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Abstract

Purpose—Evaluating genetic susceptibility may clarify effects of known environmental factors 

and also identify individuals at high risk. We evaluated the association of four insulin-related 

pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)n repeat, insulin-like 
growth factor-2 (IGF-II) (rs680), insulin-like growth factor binding protein-3 (IGFBP-3) 
(rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships 

with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study.

Methods—Participants were African Americans (231cases, 306 controls) and Whites (297 cases, 

530 controls). Consenting subjects provided blood specimens, and lifestyle/diet information. 

Genotyping for all genes except IGF-I was performed by the 5′-exonuclease (Taqman) assay. The 

IGF-I (CA)n repeat was assayed by PCR, and fragment analysis. Circulating proteins were 

measured by enzyme immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were 

calculated by logistic regression.

Results—The IGF-I (CA)19 repeat was higher in White controls (50%) than African American 

controls (31%). Whites homozygous for the IGF-I (CA)19 repeat had a nearly two fold increase in 

risk of colon cancer (OR=1.77; 95%CI=1.15–2.73), but not African Americans (OR= 0.73, 95%CI 

0.50–1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon 

cancer risk (OR= 0.49, 95%CI 0.28–0.88) in Whites only. Carrying the IGFBP-3 variant alleles 
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was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p- 

trend < 0.05).

Conclusions—These results support an association between insulin pathway-related genes and 

elevated colon cancer risk in Whites but not in African Americans.
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Introduction

For reasons that are as yet unclear, colorectal cancer incidence and mortality exhibit 

considerable race/ethnic variation, with the highest incidence in African Americans [1]. A 

combination of genetic, nutritional, and lifestyle factors may contribute to these differences 

[2]. However, most studies of colon cancer have been conducted in predominantly White 

populations that included few or no African Americans. Functional dysregulation of the 

insulin and the insulin-like growth factor (IGF) axis, which are major determinants of 

proliferation and apoptosis, have been hypothesized as a potential mechanism underlying 

colorectal carcinogenesis [2, 3]. We previously showed that elevated fasting insulin levels 

predicted increased risk of adenomas or colon cancer precursors [4]. Several epidemiologic 

studies including case-control [5, 6, 7] and cohort studies [8–13] have also evaluated the 

relationship between colon cancer, IGFs, and factors related to obesity and insulin resistance 

[14]. While the majority of these studies have reported modest positive associations [10–12, 

15], other reports have found no associations [9, 11]. These inconsistent findings may be 

due, in part, to the complex and non-complementary relationship between components of the 

IGF axis, and genetic and environmental factors inherent in different ethnic/racial groups.

Investigating genetic factors related to the insulin–IGF pathway, including insulin-like 
growth factor-1 (IGF-I), insulin-like growth factor-2 (IGF-II), insulin-like growth factor 
binding protein-3 (IGFBP-3), adiponectin (APM1)- and their influence on their protein 

products circulating levels, in diverse cohorts, may help clarify previously reported 

inconsistent associations and also identify individuals at high risk. Insulin, IGF-I and IGF-II 

are growth factors that regulate cell proliferation, apoptosis, transformation and 

differentiation [16]. Insulin-like growth factor binding proteins (IGFBPs), primarily 

IGFBP-3 modulates the function of the IGFs [17]. IGF-I has a microsatellite (CA)n repeat 

polymorphism in the promoter region [18] shown to influence IGF-I production [19–25]. 

Similarly, a single nucleotide polymorphism (SNP) in IGFBP-3, -202A>C, is linked with 

low plasma IGFBP-3 levels [26, 27]. IGF-II is over-expressed in colon cancer [28, 29]. 

While loss of imprinting of the IGF-II gene may account for this observation [30, 31], an 

Apa1 polymorphism located in exon 9 of the IGF-II gene may also contribute [32], but has 

not been evaluated in relation to colon cancer. An equally attractive candidate gene is 

adiponectin (APM1), which encodes for an adipose secreted cytokine, adiponectin. This 

cytokine plays a key role in the regulation of glucose, metabolism of fatty acids [33], insulin 

resistance and inflammation. An intron 2 polymorphism (+ 276 G>T) in the APM1 gene, is 

associated with high circulating adiponectin levels and improved insulin sensitivity [34–36]. 
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These insulin pathway-related genes and SNPs therein have been linked to colon cancer in 

smaller or Whites and Asian only studies [37–45].

