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Abstract

Tumors are appreciated to be an intrinsically heterogeneous population of cells with varying

proliferation capacities and tumorigenic potentials. As a central tenet of the so-called cancer stem

cell hypothesis, most cancer cells have only a limited lifespan and thus cannot initiate or re-initiate

tumors. Longevity and clonogenicity are properties unique to the subpopulation of cancer stem

cells. To understand the implications of the population structure suggested by this hypothesis - a

hierarchy consisting of cancer stem cells and progeny non-stem cancer cells which experience a
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reduction in their remaining proliferation capacity per division - we set out to develop a

mathematical model for the development of the aggregate population. We show that overall tumor

progression rate during the exponential growth phase is identical to the growth rate of the cancer

stem cell compartment. Tumors with identical stem cell proportions, however, can have different

growth rates, dependent on the proliferation kinetics of all participating cell populations. Analysis

of the model revealed that the proliferation potential of non-stem cancer cells is likely to be small

to reproduce biologic observations. Furthermore, a single compartment of non-stem cancer cell

population may adequately represent population growth dynamics only when the compartment

proliferation rate is scaled with the generational hierarchy depth.
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1 Introduction

It is now widely appreciated that tumors contain cells with different tumor-perpetuation

capacities and survival fates. So-called cancer stem cells, or tumor initiating cells, make up

an often-argued minor subpopulation of cells that are uniquely able to initiate persistent

tumor growth, and reinitiate tumors after preferentially surviving immune surveillance or

therapeutic interventions. The majority of cancer cells in tumors are cells that lack longevity

and have only limited proliferative potential; so-called non-stem cancer cells. Heterogeneous

populations of cancer cells composed of subpopulations with and without stemness fate have

been identified, for example, in tumors of the breast, brain, prostate and colon (Al-Hajj et al.

(2003); Singh et al. (2003); Fioriti et al. (2008); Cammareri et al. (2008)). The proportion of

cancer stem cells in a tumor differs among organ systems, and may even span multiple

orders of magnitude amongst patients with tumors of the same organ (Visvader and

Lindeman (2008)). While the hierarchical structure in a tumor population is conceptually

well understood, cancer stem and non-stem cell-cell interactions and their implications for

overall tumor growth dynamics are yet to be completely deciphered.

Mathematical, physical, computational and engineering techniques have increasingly been

applied to the complex biological system that arises from stem cells and non-stem cell

dynamics (Turner et al. (2009); Michor et al. (2005); Sottoriva et al. (2010); Kapitanov

(2012); Marciniak-Czochra et al. (2009a); Tomasetti and Levy (2010); Youssefpour et al.

(2012); Rodriguez-Brenes and Peskin (2010); Daniel et al. (2002); Beretta and Capasso

(2012); Piotrowska et al. (2008); Solé et al. (2008)). Ganguly and Puri (2006) used a

compartmental model to study the emergence of abnormal progeny populations after

oncogenic hits. The model showed that the growth rate of abnormal cell populations

increases with fast consecutive insults that cause sudden cell depletion and subsequent stem

and progenitor cell outgrowth.

Focusing on the exponential tumor growth phase, Johnston et al. (2010) and Molina-Peña

and Álvarez (2012) developed ordinary differential equation models of stem, transit-

amplifying (or progenitor), and fully differentiated cell populations to study constant cancer

stem cells fractions in tumors. Depending on the tumor growth and differentiation rates
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balance, Johnston et al. (2010) showed that stem cells can comprise any proportion of the

tumor, and that higher stem cell proportions likely yield more aggressive tumors. Molina-

Peña and Álvarez (2012) showed that certain kinetic relationships must be satisfied in order

for the calculated tumor growth and stem cell fraction to be consistent with experimental

observation. Recently, Hillen et al. (2012) developed an integro-differential equation model

of cancer stem and non-stem cell populations, based on an agent-based model by Enderling

et al. (2009), and showed that the two populations interact with each other such that higher

rates of cell death in the non-stem compartment lead to enrichment of cancer stem cells and

thus accelerated overall growth. The Hillen model considered tumor growth beyond the

exponential growth phase and introduced a carrying capacity, which could either be spatial

limitations due to for example tissue membranes or dense muscle tissues (Enderling et al.

