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This review discusses the challenges of chemotherapy for human African trypanosomiasis (HAT). The few drugs registered for
use against the disease are unsatisfactory for a number of reasons. HAT has two stages. In stage 1 the parasites proliferate in the
haemolymphatic system. In stage 2 they invade the central nervous system and brain provoking progressive neurological
dysfunction leading to symptoms that include the disrupted sleep wake patterns that give HAT its more common name of
sleeping sickness. Targeting drugs to the central nervous system offers many challenges. However, it is the cost of drug
development for diseases like HAT, that afflict exclusively people of the world’s poorest populations, that has been the principal
barrier to new drug development and has led to them becoming neglected. Here we review drugs currently registered for HAT,
and also discuss the few compounds progressing through clinical trials. Finally we report on new initiatives that might allow
progress to be made in developing new and satisfactory drugs for this terrible disease.
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Introduction

Human African trypanosomiasis (HAT), perhaps better

known as sleeping sickness once the causative trypanosome

parasites have established within the central nervous system

(CNS) (Barrett et al., 2003), is considered as a neglected

disease (Remme et al., 2002). Neglected diseases are those

ailments which affect people from among the world’s

poorest populations, for which satisfactory treatment does

not exist, but for which the investment required to bring

new compounds to market has proven a major disincentive

to drug development.

At the end of the twentieth century, nearly half a million

people were estimated to be afflicted by HAT (Barrett et al.,

2003). Ironically, trypanosomes were among the first organ-

isms to be targeted by synthetic drugs and Paul Ehrlich, ‘the

father of chemotherapy’ (Drews, 2004), chose these organ-

isms as a model on which to test his ideas. During the first

two-thirds of the twentieth century, several compounds were

introduced to treat HAT (Williamson, 1962, 1970; Apted,

1970). Sanofi-Aventis and Bayer between them currently

produce all of the licensed anti-HAT drugs and donate them

free of charge to the World Health Organization (WHO) who

distributes them in Africa.

The African trypanosome is a popular organism for

biological research. Much is known about trypanosome

biochemistry and its genome sequence was published in

2005 (Berriman et al., 2005). The parasite is amenable to drug

target validation through genetic means (Barrett et al., 1999)

and simple screens are available to test drugs (for example,

Raz et al., 1997). However, only a single compound,

eflornithine, has been registered for use against HAT in the
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last 50 years, a reflection of the gap between our under-

standing about the organism and our capacity to develop

new drugs. New initiatives discussed in the final part of this

review promise to close the gap.

Two subspecies of the Kinetoplastid protozoans,

Trypanosoma brucei, cause human disease. T. b. rhodesiense is

responsible for an acute form in Eastern and Southern Africa

(Fevre et al., 2005), while T. b. gambiense causes a chronic

form in West and Central Africa (Figure 1). Generally the

rhodesiense form of the disease is fatal within weeks to

months of inoculation through the bite of an infected tsetse

fly vector (Figure 2), while the gambiense form takes years to

develop. There appears to be some geographical variance in

disease manifestation. For example, in Malawi, patients

carry T. b. rhodesiense and yet harbour the parasites without

their causing CNS-involved disease for many years (MacLean

et al., 2004). Sporadic reports of other trypanosome species

causing disease in humans have appeared. These include

T. congolense (Truc et al., 1998) and T. evansi (Joshi et al., 2005),

which normally infect only animals. Generally, however, a

non-immune mechanism of killing, involving a trypano-

some lytic factor, believed to be apolipoprotein L1 (apoL1)

(Pays et al., 2006) and possibly other components of high-

density lipoprotein fractions (Smith et al., 1995), prevents

most species of African trypanosome from establishing

infections in humans. The single reported case of a T. evansi

infection in man involved a patient who lacked apoL1

(Vanhollebeke et al., 2006). T. b. gambiense was responsible

for the epidemics that marked the end of the twentieth

century. A concerted WHO-led campaign to bring the disease

under control has made an impact in recent years reducing

the number of cases significantly (Barrett, 2006; Anon-

ymous, 2006).

Animal reservoirs play an important role in the epidemiol-

ogy of T. b. rhodesiense, but are less important for T. b.

gambiense although both wild (Njiokou et al., 2006) and

domestic (Simo et al., 2006) animals have been found

infected with this subspecies. Vector control can curb

transmission (Allsopp, 2001) and was successfully employed

in recent years to eradicate trypanosomiasis from Zanzibar

using extensive trapping, followed by the sterile insect

technique (Vreysen et al., 2000). However, it has proven

difficult to implement tsetse control in a coordinated

fashion on the African mainland. A process of antigenic

variation, where parasites repeatedly change the surface coat

that interfaces with the immune system, renders the

prospects of vaccination poor (McCulloch, 2004). Drugs are

central to efforts to control HAT.

Current drugs (Pepin and Milord, 1994; Barrett, 2000;

Legros et al., 2002; Fairlamb, 2003; Burri et al., 2004; Brun

and Balmer, 2006) all suffer drawbacks. Toxicity (sometimes

severe), the need for parenteral administration, lack of a

guaranteed supply and increasing incidence of treatment

failure with some drugs make the situation difficult. The

only compound in advanced phase III clinical trials is the

orally available prodrug, pafuramidine maleate (DB289)

(Boykin et al., 1996; Ansede et al., 2004), which is

metabolized systemically to the diamidine, furamidine

(DB75). It is the first compound whose development as a

trypanocide might be considered to have approached that

typical for registration of a new chemical entity for

therapeutic purposes today. However, it is active only in

stage 1 disease. Other drugs are urgently required, especially

for stage 2 patients as it is generally only this cohort who

present at HAT clinics once neurological symptoms are

manifest. This review discusses those drugs already in use for

HAT and also the few compounds in different stages of the

development process, leading to a discussion of new

initiatives in drug development for HAT.

Drugs registered for HAT chemotherapy

Four licensed compounds are used against HAT today,

depending on the causative subspecies and whether parasites

have initiated disease of the CNS (stage 2) or not (stage 1)

(Pepin and Milord, 1994; Denise and Barrett, 2001; Keiser

et al., 2001; Fairlamb, 2003; Burri et al., 2004; Brun and

Balmer, 2006). Two compounds are used against stage 1

disease: suramin and pentamidine. Against stage 2 disease,

melarsoprol (active against T. b. gambiense and T. b.

rhodesiense) and eflornithine (only useful against T. b.

gambiense) can be used. Nifurtimox, alone or in combination

with other drugs, particularly with eflornithine, is being

considered as an option for melarsoprol-refractory late-stage

disease, or even more widely (Priotto et al., 2006).

Figure 1 A map of countries infected with HAT. The countries
shown in colour have historically reported HAT. Those countries
coloured in red are currently reporting in excess of 1000 cases per
year. Those in brown currently report between 50 and 1000 cases
per year. Those in blue report fewer than 50 cases per year, while
those in green currently report no cases of HAT. Nearly 97% of all
reported cases are caused by T. b. gambiense. T. b. rhodesiense is
found in East and Southern Africa. (Figure courtesy of Dr Pere
Simarro at the World Health Organization.) HAT, human African
trypanosomiasis.
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Drugs used in early-stage disease

Provided HAT is diagnosed sufficiently early, suramin or

pentamidine can be used. Their ease of administration and

relative safety make them preferable to drugs used for stage 2

disease. The rapidly proliferating parasitaemia typical of the

rhodesiense form of the disease can provoke early presenta-

tion by patients at clinic. However, the symptoms of early-

stage gambiense disease do not normally extend beyond a

general malaise common place in rural Africa. These patients

are unlikely to present passively before late-stage involve-

ment. Efforts to improve diagnosis (Chappuis et al., 2005a)

are needed to accompany improved treatment.

