. Eligible controls
were women residing in the same 24 county study area, aged 20 to 74 years, with no history
of breast cancer. Controls were frequency-matched to cases by race and 5 year age
categories.

Women who agreed to participate in the study provided informed consent and completed an
in-home nurse-administered interview and were also asked to provide a 30 ml sample of
blood for DNA. Overall, 2311 cases (894 African American/1417 non-African American)
and 2022 controls (788 African American/1234 non-African American) enrolled in the
study. Most (98%) non-African American participants were Caucasian. miRNA gene SNPs
were genotyped in 1776 of 2022 controls and 1972 of 2311 cases in CBCS. This analysis
was restricted to CBCS participants self-identifying as African American or Caucasian and
included 1946 cases (742 African American/1204 Caucasian) and 1747 controls (658
African American/1089 Caucasian) (Table 1). All study procedures were approved by the
University of North Carolina at Chapel Hill Institutional Review Board.

Gene Selection, SNP Identification and Genotyping
Seven human miRNA genes were selected for SNP analysis because previous reports
demonstrate their association with breast cancer [32–35] (Online Resource 1). A region 1 kb
in size, immediately 5′ to the pre-miRNA sequence was surveyed for common (MAF ≥
0.05) SNPs. This size region was selected because the number of SNPs residing in this
region would be feasible for inclusion on our custom genotyping array that included a larger
survey of genetic variation related to breast cancer and because this size should include most
if not all of the5′ pri-miRNA sequence and possibly a portion of the miRNA gene promoter
sequence as well. Among the 7 miRNA genes surveyed in dbSNP (2 genes occur in miR
gene clusters in close proximity to neighboring miRNA genes, specifically miR-16-1/15a
and miR 34b/34c), 11 common SNPs (either or both HapMap YRI or CEPH populations)
and 2 SNPs (miR-9-1 SNP rs12239077, miR-10b rs1867863) with no allele frequency data
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reported in dbSNP for African Americans at the time of SNP selection were identified.
Illumina pre- and post-genotyping quality control was applied to the selected SNPs (Online
Resource 1). In summary, 9 polymorphic SNPs within 6 miRNA gene regions (containing 8
unique miRNA genes) were successfully genotyped, passed all quality measures and were
evaluated for their association with breast cancer.

Ancestry informative markers (AIMs) were also genotyped in cases and controls to estimate
African and European ancestry [36]. A set of 158 AIMs were selected from a panel that has
been previously used to estimate ancestry in African Americans [37, 38].

Statistical analysis
Allele and genotype frequencies were calculated stratified by case and control status and
African American or Caucasian race, Hardy Weinberg Equilibrium was assessed among
controls within each race group using the chi-square test and pair-wise linkage
disequilibrium (LD), r2, was calculated using SAS Genetics (version 9.1.3) (SAS Institute,
Cary, NC). Additionally, the chi-square test was used to compare differences in allele and
genotype frequencies between cases and controls.

Odds ratios and 95% confidence intervals for the association between genotypes and breast
cancer risk stratified by self -reported race or age at diagnosis (<50 or ≥50) were estimated
among CBCS cases (invasive and CIS) and controls using unconditional logistic regression.
Genotype associations were modeled using the general model (2 degrees of freedom), except
where homozygote counts were too small (<30 cell size for any race-genotype category in
either cases or controls) then a 2-level dominant model was used and rare homozygote and
heterozygote categories were combined. The major allele (highest allele frequency) in
Caucasians was selected as the referent allele for both race groups unless the two allele
frequencies in Caucasians were the same; in this case the major allele in African Americans
was selected as the referent allele for both race groups. No adjustment was made for
multiple comparisons because all miRNA genes selected for this exploratory analysis had
been previously associated with breast cancer and because several SNPs are either in linkage
disequilibrium, in close genomic proximity or part of a gene family and thus may be
processed or transcribed by common regulatory elements. All genotype regression models
were adjusted for age, ancestry and offset term (defined as the natural log of (recruitment
probability of cases/recruitment probability of controls)) to account for randomized
recruitment sampling [31] and were run using SAS v9.1.3 (SAS, Cary, NC).