(2013)), or vascular diffusion imposed oxygen tension (Hahnfeldt et al. (1999)). Constant

cell turnover and competition with the carrying capacity revealed that the cancer stem cell

fraction may not be constant, but in fact be continuously increasing, with a pure cancer stem

cell state being the only stable steady state in that model (Hillen et al. (2012)).

While differential equation models simulate tumor population dynamics, the interaction of

individual cell populations with each other is difficult to analyze. In particular, non-stem

cancer cells are either grouped into a single compartment (Hillen et al. (2012)) or divided

into transit amplifying cells and fully differentiated cells (Johnston et al. (2010); Molina-

Peña and Álvarez (2012)). Agent-based models and cellular automaton approaches,

however, have shown that in addition to cancer stem cell self renewal (Sottoriva et al.

(2010); Enderling et al. (2013)), the number of amplifications of progenitor cells is one of

the most pivotal modulators of overall tumor dynamics (Enderling et al. (2009); Morton et

al. (2011))

To model the cellular hierarchy in more detail and quantitatively capture subcompartment

interactions, Rodriguez-Brenes et al. (2013) developed a compartment model to investigate

cell dynamics within a cell lineage for homeostatic equilibria. Cell division in each

compartment occurs at a compartment-specific rate and self-replication probability. The

model is aimed to understand how the number of intermediate cell compartments, self-

replication probabilities, and division rates affect the distribution of the replication

capacities in the non-stem population.

Marciniak-Czochra et al. (2009b) developed a multi-compartment differential equation

model for hematopoietic differentiation to study if hematopoiesis is compatible with cell

division restrictions. In their model, differentiation and proliferation potential, i.e. number of

divisions until senescence, represent independent dimensions with 6 and 50 stages,

respectively. The larger number of divisions is obtained by assuming self-renewal

throughout the differentiation hierarchy. Simulations of the model showed hematopoiesis

with proliferation and self-renewal fractions correlating with differentiation stage.

Interestingly, progenitor cell proliferation potential decreases with age, which is

compensated for by an increase in cell number (Marciniak-Czochra et al. (2009b)). In a

study of different 6-compartment models of the hematopoietic system, Marciniak-Czochra et

al. (2009a) showed that the number of cell divisions before terminal maturation is dependent

on the rates of stem and progenitor cell proliferation. Taking this analytical approach a step
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further, in a recent study, Werner et al. developed closed analytical solutions for mutations

in a multi compartment model of normal tissue lineages for which they assumed a finite

number of cells, a constant number of stem cells and symmetric self-renewal in all

compartments (Werner et al. (2011)). The model showed that mutations in non-stem cells

die out, whereas an equilibrium of mutated cells can be reached if mutations occur in stem

cells or differentiated cells that acquire stem cell properties (Werner et al. (2011)).

Motivated by the analytic inroads made by Marciniak-Czochra et al. (2009b) and Werner et

al. (2011), we set out to develop a multi-compartment differential equation model for the

development of a heterogeneous cancer cell population where each tumor subpopulation is

comprised of cells of comparable remaining proliferation potential. We will analyze the

dominant cell population as a function of cancer stem cell kinetics and estimate cell turnover

that yield experimentally observed data.

2 Cancer Stem Cells

Reliable experimental isolation of cancer stem cells and their long term in vitro culture

maintenance are the subject of extensive ongoing research (Sherley (2002); Lathia et al.