Pentamidine

Background. Pentamidine isethionate (Figure 3) is currently

produced by Sanofi-Aventis as pentacarinat in 200 mg

ampoules for intramuscular injection. It is used against

gambiense disease but not usually rhodesiense. The drug is

donated, free of charge, to WHO for distribution. Four

milligrams per kilogram given daily, or on alternate days,

Figure 2 The life cycle of Trypanosoma brucei. Parasites are transmitted to man by the bite of an infected tsetse fly. Within man, the parasites
proliferate first within the haemolymphatic system and later invade the CNS. Proliferative bloodstream slender form parasites (a), transform via
an intermediate form (b) into non-proliferative stumpy forms (c). These are pre-adapted to survive within a tsetse fly where they transform into
procyclic forms (d) that proliferate in the midgut of this environment before passing through various other stages including the epimastigote
form (e) until transforming into metacyclic trypomastigotes (f) in the salivary glands. These forms are preadapted for life in the mammalian
host when injected during a bloodmeal. Forms that are capable of division are labelled with a D. CNS, central nervous system.
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for 7–10 days are typical schedules (Sands et al., 1985; Burri

et al., 2004).

Modes of action and resistance mechanisms. Pentamidine is

concentrated to high levels (in the low millimolar range) by

trypanosomes exposed to low micromolar concentrations of

the drug (Damper and Patton, 1976a; Berger et al., 1995;

Carter et al., 1995; de Koning, 2001a; Bray et al., 2003).

Uptake is carrier mediated (Damper and Patton, 1976b). The

drug enters principally via the P2 aminopurine permease

which also transports melaminophenyl arsenicals (Carter

et al., 1995). A high-affinity pentamidine transporter 1

(HAPT1) and a low-affinity pentamidine transporter 1

(LAPT1) also contribute to pentamidine uptake (de Koning,

2001a); hence parasites selected for melaminophenyl arseni-

cal resistance that lack the P2 transporter often remain

sensitive to pentamidine (Frommel and Balber, 1987; Fair-

lamb et al., 1992a; de Koning, 2001b; Matovu et al., 2003).

One laboratory line selected for pentamidine resistance

continued to accumulate drug to high levels and retained

activity of the P2 transporter (Berger et al., 1995). This

parasite line was of much reduced virulence in rodents,

which might indicate that the development of resistance to

pentamidine is associated with substantial fitness costs,

rendering the propagation of resistant lines in the field

unlikely (Berger et al., 1995; Bray et al., 2003). Another line,

this time selected for pentamidine resistance in a cell line

already lacking the P2 transporter (TbAT1, T. brucei adeno-

sine transporter 1) (Matovu et al., 2003), also developed a

reduced virulence phenotype, but on this occasion penta-

midine uptake was greatly reduced and the HAPT1 transpor-

ter was reported to be lost (Bridges et al., 2007).

While pentamidine’s uptake into trypanosomes has been

characterized in detail, its definitive mode of action is not

certain (Berger et al., 1993; Werbovetz, 2006). The mitochon-

drion appears to be a target for pentamidine in various

species including yeast (Ludewig et al., 1994). In Leishmania

parasites (close relatives of trypanosomes), fluorescent

analogues of pentamidine accumulate preferentially in this

compartment and mitochondrial damage (Hentzer and

Kobayasi, 1977; Croft and Brazil, 1982) precedes cell death.

Pentamidine resistance in Leishmania correlates to a reduc-

tion in the mitochondrial membrane potential (Basselin and

Robert-Gero, 1998; Basselin et al., 2002; Mukherjee et al.,

2006). As a di-cation, pentamidine interacts electrostatically

with cellular polyanions. It binds DNA, including the unique

intercatenated network of circular DNA molecules termed

the kinetoplast, which make up the mitochondrial genome

of all kinetoplastid flagellates (Simpson, 1986). However,

bloodstream form T. brucei can retain viability, given time to

adapt, when the kinetoplast has disintegrated (a state termed

dyskinetoplastidy (Schnaufer et al., 2002)), although mito-

chondrial DNA can remain dispersed within the mitochon-

drion in some of these cases. Dyskinetoplastic parasites are

slightly less sensitive than wild-type cells to diamidines.

Fluorescent diamidines, for example, furamidine (Stewart

et al., 2005; Mathis et al., 2006) and stilbamidine (Hawking

and Smiles, 1941) also accumulate rapidly in the kinetoplast,

and they also sequester in another class of organelle believed

to be acidocalcisomes (Mathis et al., 2006). Whether the

localization correlates with activity is not certain. Another

suspected target, S-adenosylmethionine decarboxylase, was

ruled out because Leishmania parasites overexpressing this

enzyme are equally susceptible to pentamidine as wild-type

cells (Roberts et al., 2006).

Pharmacology. Pentamidine’s use against Pneumocystis carinii

pneumonia in AIDS (acquired immunodeficiency syndrome)

patients has contributed to the increased interest in under-

standing the pharmacokinetics of the drug (Conte, 1991).

Other studies have looked specifically at the situation in HAT

patients (Bronner et al., 1991). The drug has a large volume

of distribution and long terminal half-life (elimination times

running into weeks after a typical course). Extensive tissue

retention and binding to serum proteins contribute to this.

The long half-life of pentamidine explains why the drug had

some success in prophylactic campaigns in west and central

Africa in the mid-twentieth century (Waddy, 1970), a

practice that is no longer recommended.

The drug is given by injection because, as expected for a

highly charged molecule (pKa of 11.4), pentamidine is not

readily absorbed from the intestine. Intramuscular injection

is preferred over intravenous injection since this latter route

is associated with increased risk of hypotension. Although

generally useful only in stage 1 disease, pentamidine might

have some activity against parasites in cerebrospinal fluid

(CSF), in what has been called ‘early-late-stage disease’,

when white cell counts are still low (appearance of white

blood cells in CSF accompanies stage 2 disease) and parasites

have only recently entered CSF (Doua et al., 1996). Low levels

of pentamidine (below 1% of plasma levels) have been

measured in CSF (Bronner et al., 1991). Pentamidine is

extensively metabolized (Berger et al., 1992) with cyto-

chrome P450-dependent oxygenases playing a key role.

The drug is quite toxic. Lowering of blood glucose levels is

common with hypotension evident in 10% of treated cases.

Other toxic effects include pain at the site of injection,

nephrotoxicity, leucopenia and liver enzyme abnormalities

(Sands et al., 1985; Doua and Yapo, 1993).

Figure 3 Structures of some important trypanocidal diamidines.
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Pentamidine is highly trypanocidal (with IC50 values

in vitro in the order of 1–10 nM in a typical 3-day drug

sensitivity assay). The time required to kill the parasites is

dependent on dose with increasing doses causing progres-

sively faster killing (Miezan et al., 1994).

Given the drug’s toxicity, decreasing overall exposure is

desirable. Since parasites are killed on exposure to just 10 nM

for 3 days, and since pentamidine’s pharmacokinetics

ensures concentrations several orders of magnitude above

this level are maintained for several days after the termina-

tion of drug administration, the prospects of using a 3-day

course are currently being investigated.