Haplotype analysis was performed using HAPSTAT [39, 40] to examine the association
between miR-185 two-SNP haplotypes (rs887205 – rs2008591) and breast cancer risk,
stratified by race or age at diagnosis in cases (invasive and CIS) and controls using a co-
dominant model. HAPSTAT simultaneously uses maximum likelihood estimation and the
EM algorithm to estimate OR parameters and haplotype distributions. Haplotype analyses
were adjusted for age, race (as appropriate), ancestry, and study phase. Modification to
HAPSTAT allowed for the inclusion of the offset term to account for randomized
recruitment[41].

For the analysis of breast cancer-specific survival, only invasive breast cancer cases (654
African American/855 Caucasian) with available follow-up data were analyzed. Breast
cancer specific deaths were identified using the National Death Index and additional details
of cohort follow-up have been previously reported [42]. After censoring living individuals at
December 31, 2006, we first examined breast cancer-specific survival curves by genotype
using the Kaplan-Meier method (Online Resource 2). Violations of the proportional hazards
assumption were assessed by visual inspection of log-log survival curves and a test of the
SNP by time product term. To assess differences in survival log-rank tests were used. SNPs
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met proportional hazards assumptions if they passed visual inspection (i.e., log-log survival
curves did not cross) or the p-value for the interaction term with log time was >0.05. SNPs
that met proportional hazards criteria were further evaluated to determine appropriate
referent genotype(s) and for their association with breast cancer survival. Consistent with the
risk analysis, genotypes previously collapsed due to small cell size (genotype category <30)
remained collapsed in the survival analysis. After applying the small cell size rule, SNP
genotype categories with nearly identical survival rates on visual inspection were also
collapsed into a single group. The referent was kept consistent with the risk analysis and was
based on the most common genotype in Caucasians. For SNPs that met our criteria (passed
proportional hazards assumption and log rank p-value < 0.10), we estimated hazard ratios
(HR) and 95% confidence intervals (CI) for associations with breast cancer-specific survival
using multivariable Cox proportional hazard models adjusted for age, self-reported race, and
ancestry. We further adjusted for stage among those cases (618 African Americans/804
Caucasians) with available information. Results are presented for the overall cohort and
stratified by race. In light of the association between miR-206 whose target gene is the
estrogen receptor, results were further stratified by estrogen receptor status (+/−).

RESULTS
miRNA SNP characteristics

This report provides allele and genotype frequency data for African Americans on several
miRNA SNPs (rs12239077 [miR-9-1], rs1867863 [miR-10b]) for which dbSNP data was
unavailable at the time of SNP selection. For those SNPs with dbSNP genotype data on
African American or European sample groups, allele frequencies were generally consistent
with those observed in African American and Caucasian CBCS controls. Our data provide
additional accuracy for miRNA SNP allele and genotype frequency estimates for African
Americans living in the southeastern US (Online Resource 3).

As expected, varying LD is present among SNPs genotyped within the same gene and is
consistently higher among Caucasians compared to African Americans (Online Resource 4).
For miR-185, LD between all SNPs is moderate to high among Caucasians; however for
African Americans LD is low between rs2078749 and other miR-185 SNPs, but high
between rs2008591 and rs887205. LD between SNPs in miR-206 is low for both Caucasians
and African Americans.

Several of the SNPs genotyped and analyzed for their association with breast cancer are
located within miRNA gene clusters and thus are close in proximity to more than one
miRNA gene (Online Resource 5). Of the eight miRNA genes in close proximity to
genotyped SNPs, 4 are intergenic, while 4 are within annotated genes (intragenic) either
embedded within introns (N=3; miR-9-1, miR-34b, miR-185) or exons (N=1; miR-34c).
This distribution is consistent with the genomic distribution of all miRNAs in miRBase as
reported by Hinske et al. in 2010 [43].

miRNA SNP and haplotype associations with breast cancer risk
miRNA SNP associations with breast cancer overall were modest, with many effect
estimates near the null (Table 2). ORs ranged from 0.71 to 1.16 (Table 2). A single gene
emerged, miR-185, with 2 of the 3 SNPs (rs2008591 and rs887205) genotyped having ORs
suggestive of an inverse association with breast cancer among African Americans. These
SNPs are within 156 basepairs (bp) of each other, in high LD among African Americans
(Online Resource 4) and 590 bp upstream of the pre-miRNA-185 sequence, which lies
within an intron of the C22orf25 gene (Online Resource5). Results did not differ when cases
with in situ (CIS) breast cancer were excluded (data not shown). No associations between
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miRNA SNPs and breast cancer risk were identified when the analysis was stratified by age
at diagnosis (<50 or ≥50) (data not shown).