(2011); Sottoriva et al. (2013); Driessens et al. (2013)). The cancer stem cell hypothesis,

perhaps more aptly termed the cancer non-stem cell hypothesis, postulates that only a stem-

like subpopulation can initiate or sustain tumor growth, as well as give rise to the observed

phenotypic diversity in a tumor (Al-Hajj et al. (2003)). Conceptually, only cancer stem cells

are long-lived and have unlimited replicative potential. Non-stem cancer cells have a limited

proliferative potential and will inevitably die when that potential is exhausted. During non-

stem cancer cell division, both non-stem daughter cancer cells will inherit a decremented

proliferation potential, arguably due to erosion of non-coding DNA end segments, so-called

telomeres that serve as the cell’s mitotic clock (Olovnikov (1973); Blackburn and Gall

(1978); Harley et al. (1990)). Cancer stem cells can either divide symmetrically to produce

two cancer stem cells or asymmetrically to produce a cancer stem cell and a non-stem cancer

cell, or undergo symmetric commitment to give rise to two non-stem cancer cells. The fate

of cancer stem cell division may also depend on a number of other factors, including

modulation by external stimulatory queues (Lathia et al. (2011)) of importance for

understanding clinically relevant tumor evolution (Gillies et al. (2012); Orlando et al.

(2013)). As a first step toward understanding the entire process, however, we seek here to

and elucidate the essential role of intrinsic tumor composition and proliferation kinetics in

the process.

3 Linear Multicompartment Model

We focus our analysis on exponential tumor growth, that is physiological regulatory

feedback on stem cell division and self-renewal is lost (Rodriguez-Brenes et al. (2011)) and

spatial inhibition is neglected (Folkman and Hochberg (1973)). We assume that cancer stem

cells have unlimited replicative potential, and perform symmetric division into two cancer

stem cells with probability p1, asymmetric division into one cancer stem cell and one non-

stem cancer cell with probability p2, and symmetric commitment with probability p3 = 1−p1

−p2 resulting in two non-stem cancer cells. We assume that non-stem cancer cells are non-
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clonogenic and undergo a finite number of divisions before dying. We denote this

proliferation capacity by m. We assume that an mth generation non-stem cancer cell suffers

replicative cell death as it tries to proliferate. In the model, the proliferation rates (also called

the number of cell cycles per unit time) λ and γ of stem and non-stem cancer cells as well as

their respective death rates a and b are constant.

Let C(t) denote the number of cancer stem cells at time t and Nk(t) denote the number of kth

generation non-stem cancer cells at time t for k = 1, ··· , m. Change in the cancer stem cell

population is due to symmetric division, symmetric commitment, and cell death. Cancer

stem cells are produced at rate p1λC, and are removed via cell death at the rate aC and via

symmetric differentiation into two first generation non-stem cancer cells at rate p3λC. In

addition to symmetric cancer stem cell differentiation, first generation non-stem cancer cells

are created during asymmetric cancer stem cell division at the rate p2λC. The first

generation non-stem cancer cell population gets depleted by division into second generation

cells at rate γN1 and also via cell death at rate bN1. The kth generation of non-stem cancer

cells gain cells with rate 2γNk−1 cells per unit time and lose cells at the rates γNk due to

further divisions into the next compartments and the rate bNk due to death. Attempted

division in the mth generation results in replicative death. Table 1 summarizes the

parameters used in the model and and their typical values. The flow into and out of these

generational compartments is illustrated in Figure 1 and is described by the following

system of ordinary differential equations:

(1)

(2)

(3)

(4)

Let

denote the net growth rate of the cancer stem cell population. To study tumor growth

dynamics, we consider β > 0. The exact analytical solution to the linear system (1)–(4) is

derived in Appendix 1 and is given as follows:
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(5)

and

for k = 1, ··· , m. Here, the parameter θ is

Since β, γ, b > 0, θ is positive. Note, if θ = 1, then γ − b = β; essentially, the net growth rate

of non-stem cancer cells equals the net growth rate of cancer stem cells. If θ < 1, then γ − b

< β expresses that the net growth rate of non-stem cancer cells is less than that of the stem

cells.

We denote the total population of non-stem cancer cells by H(t),

and we find that

where

The long-term asymptotic behaviors of Nk(t) and H(t) are given by

(6)

and
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(7)

If we define Γ to be the total tumor population that arises per cancer stem cell, then the total

tumor population Q in the long run is

(8)

and

(9)

The asymptotic rate of change of the total tumor population is

Therefore, the net change in total tumor population per unit time – a putative measure of

tumor aggressiveness – is simply the net growth rate of cancer stem cells β:

The asymptotic solutions (6) are the direct solutions of the linear system assuming the

contributing cancer stem cell population has a net growth behaving like eβt. This is in

agreement with the study of the exponential tumor growth phase as done by Johnston et al.