Herein, we examined the association between polymorphisms in IGF-I (CA)n repeat, IGF-II 
(rs680), IGFBP-3 (rs2854744), and adiponectin (APM1 rs1501299) genes known to be 

either non-synonymous, or to influence protein production, and colon cancer risk. We 

hypothesized that genetic polymorphisms of these four SNPs may explain, at least in part, 

some of the racial/ethnic disparities in colon cancer incidence. In this study which included a 

large number of African Americans and Whites, we also examined the functional 

significance of these polymorphisms by examining their associations with circulating levels 

of IGF-I, IGF-II, IGFBP-3, and C-peptide among African American and white controls.

Methods

Study Population

Participants were enrollees of the North Carolina Colon Cancer Study – (NCCCS), a 

population based case-control study of participants from 33 contiguous counties of central 

North Carolina. Details of the study were previously published [35, 36]. Briefly, cases were 

ascertained through the North Carolina Central Cancer Registry rapid ascertainment system 

and consisted of persons with a first diagnosis of histologically confirmed invasive 

adenocarcinoma of the colon, between July 1996 and June 2000. All cases were between the 

ages of 40 and 85 at the time of diagnosis, residents of the 33-county study area, mentally 

competent to give informed consent and complete the interview, and possessed a North 

Carolina driver’s license or identification card. Controls younger than 65 years were 

randomly selected form the Division of Motor Vehicle records. The Health Care Financing 

Administration was the source for selecting controls aged 65 and older. They were 

frequency matched to cases by race, sex and 5-year age group. Completed interviews were 

obtained from 1,691 persons (634 cases and 1,048 controls), of whom 43% were African 

American. The overall study cooperation rate [interviewed/(interviewed + refused)] was 

84% for cases and 63% for controls, whereas the response rate (interviewed/eligible) was 

72% for cases and 61% for controls. Both cooperation and response rates were slightly 

higher for Whites than for African Americans, and reasons for the 12% difference in 

cooperation rate and response rate for cases included refusal to participate, MD (doctor) 

denied access to patient, untraceable or unable to contact as previously described [46, 47].

Data Collection

In-home-interviews were conducted by trained nurses to collect information about lifestyle 

and diet, as well as collect blood specimens under non-fasting conditions. A health history 

questionnaire was used to collect information on physical activity, anthropometric 

measurements (weight, height, waist, and hip), medical information, demographic 

information, smoking habits, family history, diabetes history, physical activity, NSAIDs use, 

and other factors that might relate to both colon cancer incidence and mortality. Detailed 

dietary information was collected using a modified version of the semi-quantitative food 

frequency questionnaire developed at the National Cancer Institute [48, 49]. The diet 

questionnaire was used to assess the frequencies and amounts of over 100 food items 
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consumed during the year prior to diagnosis for cases with colon cancer or during the 

previous year for control subjects. A one-year period was chosen to provide a full cycle of 

seasons so that responses would be independent of the time of the year [50]. Nutrient intake 

was analyzed by the National Cancer Institute program, which incorporated the nutrient 

content of each food item, the consumption frequency, and a portion size based on age.

Blood Specimens

Blood samples were collected from consenting participants at the time of the interview. 

Cases were enrolled within 6 months of diagnosis. Blood was kept in coolers with cold 

packs until delivered to the laboratory for processing. Subjects who preferred to have the 

blood draw in their doctor’s office were provided a FedEx® specimen package for blood 

draw, and the blood specimens were shipped to the lab on cold packs. Blood was usually 

received and processed in the lab within 24 hours. Plasma samples were stored in aliquots at 

−80°C. The compliance rates for blood collection were 86% for cases and 83% for controls. 

Participants who gave blood were more likely to be male, White, and to have never smoked 

compared with those who did not give blood. These groups did not differ according to 

dietary intake or other risk factors including stage at diagnosis in cases. Odds ratios for 

colon cancer and dietary and other risk factors did not differ between those who gave blood 

and those who did not (data not shown).

DNA extraction

Genomic DNA was extracted from peripheral blood leukocytes using the PureGene DNA 

isolation kit (Gentra Systems, Inc., Minneapolis, MN).