Suramin

Background. Suramin (Figure 4) is a polysulphonated sym-

metrical naphthalene derivative and was first used against

sleeping sickness in 1922 (Voogd et al., 1993). This followed

Ehrlich’s demonstration that other naphthalene dyes had

trypanocidal activity due to selective accumulation by

trypanosomes (trypan blue, named for its trypanocidal

activity, is still used in mammalian cell viability assays). As

there is renal clearance of these naphthalenes, suramin’s

colourlessness was an important factor behind its develop-

ment. Suramin is currently donated to WHO by Bayer as

Germanin (Bayer 205). Reports of treatment failures from

gambiense foci in the 1950s and the fact that pentamidine is

easier to administer led to suramin being used mainly for

rhodesiense cases today. The drug has been considered for

other conditions, particularly in androgen-independent

prostate cancer (Kaur et al., 2002). The fact that the drug

inhibited retroviral reverse transcriptase (Mitsuya et al.,

1984) and also interfered with HIV binding to CD4þ cells

led to well-publicized, but unsuccessful, trials against HIV/

AIDS.

Modes of action and resistance mechanisms. Many hypotheses

as to suramin’s mode of trypanocidal action have been

proposed, but none proven. With six negative charges, the

drug binds, by electrostatic interaction, to many enzymes.

Suramin is around a hundred fold less active against

procyclic form trypanosomes, that normally reside in tsetse

flies, than against bloodstream forms (Scott et al., 1996).

Since glycolysis is essential to bloodstream forms but not

procyclic forms (Fairlamb and Bowman, 1977, 1980; Besteiro

et al., 2005) and because suramin inhibits a number of

glycolytic enzymes (Wierenga et al., 1987), glycolysis has

been proposed as a likely target. However, any number of

other pathways too could be targeted by the drug. For

example, it is a competitive inhibitor of 6-phosphogluconate

dehydrogenase, an enzyme of the pentose phosphate path-

way (Hanau et al., 1996).

Endocytosis appears to be the most likely route of entry

(Fairlamb and Bowman, 1980). Because of its high avidity

binding to many serum proteins, including low-density

lipoprotein (LDL) (Vansterkenburg et al., 1993), it was

suggested that it might enter while bound to LDL (Bastin

et al., 1996; Coppens and Courtoy, 2000; Green et al., 2003).

However, in procyclic cells, at least, manipulation of

different vesicular transport systems affects uptake of LDL

and suramin independently of each other (Pal et al., 2002).

The extremely high rate of fluid-phase endocytosis displayed

by bloodstream form trypanosomes (Engstler et al., 2004)

could potentially explain uptake parameters of suramin into

T. brucei without a requirement for a particular receptor,

although this is untested.

Reports on suramin resistance in the field are rare (Barrett,

2003). However, resistance can be selected readily in the

laboratory (Scott et al., 1996). The drug is also employed as a

veterinary trypanocide and resistance has been noted in

species of trypanosome, for example, T. evansi, that infect

animals (Mutugi et al., 1994; El Rayah et al., 1999) although

mechanisms of resistance are not understood.

Pharmacology. Poor intestinal absorption and a local irrita-

tion if given intramuscularly mean that suramin is best given

by slow intravenous injection (Voogd et al., 1993). A course

of five injections, every 3–7 days, over a 4-week period is

typical. Most of the drug (499%) binds to serum proteins.

Suramin does not cross the blood–brain barrier to levels

capable of killing trypanosomes in the CSF at doses given in

treatment of stage 1 disease (although in mice, very large

doses (480 mg kg�1) are capable of curing a stage 2 model of

the disease (Jennings, 1995)).

The use of the drug in AIDS and cancer clinical trials

improved knowledge of its pharmacology (Collins et al.,

1986). The elimination terminal half-life is very long (for

example, 41–78 days was reported in one study (Eisenberger

and Reyno, 1994)).

In vitro, exposure to 1mg kg�1 for 24 h is sufficient to kill

trypanosomes. Thus with levels higher than 100 mg ml�1 for

several weeks after a typical course the drug’s success in

prophylaxis is understandable (Waddy, 1970) although no

longer used.

At concentrations higher than 350 mg ml�1, the drug

induced significant neurotoxicity (Kaur et al., 2002) and

even at lower concentrations neurotoxic effects were evident
Figure 4 Structures of suramin, trypan blue and some important
trypanocidal arsenicals.
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(Bitton et al., 1995). Neuropathy, rash, fatigue, anaemia,

hyperglycaemia, hypocalcaemia, coagulopathies, neutropae-

nia, renal insufficiency and transaminitis are all common.

The adverse effects reported with suramin were sufficient for

the US Food and Drug Administration to block approval for

use in prostate cancer (Kaur et al., 2002), although HAT

regimens are short enough to make safety tolerable.

Drugs used in late-stage disease

Stage 2 of HAT involves progressive breakdown of neurolo-

gical function, including the alteration in sleep-wake

patterns that defines ‘sleeping sickness’. In fact, patients do

not sleep more than healthy subjects, but the disrupted sleep

patterns often manifest themselves in daytime somnolence

(Buguet et al., 1993). Alterations in the ‘sleep onset rapid eye

movement sleep periods’ may become a new tool to detect

CNS involvement and 2nd stage disease (Buguet et al., 2005).

Since the late stage is characterized by the presence of

parasites within the cerebral spinal fluid and brain, any drug

that is to reach the parasites must first cross the blood–brain

barrier or the blood–CSF barrier (Croft, 1999; Enanga et al.,

2002; Kennedy, 2006). Many chemicals that show good

activity against models of stage 1 disease fail to cure models

of stage 2 disease (Jennings et al., 1977; Bouteille et al., 1998)

due to the difficulty of getting molecules to cross the blood–

brain barrier.

Melarsoprol

Background. Melarsoprol (Figure 4), a melaminophenyl-

based organic arsenical, was introduced in 1949 (Friedheim,

1949). It remains the most widely used drug against late-

stage HAT in spite of extremely toxic side effects. In the order

of 5–10% of patients taking melarsoprol suffer a reactive

encephalopathy (Robertson, 1963; Pepin and Milord, 1994;

Blum et al., 2001, 2006); half of these die!

Melarsoprol is the only available compound capable of

treating stage 2 T. b. rhodesiense disease and the only

generally affordable compound to treat stage 2 gambiense

disease. It is administered as a 3.6% solution in propylene

glycol and distributed in 5 ml ampoules for intravenous

injection. The drug is provided by Sanofi-Aventis free to

WHO for distribution and will continue to be provided for at

least 5 more years.

Modes of action and resistance mechanisms. It is not known

how arsenicals kill trypanosomes. When exposed to melar-

soprol, the parasites lyse rapidly (Meshnick et al., 1978). Loss

of ATP due to inhibition of glycolysis could underlie lysis

although it seems that the cells lyse before ATP supplies are

seriously depleted (Vanschaftingen et al., 1987). Arsenic

forms stable interactions with thiols including trypa-

nothione (Fairlamb et al., 1989), a key low molecular weight

thiol (a bis-glutathionyl-spermidine adduct) found in trypa-

nosomatids but not in mammalian cells (Fairlamb et al.,

1985) and lipoic acid (Fairlamb et al., 1992b). Whether these

interactions underlie trypanocidal activity is, however, not

known.