(2010). Beyond the initial transient, we find that if θ > 1, i.e. γ − b > β, the generational

contribution to the total population at time t is

whereas if θ < 1 then the generation sizes are in reverse order

If θ = 1, all non-stem cancer cell populations contribute equally to the total tumor population

with
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and Hs = mN1s.

From (8), the long-term proportion of cancer stem cells in the tumor settles to

(10)

and its reciprocal defines the total cancer cell population that arises from a single cancer

stem cell, i.e.

(11)

where Γ is defined in (9).

For θ > 1, the ratio of total cells to cancer stem cells grows asymptotically exponentially as

the proliferation capacity m of non-stem cancer cells increases, driving the stem cell fraction

towards 0. (Figure 2). By contrast, For θ < 1, as m approaches infinity, the cancer stem cell

proportion decreases towards a finite value > 0, specifically,

and the total population that arises per cancer stem cell increases to Γθ<1,m→∞.

For θ = 1,

and as m increases the proportion of cancer stem cells in the tumor decreases towards zero.

To illustrate the tumor growth dynamics and generational hierarchy within the tumor, let us

consider the positive net cancer stem cell growth rate of β = 0.2, and a non-stem cancer cell

proliferation capacity of m = 5. Let the proliferation rates of stem and non-stem cancer cells

be γ = λ = 1, and assume the cancer stem cell death rate and division fate parameters are a =

0.1 and p1 = 0.3, p2 = 0.7, p3 = 0, respectively. Figure 3 shows how the tumor population per

cancer stem cell increases as θ increases. The variation in θ here arises due to changes in the

death rate of non-stem cancer cells b (with larger b values yielding smaller θ values). Figure

4 shows how the proportion of the subpopulations in the tumor evolves in time for various θ

values, starting from a pure cancer stem cell population (C(0) = 1, Nk(0) = 0). After the

initial transience, there is always an eventual strict ordering for the Nk population fractions

when θ ≠ 1 as discussed above, but the final proportional contribution of C depends on the

chosen parameter set.
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4 Estimation of non-stem cancer cell proliferation potential

As experimental biomarkers for proliferation potential are yet to be developed, we use the

current model to investigate plausible ranges of the non-stem cancer cell proliferation

potential. Gao et al. (2013) recently reported that the cell cycle of U87MG human

glioblastoma cells varies between 19 and 35 hours in vitro, with an average of 25 hours.

These experiments set the limits for the proliferation rates in our model from a low of 24/35

= 0.69 to a high of 24/19 = 1.26. In line with the assumptions and observations in Gao et al.

(2013), we set the cancer stem cell division probabilities p1 = 0.35, p2 = 0.65, p3 = 0, and the

cell death rates a = 0, b = 0.1. Let C(0)=1, and Nk(0)=0. We calculate the total tumor

population Q after t = 50 time steps for varying values of non-stem proliferation rates γ. We

fix the cancer stem cell proliferation rate at λ = 1 (Fig. 5A), and λ = 1.26 or λ = 0.69 (Fig.

5B) for a non-stem cancer cell proliferation capacity m = 5. Results show that there exists a

non-stem cancer cell proliferation rate γ* such that tumor size is maximized at t = 50. The

total tumor population generated per cancer stem cell, i.e. Γ = Q/C, mimics the dynamics of

the total population (Fig. 5A). These observed γ* = 1.24, 1.49, and 0.95 for λ = 1, 1.26, and

0.69, respectively, indicate that tumor growth is optimized with cell cycle times between 16

and 26 hours, as observed in experiments (Gao et al. (2013)). For larger m = 10 (with λ = 1),

however, the largest populations are achieved with biologically unrealistic γ* = 3.46, 4.18,

and 2.65, indicative of cell cycles as short as 5 – 9 hours. In fact, for fixed λ = 1, various

proliferation capacities 3 ≤ m ≤ 11 and probabilities of symmetric cancer stem cell division 0

< p1 ≤ 0.5 reveal that only a subset of the parameter space (4 ≤ m ≤ 9) yields optimal tumor

growth within experimentally observed cell cycle times (Figure 6). Interestingly, for

increasing progenitor proliferation potential m, the probability of symmetric cancer stem cell

division p1 must decrease for the tumor to grow to the maximum possible size for realistic

cell cycle lengths. Reciprocally, for increasing p1 the progenitor proliferation potential m

must decrease to optimize overall tumor growth.