Genotyping

Genotyping was performed using the ABI 7700 Sequence Detection System 5′ exonuclease 

(Taqman™) assay. IGF-II, IGFBP-3 and APM1 (Adiponectin) primers and probes were 

designed using Primer Express™ oligonucleotide design software (Applied Biosystems, 

Forster City, CA). For IGF-II the probe was 5′-AAAAGAAGGGCCCCAGA -3′, the F-

primer was 5′-GAGTCCCTGAACCAGCAAAGAG -3′, and the R-primer was 5′-

AAATTCCCGTGAGAAGGGAGAT-3′. For IGFBP-3, the probe, the F- and R- primers 

were: 5′-CTCGTGCTCACGCC -3′; 5′-ACACCTTGGTTCTTGTAGACGACAA -3′, and 

5′-GGCGTGCAGCTCGAGACT -3′, respectively. The assay design and conditions were 

based on the allelic discrimination protocol from Applied Biosystems. Similar PCR reaction 

conditions were used for these genotype assays. Briefly, reactions were performed in a final 

volume of 15μl containing 30 ng of genomic DNA, 900nM of each primer, 100nM of each 

probe, and 0.7X Taqman Universal PCR Master Mix. Amplifications were performed on 

Perkin Elmer GenAmp® 9700 thermocyclers using the 9600 mode under the following 

conditions: 50°C for 2 minutes (AmpErase® UNG), 95°C for 10 minutes followed by 35 

cycles of 95°C for 15 seconds, and 64°C for 1 minute.

For Adiponectin genotyping, PCR primers and probes were commercially designed by 

Assays by Design (Applied Biosystems), and as such the probe and primer sequences are 

proprietary. The reaction components were as follows: 2X Taqman Universal PCR master 

mix, 20X Applied Biosystems primer and probe mix and 15 ng of genomic DNA. The 

Keku et al. Page 4

Cancer Causes Control. Author manuscript; available in PMC 2014 October 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reaction conditions were as follows: 50°C for 2 minutes, 1 cycle of 95°C for 10 minutes, 

followed by 40 cycles of 95°C for 15 seconds, and 60°C for 1 minute.

For all Taqman genotyping assays, plates were read on the ABI 7700 using the allele 

discrimination protocol. Six of each non-template (water) controls and amplification/

genotype controls were included in each run. Positive controls included DNA samples from 

the Coriell tissue repository that have been previously sequenced by SNP500 cancer [51]. 

All samples were successfully amplified and genotyped. For each gene, assays were also 

repeated on 10% of randomly selected samples, and the results were 100% concordant.

IGF-I (CA)19 genotyping methods

Analysis of the cytosine-adenine (CA)n repeats of the IGF-I gene, located 1 kb upstream 

from the transcription start site was performed using PCR and fragment analysis. The PCR 

reactions performed in 50μl volumes, consisted of 10 ng of genomic DNA using 125 nM of 

each primer (fluorescently labeled forward primer, 5′ 6-FAM-

GCTAGCCAGCTGGTGTTATT-3 and reverse, 5′-ACCACTCTGGGAGAAGGGTA-3), 

100 μM dNTPs, 1.5 mM MgCl2, and 1.5 units of AmpliTaq Gold polymerase (ABI Applied 

Biosystems), and standard PCR buffer. Amplification cycles included one cycle of 15 

minutes at 95°C, 35 cycles consisting of 30 seconds at 95°C (denaturation), 30 seconds at 

64°C (annealing), and 1 minute at 72°C (elongation), and a final elongation step at 72°C for 

7 minutes. Amplified PCR products were purified over QIAquick purification columns 

(Qiagen), followed by a 1:100 dilution. The diluted product (10μl) was mixed with loading 

buffer (80% formamide, 5mM EDTA, 50 ug/uL Blue Dextran) and ROX GeneScan-350 size 

standard (ABI) followed by denaturing for 5 minutes at 95°C and capillary electrophoresis 

on the ABI-3600 genetic analyzer. Fragment sizing was determined by Genescan analyses 

software (ABI Applied Biosystems). The fragments ranged in size from 174 to 202 base 

pairs, depending on the number of CA repeats.