There were two common miR-185 (rs887205 – rs2008591) haplotypes in the population. As
expected, the race stratified associations were significant for African Americans where ORs
were 0.71 (95% CI = 0.53 – 0.96) for two copies (vs. 0) of the G-T haplotype and 1.44 (95%
CI = 1.07 – 1.94) for two copies (vs. 0) of the A-C haplotype (Table 3). No haplotype
associations were observed among Caucasians or women age <50 or ≥50 at diagnosis (Table
3).

miRNA SNP breast cancer –specific survival analysis
None of the miRNA SNPs evaluated failed the proportional hazards assessment (SNPs met
proportional hazard assumptions if they passed visual inspection (i.e., log-log survival
curves did not cross) or the p-value for the interaction term with log time was >0.05) and
therefore none of the SNP genotype HRs are time-stratified (Online Resource 6). Survival
distributions by genotype of several miRNA genes were significantly different (unadjusted
p-value ≤0.10) from one another based on the log-rank test (miR-16-1/15a rs9535416,
miR34b/34c rs4938723 and miR-206 rs6920648).

The 3 SNPs further evaluated for association with breast cancer-specific survival also
demonstrated modest effect sizes with one near the null. For the overall analysis, HRs (for
Model 1) ranged from 0.57 to 1.05 (Table 4). Two miRNA gene regions, miR-34b/34c
rs4938723 (HR = 0.57 (95% CI = 0.37 – 0.89 p-value = 0.01) and miR-206 rs6920648 (HR
= 0.77 (95% CI = 0.61 – 0.97, p-value = 0.02) provided suggestive evidence of association
with breast cancer survival following adjustment for age, self-reported race and ancestry. In
the race and ER stratified analyses, associations were stronger among African Americans for
miR-34b/34c, while Caucasians and women with ER+ tumors demonstrated stronger
association for miR-206. No association was observed for women with ER- tumors. Further
adjustment for stage resulted in somewhat more modest associations with survival (HR =
0.65 (95% CI = 0.42 – 1.02, p-value = 0.06 and HR = 0.79 (95% CI = 0.62 – 1.00, p-value =
0.05, respectively) (Table 4).

DISCUSSION
We analyzed candidate SNPs in the region 1 kb 5′ to the pre-miRNA sequence for 6
genomic regions containing 8 miRNAs to assess their effects on breast cancer risk and
survival in a population-based study of African American and Caucasian women. We
hypothesized that these SNPs would be within regions of the primary miRNA transcript that
might control miRNA biogenesis or in further upstream promoter regions that might
regulate miRNA transcription. With respect to breast cancer risk, our main finding was that
2 miR-185 SNPs in in linkage disequilibrium with one another, rs2008591 (T allele) and
rs887205 (G allele), were inversely associated with breast cancer; associations between
these variants and breast cancer were modest. In the case of these 2 SNPs the minor allele
was flipped between African Americans and Caucasians, thus the alleles inversely
associated with breast cancer are both the most common alleles in African Americans. Our
study expands the set of SNPs and miRNA genes evaluated for association with breast
cancer risk since no previous studies have examined variants in the region 5' to the pre-
miRNA sequence. Additionally no other studies have reported on the association of
miRNAs with breast cancer risk in African Americans.

The miR-185 gene is intragenic, located within the intron and on the same DNA strand as
the gene C22orf25. miR-185 is involved in cell cycle regulation and functions as a tumor
suppressor. Its expression has been shown to induce G1 cell cycle arrest in lung and
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colorectal cancer cells, and induce apoptosis, inhibit the proliferation potential, and block
invasion of colorectal cancer cells [44, 45]. An analysis of putative targets for mir-185 has
implicated both RhoA and Cdc42, two key proteins involved in cellular proliferation [46].
For the 2 miR-185 SNPs associated with breast cancer in African Americans, LD was high
(r2=0.78), suggesting they may either be markers linked to a common breast cancer
associated variant or may each play a role in breast cancer susceptibility as the result of their
co-localization to a highly conserved regulatory region. Haplotype analysis further
confirmed the association of the two SNP G-T haplotype with lower breast cancer risk in
African Americans. While it is possible that these associations represent false positive
findings several lines of evidence support this pre-miR-185 5′ flanking region as a
potentially important breast cancer genetic risk factor for African Americans that deserve
further follow-up. Specifically in this analysis the sample size for each genotype group are
sufficient, the direction of the effect is consistent in these tightly linked SNPs, the
association is biologically plausible given known function of this miR, and the association is
consistent only among African Americans.