5 Two-compartment model

Mathematical models of cancer stem cell driven tumors previously assumed two (cancer

stem cells and non-stem cancer cells; Hillen et al. (2012)), three (cancer stem cells,

progenitor cells, and terminally differentiated cells; Johnston et al. (2010); Molina-Peña and

Álvarez (2012)) or four compartments (cancer stem cells, progenitor cells, differentiated

cells and terminally differentiated cells; Michor et al. (2005)). We reduce the introduced

multicompartment model (1)–(4)) to a two-compartment model and compare the resulting

dynamics to the multicompartment model as well as models from the literature. Summing up

the equations for all Nk in system (2)–(4) gives

(12)
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(13)

This equation, along with (1), would give a two-compartment model to replace (1)–(4) if we

could explicitly express Nm in terms of C or H.

Equation (6) for k = m suggests that we use the approximation

while (6) and (7) lead us to consider the approximation

(14)

As shown in Appendix 2, approximation of Nm in terms of C is inappropriate.

Approximating Nm with H (14) and closing the system yields a two-compartment model:

(15)

(16)

We denote the solution of H in this system as H2H.

Let m → ∞ and assume that θ < 1, so that  is finite as m → ∞ (hence Nm →

0). Then (12) and (13) give

This gives exactly the linear version of the two-compartment model for stem and non-stem

populations in Hillen et al. (2012) under the assumption of immortal stem cells (a = 0) and

no symmetric commitment (p3 = 0):

(17)

(18)
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In Hillen et al. (2012), it is assumed that b > 0 reflects exhaustion of proliferation potential

as well as spontaneous death. We denote the solution of H in this system as H∞.

Figure 7 illustrates the agreement of H2H, the solution of our two-compartment model (15)–

(16), with the solution of the multicompartment solution of H in (1)–(4), for various m and θ

< 1 fixed. The figures also show that the solution H∞ of the linear two-compartment model

(17)–(18) which does not have an explicit consideration of the proliferation capacity m does

not give the correct multicompartment solution for moderate m but matches better as m gets

large. Figure 8 illustrates the point that the linear version of the Hillen two-compartment

model is quite unsuitable for θ > 1.

This suggests that the growth rate value for γ in a two-compartment model (18) would not

be equivalent to the value for γ used in a multicompartment model (2)–(4). That is, treating a

non-stem cancer cell population with proliferation capacity m as a homogeneously-aged

population requires the proliferation rate γ to be replaced for each generation with a net

proliferation rate γ∞ of all generations taken together. For example, (16) and (18) suggests

using

The importance of scaling the net proliferation rate with a generational hierarchy depth

dependent proliferation capacity is illustrated in Figure 9. The solution of the two-

compartment model (15)–(16) disagrees with that of the full multicompartment solution if

an inappropriate m is used.

6 Discussion

We have presented a linear multi-compartment mathematical model of tumor growth

following the cancer stem cell hypothesis. As an augmentation to the increasing literature on

mathematical models of cancer stem cell-driven tumor growth, we introduced different non-

stem cancer cell compartments that comprise cells of comparable remaining proliferation

potential. This generational hierarchy has been shown to play a prominent role in

modulating overall tumor population dynamics in agent-based models (Enderling et al.

(2009); Morton et al. (2011)). For simplicity we ignored physiological regulatory feedback

(Rodriguez-Brenes et al. (2011)) and focused on the exponential growth phase of the tumor

in line with other recent studies (Johnston et al. (2010); Molina-Peña and Álvarez (2012)).