DNA from representative homozygote individuals for the (CA)18, (CA)19, and (CA)20 

genotypes were sequenced to confirm the number of CA repeats. Quality control procedures 

were as follows, blinding of lab personnel to subjects’ case-control status, inclusion of 

positive and negative controls in each assay run, and review of genotype results by a second 

reviewer (TOK). In addition, 10% of samples were repeated blindly to validate the 

genotyping procedures. The concordance for the blinded repeat samples was 100%.

Enzyme Linked Immunosorbent Assays

Plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide were measured by ELISA using 

commercially available kits (DSL Inc. Webster, Texas). IGF-I and IGF-II were measured 

after acid-ethanol extraction to remove IGFBPs. These analytes were measured in duplicate 

on stored plasma samples and laboratory personnel were blinded to the case or control status 

of samples. Intra-assay coefficients of variation were 6.5% for IGF-I, 1.5% for IGF-II, 4.7% 

for IGFBP-3, and 5.7% for C-peptide. The inter-assay coefficient of variation was less than 

12% for all of the analytes measured. Previous epidemiologic studies have reported good 

reproducibility with these commercial kits [10, 52].
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Data analysis

For cases and controls, descriptive statistics were generated for age (<65 years/>=65 years), 

race (White/black), gender (male/female), family history (yes/no for at least one first-degree 

relative with colon cancer), diabetes history (yes/no), BMI one year ago or one year prior to 

diagnosis for cases (categorized into normal, overweight and obese), NSAID usage (use >= 

15 NSAIDs/month in past 5 years), alcohol use, (yes/no), and smoking status (never, former, 

current). Also, mean values as well as number above and below the median value (as 

determined by controls) was found for waist-hip ratio, physical activity as measured in 

MET-minutes per day, total daily calories, percentage of calories from fat, and total daily 

calcium intake. P-values were generated to compare cases and controls.

Allele frequencies were calculated as the number of copies of a particular allele divided by 

the total number of chromosomes (2N=two times the number of persons in the study). 

Genotype frequencies were calculated as the number of participants having each genotype 

divided by the total number of participants. Exact 95% confidence intervals for allele and 

genotype frequencies were computed by the method outlined by Collett [53]. Distributions 

for cases and controls were compared via chi-square tests. Observed genotype frequencies 

were compared to expected genotype frequencies, calculated on the basis of observed allelic 

frequencies, assuming Hardy-Weinberg equilibrium. Departure from Hardy-Weinberg 

equilibrium was tested among control groups using a goodness-of-fit chi-square test.

Unconditional logistic regression models were used to estimate odds ratios (ORs) and 95% 

confidence intervals (CIs) for the association between carrying the variant allele and risk of 

colon cancer. We compared carriers of at least one of the minor alleles (at risk genotype) to 

individuals homozygous for the common allele (referent genotype). All statistical models 

were adjusted for colon cancer risk confounders in the population, including age at reference 

date, sex and race; race was excluded from race-stratified models. Factors previously 

reported to be associated with colon cancer including body mass index (BMI = kg/m2) and 

NSAID use were explored for effect modification using stratified analyses. These factors 

were then evaluated for confounding (together with family history, alcohol use, fat calories, 

physical activity, caloric intake, diabetes history, age, race, and current and former cigarette 

smoking) comparing logistic regression models with and without the variables of interest. 

Regression models were used to evaluate the correlation between genotype and circulating 

protein concentrations, adjusting for potential confounders. SAS version 9.1 (SAS, Cary, 

NC, USA) was used for all statistical analyses.

Results

Descriptive characteristics of cases and controls are summarized in Table 1. Briefly, 48% of 

cases were less than 65 years of age compared to 38% of controls (p=0.0001); 43% of the 

553 cases compared to 38% of 875 controls were African American (p=0.001); and women 

comprised 48% of cases and 48% of controls. Cases did not differ considerably from 

controls with respect to diabetes, BMI recalled a year prior to the interview, waist/hip ratio, 

physical activity, and alcohol use. However, cases were more likely than controls to report a 

family history of colon cancer (21% vs 9%, respectively), higher average calorie 

consumption per day, and greater proportion of calories derived from fat. Sixty two percent 
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of cases were current or former cigarette smokers compared to 59% of controls (p=0.03), 

and cases were less likely to have used >=15 NSAIDS/month in the past five years (p=0.05).