In addition to an evaluation of breast cancer risk, we assessed a subset of miRNA SNPs for
their association with breast-cancer specific survival. SNPs rs4938723 (miR-34b/34c) and
rs6920648 (miR-206) were significantly associated with breast cancer-specific survival prior
to adjustment for stage and remained weakly associated with breast cancer-specific survival
after adjustment for stage. A number of miRNAs have been associated with breast cancer
prognosis and survival in previous studies including miR-34 and miR-206, both of which
function as tumor suppressor miRNAs and have been shown to be lost in breast cancers [16,
47–49]. Specifically, the miR-34b gene resides in a CpG island within the intron of the
BC021736 on the coding strand. Therefore, it is likely that miR-34b is co-transcribed by
either the protein-coding gene's promoter or by its own transcription initiation region as is
the case with most miRNAs whether they are intergenic or embedded within the introns of
protein coding genes [50]. miR-34b (concomitantly with miR-34a and c) has been shown to
be silenced in numerous cancers by DNA methylation of its own promoter [51]. All three
genes are transactivated by the tumor suppressor, p53 [52–57]. One of the negatively
regulated miR-34b target genes is receptor tyrosine kinase c-MET [58]. Increased levels of
receptor tyrosine kinase c-MET have been shown to lead to enhanced invasion and
metastasis in a number of cancers including breast [59] and have recently been associated
with progression of basal-like breast cancer a subtype more common among younger
African American women [60]. Thus miR-34b acts as a tumor suppressor gene by down-
regulating receptor tyrosine kinase c-MET. In our analysis the miR-34b/34c rs4938723 CC
genotype was associated with reduced breast cancer-specific mortality. Conversely women
with one or two copies of the T allele (TC or TT) had poorer breast cancer-specific survival
(Online Resource 2). Thus this SNP may contribute to alterations in miR-34b/34c promoter
function or biogenesis. Specifically, the miR-34b/34c T allele may reduce activation of
miR-34b/34c by p53, facilitate promoter methylation or decrease biogenesis. Any of these
actions could lead to a reduction in miR-34b/34c levels that subsequently lead to up-
regulation of c-MET, enhancing invasion and metastasis and leading to poorer survival.
Given miR-34b tumor suppressor function and target gene, it is not surprising that this SNP
is associated with breast cancer survival rather than breast cancer development.

The dysregulation of miR-206 also plays an important role in the molecular mechanisms of
breast cancer risk and progression and its role has recently been reviewed by O'Day and Lal
[16]. This intergenic miRNA functions as a tumor suppressor gene by inhibiting its target
gene, the estrogen receptor gene ERα (ESR1) [61], with up-regulation observed in ERα-
negative [33] and down-regulation in ERα-positive tumors [62]. miR-206 and several other
miRNA genes have been shown to induce cell cycle arrest, inhibit estrogen-induced
proliferation [62] and be down-regulated in metastatic breast cancer cells. Restoring the
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expression of these miRNA genes has been demonstrated to reduce their invasive capability
[35]. Specifically, restoring miR-206 in metastatic cancer cells alters their cellular
morphology, potentially contributing to a decrease in cell motility and subsequent migration
[35]. This evidence suggests that miR-206 could be a candidate for novel breast cancer
therapies [16].

The strengths of this study include a systematic analysis of variation within a 1 kb 5′ region
proximal to pre-miRNA sequences in a set of breast cancer candidate miRNAs in an African
American and Caucasian cohort with comprehensive long-term follow-up data on breast
cancer survival. While a portion of our selected SNPs failed pre-genotyping QC, this was
not entirely unexpected. In particular, challenges arise in assay development when SNPs are
in close proximity to one another and in genomic regions not well surveyed (introns and
intragenic regions with potential duplication and repetitive regions). Generally, genotyped
SNPs sufficiently covered gaps incurred by failed SNPs through their genomic location and
LD. The study population was large enough that we were able to estimate race-stratified
SNP associations with breast cancer risk. All analyses for associations with cancer risk and
survival were adjusted for individual proportions of European ancestry, minimizing residual
confounding due to population stratification within both self-reported race-stratified and
race-combined groups.