Introducing a population carrying capacity or feedback from non-stem cancer cells on

cancer stem cells will modulate overall tumor progression rate, but not the generational

hierarchy population structure analysis presented here. Analysis of the presented model

showed that the net rate of change of the total tumor population, interpretable as tumor

aggressiveness, is simply the net growth rate of the cancer stem cell compartment, β. This

result is intrinsic to multi-compartment models where a pure non-stem cancer cell

population decays. Exploration of the parameter space of the presented model revealed that

tumors with identical aggressiveness β can have remarkably different proportions of cancer
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stem cells. Reciprocally, tumors with identical cancer stem cell fraction, can have different

net population growth rates and thus different aggressiveness. This contrasts with

observations in Johnston et al. (2010)) that suggested that a higher cancer stem cell fraction

correlates with a more aggressive tumor if the total tumor population follows a strict

exponential growth regime.

As one focus of our study was on the contribution of the proliferation potential of non-stem

cancer cells to overall population dynamics, we investigated the proportion of cancer stem

cells in the arising tumor dependent on the generational hierarchy of their non-stem progeny.

We found, intuitively, that with increasing non-stem cancer cell proliferation capacity the

total tumor population increases as well as the population generated by each cancer stem

cell. Inversely proportionally, however, the fraction of cancer stem cells diminishes. At the

same time, the contribution of each generational compartment to the total population

reverses from predominantly older compartments, that is cells that have proliferated more

with consequently decreasing remaining proliferation potential, to preferentially young cells

in equally-sized tumors. Despite identical cancer stem cell kinetics, tumor size and overall

tumor growth rate, the intrinsic death rate of the non-stem cancer cell compartments may

have a pivotal contribution to treatment outcome. Tumors with mostly post-mitotic cells

may not benefit from treatment as much as tumors with primarily young cells.

In exploration of the model parameter space we found an unexpected dependence of optimal

tumor growth on basic cell kinetics. Analysis of the model revealed that only low non-stem

cancer cell proliferation capacities yield optimum tumor growth for cell cycle times that are

within biologically observed ranges. That indicates that tumors either grow with sub-optimal

cell cycle times, or that non-stem cancer cells must be short-lived. Support to the latter

hypothesis comes from the somewhat counterintuitive observation that cancer cell telomere

length indicative of proliferative capacity is surprisingly short in most tumors (Shay and

Wright (2011)).

The model presented herein is the first attempt to decipher the contribution of the

generational hierarchy in the non-stem cancer cell population to overall tumor dynamics. For

simplicity, we assumed a rigid cellular phenotype and ignored cell de-differentiation and

resulting phenotypic plasticity (Marjanovic et al. (2013)). A mathematical description of

stem cell plasticity (Roeder and Loeffler (2002); Leder et al. (2010)) as well as non-linearity

from saturations (Johnston et al. (2010)) or population-level carrying capacity limitations

(Folkman and Hochberg (1973)) can be incorporated in future model developments to arrive

at a more comprehensive understanding of the complex biology underlying cancer stem cell-

driven tumor dynamics.
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Appendix 1

We introduce the notations

Then, using (5), we rewrite the system of equations (2)–(4) as

where β = (p1 − p3) λ − a. Define

and substitute nk(t)e−zt in the system above to arrive at

(19)

(20)

(21)

(22)

The solution to (19)–(22) is
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so

where

The asymptotic behavior of Nk for large t is

The exact solution for H is found by direct summation over the Nk:

Defining

and using

we get that
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The asymptotic behavior of H for large t is

Appendix 2

Replacing Nm in (13) with the expression

from (6) gives the two-compartment system:

(23)

(24)

We denote the solution of H in this system as H2C.

The exact solution to the two-compartment model with (24) is such that

where

and where Hs is the asymptotic solution of the multicompartment system given in (7),
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Now θ < 1 ⇒ κ1 < 0 and, in this case, we see that H2C/C → Hs/C as time passes but when θ

> 1, we have κ1 > 0 so H2C/C diverges from Hs/C and this two-compartment model is not

reliable.