In several foci, treatment failures have reached levels of

30% of those treated (Legros et al., 1999; Brun et al., 2001;

Moore and Richer, 2001; Stanghellini and Josenando, 2001).

Most parasites selected for resistance to melamine-based

arsenicals in the laboratory have lost the P2 aminopurine

transporter that carries the drug (Carter and Fairlamb, 1993;

Barrett and Fairlamb, 1999; Mäser et al., 1999; Stewart et al.,

2005) and several parasites isolated from relapse cases in the

field are also defective in P2 transport (Mäser et al., 1999;

Matovu et al., 2001; Stewart et al., 2005). No significant

difference in intrathecal accumulation of drug between

successfully treated and relapsing patients was seen (Brun

et al., 2001), although the demonstration of parasite

resistance in the field has been hampered by difficulties in

retrieving T. b. gambiense from patients for study. Parasitea-

mias are generally very low and it is difficult to establish

infections in vitro or in rodents. Cryopreservatives like

Triladyl (Maina et al., 2006), and African rodent species that

are relatively sensitive to T. b. gambiense parasites (Buscher

et al., 2005; Maina et al., 2007), currently offer hope that

collection of samples from the field can be improved.

In vitro, unmetabolized melarsoprol is believed to cross

membranes by passive diffusion (Scott et al., 1997). Melarsen

oxide, however, enters T. brucei principally by the P2

aminopurine transporter (Carter and Fairlamb, 1993) en-

coded by the tbat1 gene (Mäser et al., 1999). However,

trypanosomes from which the tbat1 gene has been removed

are only marginally less sensitive to melamine-based arseni-

cals than are wild-type cells (Matovu et al., 2003), indicating

that secondary routes of uptake exist and loss of P2 plus

these secondary routes is required for high-level resistance.

Low concentrations of pentamidine inhibited a secondary,

slow lysis of trypanosomes in a spectrophotometric test

(Matovu et al., 2003), prompting suggestions that the HAPT1

(de Koning, 2001a) might be the second route of entry for

melarsen oxide. Moreover, the highly pentamidine resistant

line derived from the tbat1 gene knockout line was also

highly resistant to melarsen oxide and had lost the HAPT1

transporter (Bridges et al., 2007). However, since trypano-

somes selected for high-level melarsen resistance retain

sensitivity to pentamidine (Fairlamb et al., 1989b), it is clear

that more is yet to be learned about all possible routes of

uptake of these different classes of drug. Ectopic over-

expression of the tbmrpa gene, that encodes a P-glycoprotein

type pump, is capable of inducing melarsoprol resistance

(Shahi et al., 2002).

Patients are currently treated and then subjected to follow-

up for 2 years. Any recurrence of the disease over that time is

considered as a treatment failure. The possibility of identify-

ing trypanosomes that lack the P2 transporter as being

melarsoprol refractory at the time of disease diagnosis has

clear benefits. Tests using fluorescent diamidines (for

example, furamidine) that enter via the P2 transporter can

identify loss of the P2 transporter and these offer potential as

a major advance in diagnosis of resistance in the field

(Stewart et al., 2005).

Pharmacology. Treatment schedules with melarsoprol

show how an understanding of pharmacokinetics can lead

to radical improvements in drug regimens. A standardized
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10-day course with 2.2 mg kg�1 given once a day is as

effective as older protocols (Burri et al., 2000; Schmid et al.,

2004, 2005; Pepin and Mpia, 2006). Melarsoprol was

introduced to replace tryparsamide, another arsenical.

Tryparsamide administration regimens took into account

toxicity associated with drug accumulation in various tissues

(Williamson, 1970). It was given over prolonged periods,

interspersed with ‘rest’ periods to enable clearance of drug

from tissue deposits. Similar regimens were unnecessarily

retained for melarsoprol before implementation of the 10-

day course.

First studies into melarsoprol’s pharmacokinetics em-

ployed a bioassay (Hawking, 1962; Burri and Brun, 1992)

based on in vitro trypanocidal activity found in various body

fluids containing drug. HPLC methods (Bronner et al., 1998)

that measure melarsoprol itself failed to identify the key

active metabolite, melarsen oxide, which forms rapidly in

plasma (96% clearance within 1 h). Much of the drug is

bound to plasma protein. A mean elimination half-life of

3.5 h for active metabolite was determined (Burri and Brun,

1992; Burri et al., 1993).

Melarsoprol (or melarsen oxide) maximally accumulates

across the blood–brain barrier to levels only around 1–2% of

maximum plasma levels (Burri et al., 1993). This is sufficient

to clear trypanosomes with typical ‘wild-type’ sensitivities to

the drug. However, a drop in sensitivity of only a few fold

could render parasites in the CSF non-susceptible to these

levels (Brun et al., 2001; Burri and Keiser, 2001; de Koning,

2001b).

Side effects are severe. Convulsions and other neurological

sequelae can precede coma and death in the reactive

encephalopathy that afflicts 5–10% of treated patients.

Other adverse events are common. These include pyrexia,

headache, pruritis and thrombocytopaenia. Heart failure too

has been reported. Co-administration of corticosteroids (for

example, prednisolone) yields some protection against the

reactive encephalopathy (Pepin et al., 1989a). Thiamine

administration too can reportedly ameliorate melarsoprol’s

adverse events (Pepin and Milord, 1994). It was recently

shown (Szyniarowski et al., 2006) that melarsoprol enters

mammalian cells via a thiamine transporter, hence co-

administration of this vitamin may decrease melarsoprol

uptake into mammalian cells but not into trypanosomes.

Conjugation of melarsoprol in complexes might improve

toxicity by slowing release of the active principle (Gibaud

et al., 2002, 2005). Topical application to mouse models of

the disease was also successful and lowered toxicity

(Jennings et al., 1993; Atouguia et al., 1995). However, in

spite of the prospect of deriving improved melarsoprol

formulations, the drug’s reputation mitigates against taking

new arsenical derivatives forward.

Eflornithine

Background. Eflornithine (Figure 5) or D,L-a-difluoromethy-

lornithine (originally marketed as Ornidyl by Marion Merrell

Dow) is an analogue of the amino-acid ornithine and acts as

an inhibitor of the polyamine biosynthetic enzyme or-

nithine decarboxylase (ODC) (Bacchi et al., 1980; Phillips

et al., 1987; Bacchi and Yarlett, 1993). Eflornithine was first

developed as a potential antineoplastic agent; however, it

has still not been registered for use in therapy of cancer

(Gerner and Meyskens, 2004). The drug has activity against

T. b. gambiense, even in the late stage (Burri and Brun, 2003)

but against T. b. rhodesiense activity is restricted (Iten et al.,

1995). The usual regimen involves 100 mg kg�1 body weight

at 6 h intervals (that is, 400 mg kg�1 day�1) by intravenous

infusion for 14 days. Shorter schedules and oral dosing have

so far given lower efficacy.

Mode of action and resistance mechanisms. Eflornithine has

similar affinity for both the mammalian and trypanosomal

ODCs (Phillips et al., 1988). Its specificity against the parasite

may arise because T. b. gambiense ODC is degraded and

replenished much more slowly than its mammalian counter-

part (Ghoda et al., 1990). A pulse of eflornithine thus

deprives trypanosomes of net polyamine synthesis for a

prolonged period compared with mammalian cells. Lack of

activity against rhodesiense parasites may relate to the

enzyme being more rapidly turned over in that subspecies

(Iten et al., 1997).