While this study was exploratory in nature and evaluated only a 1 kb region immediately 5′
to the pre-miRNA sequence among a small set of genes associated with breast cancer – this
report provides valuable new information regarding the possible association of miRNA
sequence variation in breast cancer risk and survival in both African Americans and
Caucasians for further validation in other cohorts. Additional research should not only
include validation of the findings presented in this report, but should also include; 1) a
survey of a larger region proximal to the 5′ pre-miRNA sequence to more fully capture pri-
miRNA and promoter variation, and 2) a more comprehensive sequence assessment of all
miRNAs genes related to breast cancers. Future studies such as these will begin to provide a
more complete picture of the influence germline miRNA sequence variation on breast
cancer risk and survival.

CONCLUSIONS
In conclusion, the consistency of the strength and direction of association with breast cancer
among African Americans points to a tightly linked region proximal to pre-miR-185 as a
promising candidate gene that may contribute to breast cancer risk among African
Americans. These results also suggest that miR-34b/34c and miR-206 may be important
genes influencing breast cancer-specific survival. To our knowledge this study is among the
first to examine sequence variation flanking the premiRNA sequence region for its
association with breast cancer risk and survival in both African Americans and Caucasians
and points to the need for publicly available annotation of miRNA-specific primary
transcripts and promoter regions that can be surveyed for sequence variation. Our results and
those of others [18–27] also highlight the need to conduct comprehensive miRNA gene
sequence assessment and validation in a variety of racial-ethnic populations in particular
among African American women. Expanded knowledge of miRNA transcriptional
regulation through comparative genomics using next-generation bioinformatics will allow
the identification of pri-miRNA sequences, promoters, transcription start sites and many
other regulatory features of miRNA transcription and biogenesis and will facilitate our
comprehensive survey of disease-related variants in these regions in the future. In addition
to comparative genomics, the integration of large datasets that include expression array and
patient outcome data related to treatment and survival will enhance our ability to assess the
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complex role of miRNAs and miRNA germline variation in breast cancer and the potential
for miRNA-based therapeutics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Characteristics of CBCS participants with genotypmg data

Characteristic

Cases Controls

African American Caucasian African American Caucasian

N % N % N % N %

N 742 100 1204 100 658 100 1089 100

Median age in years (range) 51 (23–74) 50 (24–74) 50 (26–74) 51 (21–74)

Proportion of European ancestry Mean (range) 0.222 (0.054–0.962) 0.936 (0.110–1) 0.226 (0.045–1) 0.934 (0.083–1)

Age (years)

 <50 355 47.8 592 49.2 314 47.7 491 45.1

 >=50 387 52.2 612 50.8 344 52.3 598 54.9

Menopausal status

 Premenopausal 324 43.7 540 44.9 290 44.1 456 41.9

 Postmenopausal 418 56.3 664 55.2 368 55.9 633 58.1

Stage

 CIS
a 88 11.9 349 29.0

 1 216 29.1 393 32.6

 2 299 40.3 328 27.2

 3 76 10.2 68 5.7

 4 27 3.6 15 1.3

 Missing
b 36 4.9 51 4.2

Tumor Marker Status

 ER+ 322 43.4 672 55.8

 ER− 341 46.0 344 28.6

 Missing 79 10.6 188 15.6

 ER−/PR−/HER2− 203 27.4 145 12.0

a
CIS carcinoma in situ

b
Invasive breast cancer cases
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Table 3

Association between miR-185 two-SNP haplotypes (rs887205 – rs2008591) and breast cancer in CBCS cases
(invasive and CIS) and controls