The distribution of IGF-I (CA)19 polymorphism for African American and White cases and 

controls is shown in Figure 1. IGF-I (CA)n polymorphic repeats ranged from n=11 

(fragment size 174 bp) to n=24 repeats (fragment size 202 bp) and the most common repeat 

was n =19 (fragment size 192 bp) which was designated the referent allele. Overall, the IGF-
I (CA)19 allele was the most common, present in 46% of cases and 43% of controls. Among 

African Americans, 30% of cases and 31% of controls carried the IGF-I (CA)19 allele while 

the next most frequent allele, (CA)18, was found in 25% of cases and 26% of controls. 

Among Whites, 58% of cases and 50% of controls carried the (CA)19 allele while the next 

most frequent allele, (CA)20, had a distribution of 21% in cases and 25% in controls. 

Although, the IGF-I (CA)19 allele distribution differed by race with higher frequencies 

observed in Whites than African Americans, the distributions were similar to those 

published in the literature for Whites [25] and African Americans [54–57].

Sex, age, calories, NSAIDS and cigarette smoking adjusted ORs and 95%CI for associations 

between IGF-I, IGFBP-3, IGF-II and AMP1 genetic variants and colon cancer risk in 

African American and Whites, are shown in Table 2. Whites homozygous for the IGF-I 
(CA)19 repeat polymorphism had a nearly 2-fold, dose-dependent increased risk of colon 

cancer (OR=1.77; 95%CI=1.15–2.73). We also found a dose-dependent inverse association 

between homozygous carriers of the IGF-II Apa1 A-variant and colon cancer risk in Whites 

(OR= 0.49, 95%CI 0.28–0.88). These associations were not apparent in African Americans. 

We also found little evidence for associations between carrying the IGFBP-3 or the APM1 
variants and colon cancer risk in Whites and African Americans. None of the genotype 

distributions among controls deviated from Hardy Weinberg Equilibrium (IGF-II Apa1 
p=0.99, IGFBP-3 p=0.99, and AMP1 p=0.72).

Table 3 shows plasma levels of IGF-II, IGF-I, IGFBP-3, and C-peptide among controls 

carriers of IGF axis genes polymorphisms. Overall, circulating levels of IGF-I, IGF-II, 

IGFBP-3 and C-peptide were similar in Whites and African Americans. Within each ethnic/

race group, plasma concentrations of IGF-I and IGF-II also did not vary significantly by 

genotype. We then analyzed C-peptide concentrations, a stable surrogate for measuring 

insulin levels, in carriers of the AMP1 SNP, since polymorphisms of the adiponectin gene 

are associated with insulin resistance and type II diabetes [58, 59], known confounders of 

colon cancer risk. Compared to non-carriers, we observed lower C-peptide concentrations 

among carriers of the AMP1 genotype in African Americans (p=0.13) and Whites (p=0.36) 

although not statistically significant. In Whites, non-carriers of the IGFBP-3 variant had 

significantly higher plasma levels of IGFBP-3 (3543 ng/ml, SE=110) than either 

homozygous carriers (3188 ng/ml, SD=104, p=0.03) or heterozygous and homozygous 

carries (3239 ng/ml, SE=80) (p=0.008), an association not found in African American. The 

ratio of IGF-I/IGFBP-3 levels showed higher concentrations in White and not in African 

American carriers of the IGFBP-3 variant, however not in carriers of the IGF-I (CA)19 

repeat.
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Discussion

In this population-based case control study, we evaluated the associations of four SNPs in 

IGF-I, IGF-II, IGFBP-3 and adiponectin, and colon cancer risk in African Americans and 

Whites. We also examined associations between these genotypes and their protein products 

among population controls. After adjusting for known confounders, we found that carrying 

the IGF1 (CA)19 repeat polymorphism was associated with an increase in colon cancer risk 

while carrying the IGF-II Apa1A variant was associated with lower risk. This association 

was limited to Whites. However, we found no evidence for an association between carrying 

these variants and circulating protein products, IGF1 and IGF2. We also found that carrying 

the IGFBP-3 and AMP1 variants was not associated with risk of colon cancer in either 

ethnic group. However, among otherwise healthy individuals, carrying the IGFBP-3 
polymorphism was associated with lower IGFBP-3 levels in Whites, and a trend for lower 

IGFBP-3 levels in African Americans. IGF-I/IGFBP-3 ratio concentrations were 

significantly higher in White carriers of the IGFBP-3 SNP, but no differences were observed 

in White carriers of the IGF1 (CA)19 repeat variant nor in African American carriers of 

these SNPs, indicating that the IGFBP-3 SNP may influence lower expression of IGFBP-3 

and perhaps colon cancer risk in Whites.