Polyamine biosynthesis inhibition is accompanied by an

increase in cellular levels of S-adenosyl methionine (Yarlett

and Bacchi, 1988), which causes inappropriate methylation

of proteins, nucleic acids, lipids and other cell components.

Trypanothione levels are also diminished after eflornithine

treatment (Fairlamb et al., 1987), which might render them

more susceptible to oxidative stress and other immunolo-

gical insult.

A functional immune system is required to kill the growth-

arrested trypanosomes (Bitonti et al., 1986b), which trans-

form into non-proliferating stumpy forms after exposure to

eflornithine. T. brucei lacks polyamine transporters rendering

them auxotrophic for polyamines (Fairlamb and Le Quesne,

1997) preventing by-pass of inhibition of polyamine bio-

synthesis, although the recent demonstration of variability

in sensitivity of different T. brucei strains to eflornithine in

rodents and a different potential of exogenous polyamines to

antagonize eflornithine’s activity (Nishimura et al., 2006)

could indicate some variability in the parasites’ capacity to

accumulate polyamines. One T. b. rhodesiense line selected

Figure 5 Structures of ornithine and eflornithine and some
trypanocidal nitroheterocycles.
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for eflornithine resistance showed enhanced capability to

import putrescine compared with sensitive lines (Bacchi

et al., 1993).

Eflornithine uptake in mammalian cells was reported to

involve simple diffusion across the membrane (Erwin and

Pegg, 1982). In T. brucei passive diffusion across the plasma

membrane in both bloodstream (Bitonti et al., 1986a) and

procyclic forms (Bellofatto et al., 1987) was proposed to

account for cell entry. However, the compound is rather

polar and unlikely to be lipid permeable. In the yeast,

Neurospora crassa, uptake is mediated via a cationic amino-

acid transporter (Davis et al., 1994). Moreover, another study

in procyclic trypanosomes (Phillips and Wang, 1987) showed

uptake to be temperature sensitive and to follow Michaelis–

Menten-type kinetics with an apparent Km of 244mM.

Although high concentrations (1 mM; Bitonti et al.,

1986a, b) and 20 mM (Phillips and Wang, 1987) of unlabelled

lysine, arginine and ornithine all failed to inhibit uptake,

lower doses were not tested and unphysiologically high

doses could lead to induction of other routes for eflornithine

uptake into the cell, leading to a masking of transporter-

mediated uptake. It is likely that uptake of eflornithine in

trypanosomes is carrier mediated. The trypanosome’s gen-

ome is replete with genes encoding amino-acid transporters

(Barrett and Gilbert, 2006) of which one or more could carry

eflornithine. Two reports of drug resistance (Bellofatto et al.,

1987; Phillips and Wang, 1987) in procyclic forms show that

drug uptake is diminished. Thus it seems probable that

resistance can relate to loss of, or changes to, eflornithine

transport into cells.

Pharmacology. The mean half-life in plasma following

intravenous injection of eflornithine is only in the order of

3 h, with 80% of the drug excreted unchanged in urine after

24 h (Haegele et al., 1981; Griffin et al., 1987). Little serum

protein binding occurs. Accordingly the drug must be given

in large doses by prolonged intravenous infusion.

In humans, reported CSF to plasma ratios vary between 0.1

and 0.9 (Milord et al., 1993; Burri and Brun, 2003; Na-

Bangchang et al., 2004) with the ratio towards the lower end

of that range more commonly reported. Eflornithine mono-

therapy apparently fails to cure the stage 2 mouse model,

perhaps because the drug fails to cross the blood–brain

barrier in rodents (Levin et al., 1983). In combination with

suramin, however, cure was possible, but only if mice were

kept in a 2 h light and 4 h dark regime (Jennings, 1993),

which relates to consumption of the drug in drinking water

being greatly enhanced (10–15 fold) in darkness (Romijn

et al., 1987).

In man, doses beyond 100 mg kg�1 given orally failed to

lead to increased appearance of the drug in plasma, which

suggests that eflornithine is accumulated by a saturable

transporter. It is also probable that a transporter carries the

drug across the blood–brain barrier, where the yþ system

(the main cationic amino-acid transporter in mammals) is

the principal cationic amino-acid transporter (O’Kane et al.,

2006) and a likely candidate.

IC50 growth inhibitory values for eflornithine of 81–

693 mM (Zweygarth and Kaminsky, 1991) in vitro are very

poor when compared to the other trypanocidal drugs

(melarsoprol, suramin and pentamidine all have activity in

the nanomolar range). Oral dosing gave average plasma

levels of 234–528 mM and CSF levels at 22.3–64.7 mM in

patients receiving 100 or 125 mg kg�1 (Na-Bangchang et al.,

2004). In vitro activities do not take into account the role of

the immune system in killing trypanosomes (Bitonti et al.,

1986b); however, the relative inefficacy of eflornithine,

coupled to its poor pharmacokinetic profile, renders the

drug far from ideal for use in a tropical setting and it is

unlikely that eflornithine would have been pursued had

protocols in use today, that begin with efficacy testing

against trypanosomes in vitro, been in place when the drug

was first explored for use against trypanosomiasis.

Side effects include fever, headache, hypertension, macu-

lar rash, peripheral neuropathy and tremor, gastrointestinal

problems including diarrhoea (Chappuis et al., 2005b). The

incidence and severity of these adverse reactions are

considerably lower than similar reactions in melarsoprol

therapy, and Médecins sans Frontières (MSF) are currently

promoting eflornithine as first-line treatment for stage 2

disease (Chappuis et al., 2005b; Balasegaram et al., 2006),

although the risk of resistance emerging must be taken

seriously.

Drugs in clinical trials

Pafuramidine maleate (DB289)

Background. The only new drug in advanced trials for

introduction to use against HAT is pafuramidine maleate

(DB289) (Figure 3). This O-methyl amidoxime prodrug

(Boykin et al., 1996; Ansede et al., 2004) is converted to the

diamidine furamidine (DB75) systemically.

Furamidine was first shown to be trypanocidal in the

1970s (Rane et al., 1976; Das and Boykin, 1977), but it offered

little or no benefit over pentamidine and was not pursued at

this time (Steck et al., 1982). The efficacy of pentamidine in

treatment of PCP, the incidence of which rose sharply as the

HIV/AIDS epidemic emerged in the 1980s, led to renewed

interest in di-cationic microbicides. Studies into the meta-

bolism of pentamidine (Berger et al., 1990, 1991, 1992;

Clement and Jung, 1994) revealed that the positive charges

of these molecules, which restrict intestinal absorbtion,

could be neutralized by chemical modification. Pentamidine

was converted to an amidoxime prodrug (Clement and

Raether, 1985; Clement, 2002) with trypanocidal activity

when given subcutaneously to mice. However, activity

against pneumocystitis was weak (Hall et al., 1998) and

furamidine synthesized as its prodrug, pafuramidine maleate

(Boykin et al., 1996), was far better in this context. Phase III

trials are currently underway for pafuramidine against PCP

(Yeates, 2003). Pafuramidine (100 mg twice per day for 5

days) also performed well in clinical trials against malaria

(Yeramian et al., 2005). However, a concern that widespread,

uncontrolled use of the drug as an antimalarial might

enhance the risk for selection of resistance to the drug in

trypanosomes has contributed to its being abandoned for

malaria. Since many diamidine compounds show superior
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in vitro activity against Plasmodium falciparum, it is hoped

that another candidate might emerge for malaria.