Haplotype Estimated Haplotype Frequency* Copies OR (95% CI)
a

P-value
b

Cases Controls

African American

 A-C 0.475 0.430

0 Referent

1 1.15 (0.94 – 1.41) 0.16

2 1.44 (1.07 – 1.94) 0.02

 G-T 0.466 0.508

0 Referent

1 0.90 (0.73 – 1.10) 0.29

2 0.71 (0.53 – 0.96) 0.02

Caucasian

 A-C 0.578 0.580

0 Referent

1 1.03 (0.86 – 1.23) 0.78

2 1.00 (0.78 – 1.26) 0.97

 G-T 0.404 0.400

0 Referent

1 1.03 (0.89 – 1.20) 0.66

2 1.02 (0.80 – 1.30) 0.85

Age at diagnosis <50

 A-C 0.549 0.525

0 Referent

1 1.03 (0.84 – 1.25) 0.80

2 1.19 (0.91 – 1.56) 0.21

 G-T 0.414 0.440

0 Referent

1 0.88 (0.74 – 1.05) 0.15

2 0.82 (0.62 – 1.08) 0.15

Age at diagnosis ≥50

 A-C 0.530 0.522

0 Referent

1 1.07 (0.89 – 1.29) 0.47

2 1.09 (0.84 – 1.40) 0.52

 G-T 0.440 0.441

0 Referent

1 1.08 (0.91 – 1.28) 0.38

2 0.96 (0.74 – 1.24) 0.74

a
Haplotype analysis performed using HAPSTAT and co-dominant model.
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b
Adjusted for age, race (as appropriate), ancestry and study phase (phase 1, phase 2 invasive, CIS study). Modifications to HAPSTAT allowed for

the inclusion of the offset term to account for randomized recruitment probabilities.
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Table 4

Effect of germline miRNA SNP on breast cancer–specific mortality among invasive cases

Model 1
a

Model 2
b

SNP Genotype HR (95% CI) P1-value
c HR (95% CI) P2-value

c

Overall

miR-16-1/15a GG Referent

rs9535416
d AG+AA 1.05 (0.82 – 1.33) 0.70 1.12 (0.87 – 1.44) 0.40

miR-34b/34c TC+TT Referent

rs4938723
e CC 0.57 (0.37 – 0.89) 0.01 0.65 (0.42 – 1.02) 0.06

miR-206 AA Referent

rs6920648
e AG+GG 0.77 (0.61 – 0.97) 0.02 0.79 (0.62 – 1.00) 0.05

African American

miR-16-1/15a GG Referent

rs9535416
d AG+AA 1.05 (0.78 – 1.42) 0.74 1.16 (0.85 – 1.58) 0.35

miR-34b/34c TC+TT Referent

rs4938723
e CC 0.49 (0.25 – 0.95) 0.03 0.63 (0.32 – 1.23) 0.18

miR-206 AA Referent

rs6920648
e AG+GG 0.85 (0.63–1.14) 0.28 0.93 (0.68 – 1.25) 0.62

Caucasian

miR-16-1/15a GG Referent

rs9535416
d AG+AA 1.04 (0.70 – 1.56) 0.84 1.03 (0.67 – 1.59) 0.89

miR-34b/34c TC+TT Referent

rs4938723
e CC 0.66 (0.37 – 1.20) 0.17 0.65 (0.36 – 1.18) 0.16

miR-206 AA Referent

rs6920648
e AG+GG 0.66 (0.47–0.94) 0.02 0.62 (0.43 – 0.90) 0.01

ER+ tumor status

miR-16-1/15a GG Referent

rs9535416
d AG+AA 0.86 (0.59 – 1.27) 0.45 0.90 (0.60 – 1.35) 0.61

miR-34b/34c TC+TT Referent

rs4938723
e CC 0.42 (0.20 – 0.90) 0.03 0.54 (0.25 – 1.17) 0.12

miR-206 AA Referent

rs6920648
e AG+GG 0.74 (0.52 – 1.07) 0.11 0.77 (0.53 – 1.12) 0.18

ER− tumor status

miR-16-1/15a GG Referent

rs9535416
d AG+AA 1.28 (0.92 – 1.77) 0.14 1.25 (0.90 – 1.73) 0.19

miR-34b/34c TC+TT Referent

rs4938723
e CC 0.78 (0.45 – 1.36) 0.38 0.81 (0.47 – 1.40) 0.45
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Model 1
a

Model 2
b

SNP Genotype HR (95% CI) P1-value
c HR (95% CI) P2-value

c

miR-206 AA Referent

rs6920648
e AG+GG 0.81 (0.59 – 1.10) 0.18 0.80 (0.58 – 1.09) 0.16

a
Model 1; Hazard Ratio adjusted for age, self-reported race (as appropriate) and ancestry

b
Model 2; Hazard Ratio adjusted for age, self-reported race (as appropriate), stage (1,2,3+4), and ancestry

c
P-value is unadjusted for multiple comparisons

d
Genotype categories collapsed due to small cell size

e
Genotype categories collapsed due to nearly identical survival rates
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