Although twin studies suggest that serum levels of IGF-I, IGF-II and IGFBP-3 may be 

influenced by a combination of genetic and environmental factors [21, 60–62], few 

epidemiologic studies have considered the impact of the genetic component on plasma 

levels when examining associations with colon cancer. To our knowledge, this is the first 

population-based study that includes a significantly large number of African Americans, to 

report on four insulin-pathway related genes polymorphisms and colon cancer risk and 

simultaneous evaluation of their influence on circulating protein plasma levels among 

controls. The frequencies for IGF-I (CA)19 repeat polymorphism in African Americans and 

Whites were within the ranges previously reported by others [25, 54, 55, 57] and HapMap 

[63]. Our findings that homozygosity for the IGF-I (CA)19 repeat polymorphism was 

associated with increased risk of colon cancer among Whites are consistent with the 

majority of studies that have evaluated the IGF-I(CA)19 repeat polymorphism and colon 

cancer [64] although the association with protein concentrations differ. While some studies 

reported correlation with reduced IGF-I levels [23, 25], others found that the IGF-I (CA)19 

repeat did not predict plasma levels [27, 65]. However, these findings are consistent with 

those of our previous reports where the effects of the IGF-I (CA)19 polymorphism on 

circulating concentrations of IGF-I varied considerably by race/ethnicity [66], and 

associated with prostate cancer risk [67]. A recent study in a Chinese population, further 

analyzed the potential causes of these ethnic differences and found that the IGF-I (CA)19 

repeat by itself is not the primary regulatory element of IGF-I expression [68]. The null 

results among African Americans in the present study, could be due to their lower frequency 

of the IGF-I (CA)19, repeat, or to recently identified factors, including other genetic variants 

in the IGF-I regulatory region which may be contributing to the regulation of IGF-I 
expression. In addition, the high degree of linkage disequilibrium in the IGF-I promoter 

region cannot be fully measured by association studies [68]. Furthermore, IGF-I/IGFBP-3 

ratio levels did not vary in African American and White carriers of the IGF-I (CA)19, repeat 
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SNP, however, IGF-I/IGFBP-3 ratio levels were higher in White carriers of the IGFBP-3 
SNP, suggesting that lower levels of IGFBP-3 may be influencing higher free IGF-I in 

circulation, a combination of factors that has been previously shown to be independently 

associated with an increased risk of colorectal adenoma and cancer in women [15].

Neither African American nor White carriers of the IGFBP-3 polymorphism had increased 

colon cancer risk. However, among otherwise healthy individuals, carriers in both 

populations had significantly lower IGFBP-3 plasma levels, compared to non-carriers, 

although a dose-dependent trend was not apparent. Lower circulating IGFBP-3 levels have 

been associated with poor prognosis among colorectal cancer patients receiving 

chemotherapy [69, 70] while higher IGFBP-3 plasma levels associated with decreased colon 

cancer risk [8, 13]. A human colorectal carcinogenesis genome-wide study recently 

identified missense mutations in the IGFBP-3 gene, which could be modulating IGFBP-3 
transcripts and subsequent protein expression [69]. These mutations could be in linkage 

disequilibrium with the IGFBP-3 polymorphism and thus explain the association between 

lower IGFBP-3 protein levels and CC risk in controls, however the IGFBP-3 polymorphism 

by itself was not associated with CC risk.

The role of the exon 9 Apa I polymorphism of the IGF-II gene in colon cancer is unclear, 

although some studies suggest that circulating levels of IGF-II and local tissue expression 

may be influenced by loss of imprinting [71]. In this study, the IGF-II Apa1 AA variant 

genotype was inversely associated with colon cancer risk among men and women 

particularly among Whites (data not shown). Those carrying the IGF-II Apa1 A-variant had 

somewhat lower circulating levels of this potent growth factor compared to those without 

the variant. This contrasts with the findings by Ma et. al. [10] who reported no association 

between IGF-II levels and colorectal cancer risk in a case-control study. It is possible that 

the influence of the A-variant on protein levels is less than what would be achieved by IGF-
II relaxation of imprint controls, since IGF-II is an imprinted gene.