Mode of action and resistance mechanisms. As a diamidine it

would be anticipated that the modes of action and resistance

mechanisms for furamidine may overlap with those of

pentamidine and diminazene. Uptake of the compound to

high levels (Mathis et al., 2006) occurs principally via the

same P2 aminopurine transporter that carries other diami-

dines into cells (Lanteri et al., 2006). In a 3-day in vitro assay,

the activity of furamidine was greatly decreased against the

tbat1/P2 knockout cell line and a line selected for resistance

to the drug had lost the P2 transporter, through deletion of

its gene, confirming this as a main route of uptake (Lanteri

et al., 2006). However, these P2 defective cells fail to grow for

prolonged periods, even in relatively low concentrations of

drug, in vitro. Moreover, the P2 defective cells are only

marginally less sensitive than wild type when treated in mice

(Lanteri et al., 2006). Thus a secondary route of uptake, albeit

minor compared with P2, plays a significant role in the

pharmacology of the drug, and loss of the P2 transporter

alone is unlikely to lead to parasites developing resistance.

As furamidine is fluorescent, it has been possible to trace

its distribution in cells (Mathis et al., 2006). Within a minute,

UV fluorescence is detectable within the DNA containing

organelles (nucleus and kinetoplast). By 1 h, the drug

becomes visible within organelles believed to be acidocalci-

somes (Mathis et al., 2006). After 24 h exposure to 7.5 mM

drug, the fluorescence of the kinetoplast has disappeared, as

the drug appears to have caused disintegration of this

structure (Mathis et al., 2006). Damage to the mitochondrion

is also evident, leading to suggestions that the mitochon-

drion is a target for this drug. In yeast, furamidine (Lanteri

et al., 2004) like pentamidine (Ludewig et al., 1994), inhibits

the respiratory chain and it also acts as an uncoupler. The

mitochondrial inner membrane is also affected by furami-

dine in trypanosomes (Lanteri et al., unpublished), making it

tempting to speculate that mitochondrial disruption relates

to activity of this compound.

Pharmacology. In vitro, pafuramidine is over one thousand

fold less active against trypanosomes than furamidine

(Ansede et al., 2004). In vivo, however, furamidine is active

only when given by injection, while pafuramidine is active

in an oral formulation. This is because pafuramidine, but not

furamidine, crosses intestinal epithelium (Sturk et al., 2004)

in quantities sufficient to reach trypanocidal levels in blood.

The prodrug is metabolized by cytochrome P450 (CYP4F

isoforms in particular) and other metabolic enzymes (Ansede

et al., 2005; Saulter et al., 2005; Wang et al., 2006), through

demethylation followed by reduction, to the active diami-

dine. Furamidine does not cross the blood–brain barrier.

However a very close relative of furamidine, DB820, which

differs by the addition of a single nitrogen into one of the

phenyl rings (Figure 3) (Ismail et al., 2003), exerts trypano-

cidal activity in rodent models of stage 2 disease. The O-

methyl amidoxime prodrug of DB820, currently coded as

DB844, can be administered orally and still lead to the cure

of stage 2 mouse model (Ansede et al., 2005), the first orally

available compound to exert this effect.

Currently, little is published with regard to the clinical

development of pafuramidine for trypanosomiasis. However,

studies into metabolism, toxicology and pharmacokinetics

in animal models including mouse, rat, vervet monkey and

later cynomolgus monkey preceded its entry into phase I

clinical trials. These satisfied criteria enabling entry into

phase II trials in T. b. gambiense patients with stage 1 disease

(Yeates, 2003).

An initial open label, non-controlled trial focussed on a

site in Angola and one in the Democratic Republic of

Congo. Patients were treated with 100 mg of pafuramidine

given orally, twice daily for 5 days. Efficacy in that first

trial was 83% cure (93% of the 30 patients partaking in the

trial were cleared of parasites in blood and lymph 24 h

after the final dose. However, after 24 month follow-up a

further four patients had relapsed). The regimen was

then lengthened to a 10-day treatment for a phase IIb trial.

This has been more successful although follow-up must

continue until 2 years is complete. A multicentre phase III

trial, in which 250 patients will receive DB289 using non-

inferiority to injected pentamidine as the comparator, is

underway.

Some side effects were reported including intermittent

fever and pruritis. These were not serious and administration

of up to 600 mg in a single dose gave no adverse response.

Diminazene

Another diamidine, diminazene, is a registered veterinary

trypanocide (Kinabo, 1993; Peregrine and Mamman, 1993).

Unlicensed use in humans has been successfully attempted

(Pepin and Milord, 1994). Dose of drug and time of exposure

are important in determining the trypanocidal effect of

diminazene. Iten et al. (1997) showed that exposure of

trypanosomes to 10 mg ml�1 of diminazene for less than

1 min committed the cells to death (although it took several

days before the cells died). At 1mg ml�1, the exposure time

needed for death rose to 15 min, while at 0.1 mg ml�1 cells

needed to be exposed for 24 h before proceeding to a delayed

death.

The drug enters trypanosomes via the P2 transporter

(Barrett et al., 1995; Ross and Barns, 1996; de Koning et al.,

2004; Witola et al., 2004) and tbat1 gene knockout cells

(Matovu et al., 2003) are resistant to diminazene. Alternative

transporters, such as HAPT1 and LATP1, play a less

important role in entry of this compound than they do for

pentamidine, although the drug does continue to enter

TbAT1/P2 defective cells albeit very slowly (de Koning et al.,

2004), and in in vitro assays the P2-deficient cells retain

sensitivity to diminazene in the low micromolar range

(Matovu et al., 2003).

Pharmacokinetic properties of diminazene deviate widely

from pentamidine. For example, the volume of distribution

is much lower in animals studied (probably due to less

protein binding and tissue retention) (Peregrine and Mam-

man, 1993). Given that the orally available pafuramidine

will complete phase III trials soon, it is this latter compound

that is more likely to be approved than diminazene, which

will be retained as a veterinary trypanocide. The possibility

of selecting parasites that lack the P2 transporter in
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development of diminazene resistance (Barrett et al., 1995) is

of concern (de Koning, 2001a, b), especially where T. b.

rhodesiense is present at significant levels in livestock (Barrett,

2001). The risk of selecting for P2 transporter-defective

parasites that might enter humans must be considered

before implementing any drug campaigns against veterinary

trypanosomiasis.

Nifurtimox

Background. Nifurtimox, marketed as Lampit, is produced

by Bayer, provided free to WHO and distributed by MSF for

use in trials in HAT therapy or for compassionate use in cases

of melarsoprol failure. Success as monotherapy has report-

edly been limited (50–80% cure) against T. brucei gambiense

(Janssens and Demuynck, 1977; Pepin et al., 1989b) but its

use, particularly in combinations (Moens et al., 1984;

Jennings, 1991), is of increasing interest, as reports of

treatment failure with arsenical monotherapy rise. Recent

trials in combination with eflornithine show great promise

(Priotto et al., 2006).