On the other hand, if we use the equation (16) as the second equation in our two-

compartment model:

the solution for H which we have called H2H is such that

where

Here κ2 < 0 for all θ > 0, so that H2H → Hs for large time which is what we need.

Figure 10 compares the H/C that comes from the full multicompartment model, the H2H/C

coming from (16), and H2C/C coming from (24). One can indeed see that when θ < 1, H2C/C

gives a good approximation to H/C, but not when θ > 1. For the parameters used in the latter

case, H2C/C is negative and the solution heads to −∞.
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Fig. 1.
Cell populations in the multicompartment age-structured model. The shaded area highlights

the generational hierarchy of non-stem cancer cells. C: cancer stem cells; Nk: the kth

generation of non-stem cancer cells.

Weekes et al. Page 19

Bull Math Biol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
A) Tumor population per cancer stem cell Γ and B) proportion of cancer stem cells Γ−1 for

increasing generational hierarchy depths m. Other parameters: β = 0.2, γ = 1, λ = 1, p1 = 0.3,

p2 = 0.7, a = 0.1, b = 0.1, θ = 1.5385.
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Fig. 3.
Tumor population per cancer stem cell Γ due to various θ, assuming m = 5. Other

parameters: β = 0.2, γ = 1, λ = 1, p1 = 0.3, p2 = 0.7, a = 0.1.
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Fig. 4.
Temporal evolution of subpopulation fractions dependent on parameter θ.
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Fig. 5.
A) Graphs of Q and Q/C versus γ for λ fixed at 1. B) Graph of Q/C versus γ for λ fixed at

24/19 = 1.26 (dashed) and λ fixed at 24/35 = 0.69 (solid). Other parameters: m = 5, p1 =

0.35, a = 0, b = 0.1
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Fig. 6.
Values of optimal γ* for different p1 for various m. Shaded areas indicate experimentally

observed cell cycle times. Highlighted are parameter sets that yield optimal growth rates

γ*(p1) within biological observations.
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Fig. 7.
Solutions of H/C in (1)–(4), H2H/C in (15)–(16), and H∞/C in (17)–(18) for m = 10, 20, and

40. Other parameters: λ = γ = 1, p1 = 0.35, p2 = 0.65, a = 0, b = 0.87222 and θ = 0.9.
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Fig. 8.
Solutions of H/C in (1)–(4), H2H/C in (15)–(16), and H∞/C in (17)–(18) for p1 = 0.35, p3 =

0, a = 0, λ = γ = 1 and m = 10 for θ = 1.1 and 1.3.
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Fig. 9.
Solution of H/C in (1)–(4) p1 = 0.35, p3 = 0, a = 0.1, λ = γ = 1, θ = 1.5 for m = 5 and H2H/C

in (15)–(16) for m = 3, m = 5 and m = 7.
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Fig. 10.
Comparison of H/C, H2H/C, and H2C/C for θ = 0.95 and θ = 1.2. Other parameters: m = 10,

λ = 1, γ = 1, p1 = 0.35, p2 = 0.65, a = 0.1, β = 0.25.
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Table 1

Model variables and parameters with chosen values and appropriate references

name meaning typical values reference

C(t) number of cancer stem cells at time t

Nk(t) number of kth generation non-stem cancer cells at time t

H(t) total number of non-stem cancer cell population at time t

Q(t) total number of cancer cells at time t C(t) + H(t)

Γ total population of cancer cells per cancer stem cell Q/C

p1 probability of symmetric cancer stem cell division 0.01 − 0.35 Gao et al. (2013)

p2 probability of asymmetric cancer stem cell division 1 − p1 − p3

p3 probability of symmetric cancer stem cell commitment 0

m proliferation capacity of non-stem cancer cells 3 – 11 Morton et al. (2011)

λ proliferation rate of cancer stem cells 1 Gao et al. (2013)

γ proliferation rate of non-stem cancer cells 1 Gao et al. (2013)

a death rate of cancer stem cells 0 – 0.1

b death rate of non-stem cancer cells 0 – 0.1

β net growth rate of cancer stem cells (p1 − p3)λ − a

θ 2γ/(γ + β + b)
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