Obesity, central adiposity, and increased energy intake are associated with elevated risk of 

colon cancer [3, 72, 73] via their effects on insulin levels, insulin resistance [74] and 

inflammation. Adiponectin, an adipose secreted cytokine, is responsible for enhanced insulin 

sensitization [75] and has been associated with known colon cancer risk factors namely 

obesity, type 2 diabetes, and inflammation [5, 76–80]. Plasma adiponectin levels have been 

evaluated relative to colon cancer with contradictory results. Wei et al. [81] observed that 

low plasma adiponectin was associated with increased risk of colorectal cancer among men, 

while another study observed no association between plasma adiponectin and colorectal 

cancer [82]. We reasoned that genetic variation in adiponectin may contribute to these 

conflicting reports. Several adiponectin variants have been shown to affect adiponectin 

levels and have been associated with insulin resistance, obesity, and type 2 diabetes [83]. 

However, few studies have evaluated adiponectin polymorphisms in relation to colon 

cancer. We examined a polymorphism in the adiponectin gene (276G>T) and observed a 

lower colon cancer risk in African American carriers of this variant. We also found a 

decrease in C-peptide for the T-allele in both African Americans and Whites. The T allele is 

associated with elevated levels of adiponectin [83, 84] and improved insulin sensitivity [78], 

therefore our findings of reduced plasma C-peptide among controls with the T-allele 
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supports previous observations. Recent reports showed that lower levels of prediagnosis 

plasma C-peptide among patients with surgically resected colorectal cancer associated with 

decreased mortality [85], whereas elevated concentrations of C-peptide may predict the risk 

of developing colorectal cancer [86], however genetic factors were not analyzed in these 

studies. Although our findings should be interpreted with caution since we measured non-

fasting C-peptide concentrations, mean levels (0.84 (0.72–0.96) pmol/mL and 0.92 (0.82–

1.01) pmol/mL) in African American and White controls, respectively) were strikingly 

similar to mean and fifth quintile levels reported by others [48] under the same non-fasting 

conditions (mean=0.70 (0.59–0.82) pmol/mL) (Q5=0.97 (0.74–2.02) pmol/mL). Our 

findings, even though not statistically significant showed that African American and White 

APMI variant carriers had lower levels of circulating C-peptide (0.73 (0.62–0.83) and 0.86 

(0.75–0.96) pmol/mL, respectively). Hara et al. [84] found that among subjects with high 

BMI, the GG genotype was related to increased insulin resistance and low levels of 

adiponectin.

Although this is not a genome-wide study, and we cannot exclude the influence of other 

genes or other SNPs in these pathways, only one measure of proteins was made, yet there 

may be considerable variation in plasma levels over time, and C-peptide levels were 

measured under non-fasting conditions. However, our results relating protein differences to 

colon cancer risk are compatible with observations from cohort [9, 10, 86, 87] and other 

case-control studies [88]. Our findings of racial differences in both the association of 

genotypes on colon cancer risk and effects on circulating protein levels are novel and 

contribute to the existing literature on insulin-IGF axis and insulin resistance-related factors 

strong associations with colon cancer. In a previous study of 70 African Americans and 

Caucasians, we found that the effect of genetic and lifestyle factors such as cigarette 

smoking and IGF-I CA repeats influenced IGF1 and IGFBP-3 plasma levels in one race 

group only [65].

In summary, this study provides evidence for associations between heritable insulin–IGF 

axis factors and colon cancer risk -a risk most pronounced in Whites. The association 

between the insulin-IGF axis genetic variants and circulating protein products will require 

replication in larger studies where ancestral markers are used to define race/ethnicity.
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Fig. 1. Distribution of IGF-I alleles among African Americans and Whites
IGF-I (CA)n polymorphic repeats ranged from n=11 (fragment size 174 bp) to n=24 repeats 

(fragment size 202 bp) and the most common repeat was n=19 (fragment size 192 bp). IGF-I 
(CA)19 is the most frequent allele among African American and Whites cases and controls
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