Mode of action. Single electron reduction of the nitro group

of nifurtimox generates a free radical, which may interact

with cellular constituents or generate reduced oxygen

metabolites believed to cause parasite death (Docampo and

Moreno, 1986; Enanga et al., 2003). With a reduction

potential of �260 mV, nifurtimox is relatively easily reduced

in many cell types (Viode et al., 1999) but a typical

prokaryote-related type 1 nitroreductase identified in the

trypanosome’s genome is likely to play a role in activation

of nifurtimox and other nitroheterocycles (S Wilkinson,

London School of Hygiene and Tropical Medicine, personal

communication).

Numerous nitroheterocycles have been demonstrated to

have potent activity against trypanosomes. Nitrofurazone (a

nitrofuran) entered human trials in the mid-twentieth

century, but toxicity issues halted its development (Apted,

1970). Several 2-substituted 5-nitroimidazoles (Jennings,

1991) were shown to be efficacious and cured the stage 2

mouse model when co-administered with suramin. The

nitroimidazole–thiazole, megazol, too was active when

administered with suramin in stage 2 mouse and rat models

(Enanga et al., 1998; Darsaud et al., 2004) and also able to

cross the blood–brain barrier in significant quantities in a

primate model (Enanga et al., 2000). A group of 5-nitro-2-

furancarbohydrazines were also recently shown to possess

substantial trypanocidal activity (Millet et al., 2002).

As host cell toxicity, particularly genotoxicity, has miti-

gated against development of antimicrobial nitrohetero-

cycles, the possibility of selectively targeting melamine-

coupled nitroheterocycles to trypanosomes, via the P2

aminopurine transporter, was investigated (Stewart et al.,

2004; Baliani et al., 2005). Several compounds were identi-

fied with excellent trypanocidal activity and they appear to

enter via routes in addition to P2. The possibility of targeting

trypanocides to trypanosomes via transporters has been

covered extensively in a recent review (Barrett and Gilbert,

2006).

Pharmacology. Serum levels are reportedly low when nifur-

timox is given orally, peaking 1–3 h after administration of a

single 15 mg kg�1 dose, reaching a maximum of around 4 mM

in healthy subjects (Paulos et al., 1989). Clearance is fast with

a plasma elimination half-life of around 3 h (Paulos et al.,

1989). The drug can accumulate across the blood–brain

barrier (Burri et al., 2004) to levels around half of those found

in plasma. African trypanosomes are not very susceptible to

nifurtimox (IC50 values of around 5 mM compared with 10 nM

for melarsen oxide in a typical in vitro assay (Enanga et al.,

2003)). This probably explains the drug’s limited efficacy as

monotherapy.

Toxic effects to the central and peripheral nervous systems

have been reported (Castro et al., 2006) and rats given high

doses of the drug showed increased risk of cancer (Steinhoff

and Grundmann, 1972). Typical regimens used for T. cruzi

infections (15 mg kg�1 over 60 days) lead to nausea, vomiting

and other problems. At 15 mg kg�1, additional adverse affects

including polyneuropathy were evident and the gastroin-

testinal problems more pronounced and more frequent

(Pepin et al., 1992).

Combinations

Combination chemotherapy is becoming the preferred route

of administration of antimalarial compounds in the hope of

diminishing the probability of selecting for drug-resistant

mutants (Kremsner and Krishna, 2004). Treatment failure is

also a growing problem in trypanosomiasis therapy (Brun

et al., 2001). There are other reasons for using drugs in

combination. Synergistic effects can permit the lowering of

doses for the combination partners thus reducing adverse

effects. Jennings (1993) pioneered work into seeking syner-

gistic effects with trypanocidal drugs in rodent models.

Suramin, acts synergistically with many drugs. For example,

administration of suramin 15 min before topical administra-

tion of melarsoprol led to good cure rates of the stage 2

mouse model. Suramin also altered the volume of distribu-

tion and pharmacokinetics of the experimental trypanocide

megazol in mice (Enanga et al., 1998), possibly because it

inhibits P-glycoprotein pumps (Buxbaum, 1999) that play

key roles in maintaining the blood–brain barrier and also in

removing xenobiotics through the renal system. Pre-treat-

ment with other agents that induce changes to renal

clearance or blood–brain barrier permeability could also

influence efficacy of trypanocides in vivo (Croft, 1999).

Recent clinical trials using eflornithine

(400 mg kg�1 day�1) for 7 days in two periods of infusion

(rather than 14 days with four infusions) and nifurtimox at

15 mg kg�1 for 10 days have yielded cure rates as high as 98%

(Priotto et al., 2006). Other combinations (melarsoprol and

eflornithine or melarsoprol and nifurtimox) were considered

too toxic to pursue (Priotto et al., 2006). Nifurtimox exerts its

activity through induction of oxidative stress (Docampo and

Moreno, 1986; Enanga et al., 2003) while eflornithine

diminishes levels of trypanothione, a key metabolite used

in protecting against oxidative stress, thus it is possible that

these drugs synergize at the level of parasite killing.

Since melarsoprol treatment failure rates have been

increasing, and because resistance to eflornithine is relatively
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easy to select in the laboratory (Bellofatto et al., 1987;

Phillips and Wang, 1987; Bacchi et al., 1993), in the absence

of alternative drugs every effort should be taken to delay the

onset of resistance to eflornithine in the field. The use of a

nifurtimox–eflornithine combination presently offers pro-

mise in this regard.

Phamacological re-engagement with HAT

By the end of the twentieth century it had been widely

accepted that industrial input to neglected diseases like HAT

was not viable on purely commercial grounds. For some

diseases, like malaria and tuberculosis, with prevalences

greatly in excess of HAT, public–private partnerships, the

Medicines for Malaria Venture (http://www.mmv.org) and

The Global Alliance for TB Drug Development (TB Alliance)

(http://new.tballiance.org/home/home-live.php), were

founded in 1999 and 2000, respectively.

For HAT, however, the situation reached a low point at the

turn of the Century (Barrett, 1999). The prevalence of the

disease had reached alarming levels. Treatment failures with

melarsoprol were reported in several foci and Aventis, the

manufacturer of that drug, found themselves confronted

with the dilemma of whether to continue producing, at a

loss, one of the most toxic compounds known to the

pharmacopoeia, or to drop production leaving patients to

die. MSF and other non-governmental organizations were

establishing centres in many African countries to deal with

the crisis and drugs for HAT soon made it to the forefront of

MSF’s campaign on ‘Access for Essential Medicines’ (Pécoul

et al., 1999). WHO were engaged in an apparently fruitless

quest to find a manufacturer for eflornithine after Hoechst

Marion Roussel (which was later incorporated into Aventis)

had abandoned production in the 1990s.

Then, in 2000, an extraordinary event occurred. Gillette

launched eflornithine, made by Bristol-Myers Squibb, as a

topical formulation under the trade name Vaniqa, to

suppress the growth of unwanted facial hair. It was at this

point that Aventis, now Sanofi-Aventis, were persuaded to

produce the drug free for WHO to distribute to national

programmes involved in HAT therapy. Aventis also agreed to

provide pentamidine and melarsoprol gratis for an initial

period of 5 years (2001–2006) and Bayer joined in by

donating suramin and nifurtimox too. Aventis have recently

extended their support for 5 more years (until 2011), and

surveillance and research were also stepped up under the

WHO–Aventis deal. In addition to the role of WHO other

initiatives are playing a role.

In 1999, The Bill and Melinda Gates Foundation was

established and has set about funding, to unprecedented

levels, initiatives in global health and education. With an

endowment fund of $31.7 billion the Foundation has

transformed the environment with regard to funding in

several tropical diseases. Late in 2000, the Foundation started

funding a group of researchers under the leadership of the

University of North Carolina at Chapel Hill (UNC) to

develop pafuramidine for HAT. As discussed earlier, there is

a genuine hope that the drug will successfully complete trials

within 2 years and plans are already being drawn up for its

manufacture and distribution. In addition to the develop-

ment of pafuramidine, the UNC-led consortium also

received funds to seek new drugs for visceral leishmaniasis

and the consortium was refunded in 2006 to continue

searching for new drugs for late-stage HAT and visceral

leishmaniasis, as well as to take pafuramidine through

clinical trials. Other initiatives are also underway. The

Special Programme for Research and Training in Tropical

Diseases of WHO (WHO/TDR) has long fought for new drugs

for HAT and other tropical diseases. Following consultation

initiated through MSF’s ‘Access Campaign’ (Trouiller et al.,

2002), the Drugs for Neglected Diseases initiative (DNDi)

(http:www.dndi/org), a Public Private Partnership, was

founded in 2003, to discover and develop new drugs to treat

trypanosomatid diseases (HAT, Chagas disease and leishma-

niases). The UK’s Wellcome Trust has remained a major

player in the field of trypanosomiasis research. They

provided much of the funding required to sequence the

trypanosome’s genome (Berriman et al., 2005). With

the genome known, every potential drug target within the

trypanosome is now accessible. Gene knockout (Barrett et al.,

1999) and RNA interference can both be used to provide

evidence as to whether genes, and the proteins they encode

are essential and thus validated drug targets. A natural

progression has been for the Wellcome Trust to establish a

screening centre at the University of Dundee, where a library

of chemicals (containing an initial set of 62 000 compounds,

selected for lead drug-like criteria) is being screened system-

atically for activity against validated targets (http://

www.drugdiscovery.dundee.ac.uk). High-throughput screen-

ing is also underway at the Sandler Centre at the University

of California, San Franciso (http://www.ucsf.edu/mckerrow/

slide.html).

The in vitro model system to test trypanocidal efficacy in

operation at a number of centres, the largest of which were

originally supported by WHO/TDR (http://www.who.int/tdr/),

allows rapid screening of tens of thousands of compounds

for trypanocidal activity. These centres offer pharmaceutical

companies an opportunity to re-engage with diseases like

HAT without having to set up in-house facilities. Pfizer

Animal Health, for example, has recently initiated a screen-

ing programme with their compound libraries in collabora-

tion with WHO/TDR against a range of tropical diseases,

including HAT. DNDi has linked up with agencies holding

natural product libraries to enter similar screens. DNDi is

also pursuing other lead compounds by bringing together

groups of investigators in consortia to proceed through the

development process. Potent trypanocides discovered in

these screens can then enter rodent models of stages 1 and

2 disease to test in vivo efficacy.

The surge in activity in research into new drugs for HAT

should see the emergence of numerous lead compounds over

the next few years. A bottleneck in drug development,

however, is likely to appear at this point. Committed

chemists and pharmacologists must join the venture to

optimize leads. The narrowest bottleneck will, however,

involve taking compounds into clinical trials.

In addition to the advancement of pafuramidine through

phase III trials, the UNC-led consortium is funded to seek

new agents for stage 1 and, especially, stage 2 HAT. In

addition to in-house chemistry efforts, novel compounds
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emerging from other screening programmes will be con-

sidered by the UNC group to take through the latter stages of

development, drawing on the experience gained in the

development of pafuramidine. The development of pafur-

amidine provides a good model on the kinds of interaction

needed to take a compound through the whole-development

process. A tightly knit, multidisciplinary, multinational

consortium, involving academic and industrial input to

cover all aspects of drug development has been necessary.

The project was founded on the premise that diamidines are

highly trypanocidal and that chemical modification could

allow changes that effect efficacy and pharmacokinetics in a

manner to optimize use. The consortium involves chemists

who can produce new compounds that are screened in assays

for trypanocidal activity and for in vivo efficacy (and against

drug-resistant trypanosomes). Uptake into trypanosomes

and their ability to bind putative targets is also tested in a

systematic fashion. Iterative syntheses based on structure–

activity relationships are possible. Hit compounds can be

tested for efficacy and pharmacokinetic properties in rodent

and simian models, in an academic setting, with the best

compounds then sent for GLP testing in an industrial

setting.

For pafuramidine itself, its potential use against PCP

meant that phase I clinical trials had already been completed

by the time the UNC-led consortium commenced their effort

on trypanosomiasis. This enabled its rapid introduction into

phase II trials against HAT patients. Fortunately, investiga-

tors from the Swiss Tropical Institute had recently been

engaged with a series of centres in Africa to test the new

melarsoprol short course (Burri et al., 2000), thus trials in

these centres, under conditions that came as close as is

possible, in this environment, to Good Clinical Practise

became a possibility. Clinical trials within HAT affected areas

offer great challenges. For example, in conditions where

electricity supplies are often absent, facilities enabling

constant temperature storage of compounds become im-

possible. Biochemical and physiological tests considered

routine in a hospital in the west cannot be conducted and

so on. The pafuramidine project, having received appro-

priate funding for clinical trials and also having garnered

support from national programmes and WHO, has managed

to proceed remarkably smoothly.

The number of people capable of conducting such trials is

limited. Moreover, the recent downturn in the incidence of

HAT (Anonymous, 2006; Barrett, 2006), coupled to the

requirement for strict exclusion criteria to reach objective

conclusions from trials, offers a very major problem. Patients

located in the vicinity of the few centres capable of

conducting satisfactory clinical trials are presently in short

supply. Logistical problems restrict the ability to reach other

areas and to recruit patients into trials relatively far from

their homes. Diagnostics, active case finding and the

establishment of new facilities in remote areas where the

disease is most prevalent will be required to ensure that

meaningful clinical trials are possible once compounds begin

to emerge over the next 2–10 years.

The problem has been recognized and the Bill and Melinda

Gates Foundation has recently funded the Foundation for

Innovative New Diagnostics (http://www.finddiagnostics.

org) and WHO to seek new diagnostics. With a view to

ensuring that any new drugs can be targeted most efficiently

to those who need them, the UNC-led consortium has also

initiated efforts to identify the precise extent and distribu-

tion of HAT, building on statistics collected by the WHO over

many years. DNDi along with other key agencies, including

WHO, has been formulating a ‘platform for clinical trials’ to

standardize and coordinate efforts.

Unprecedented activity in the area of drug discovery for

HAT is underway, plans to help products through develop-

ment bottlenecks are being put in place and there is

currently, for the first time in a generation, great optimism

that novel drugs for HAT will emerge over the next decade.

Conclusions

HAT has become a cause célèbre among those concerned with

the economic factors that have led to diseases of the world’s

poorest populations becoming neglected in terms of new

drug development. The agents that are currently available as

anti-trypanosomals are generally unsatisfactory due to a

combination of their low efficacy, dangerous side effects and

difficulty in administration. In the twenty-first century,

however, the situation is changing. Increased knowledge

about the trypanosomal genome has already led to the

identification of novel drug targets. This development has

occurred in parallel with the emergence of funding agencies

committed to the elimination of sleeping sickness through

coherent and integrated research projects. There is now

unprecedented optimism that new drugs active against both

stage 1 and stage 2 of the disease will emerge over the next

decade.
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