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Abstract

DNA damage recognition and repair is a complex system of genes focused on maintaining 

genomic stability. Recently, there has been a focus on how breast cancer susceptibility relates to 

genetic variation in the DNA bypass polymerases pathway. Race-stratified and subtype-specific 

logistic regression models were used to estimate odds ratios (ORs) and 95 % confidence intervals 
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(CIs) for the association between 22 single-nucleotide polymorphisms (SNPs) in seven bypass 

polymerase genes and breast cancer risk in the Carolina Breast Cancer Study, a population-based, 

case–control study (1,972 cases and 1,776 controls). We used SNP-set kernel association test 

(SKAT) to evaluate the multi-gene, multi-locus (combined) SNP effects within bypass polymerase 

genes. We found similar ORs for breast cancer with three POLQ SNPs (rs487848 AG/AA vs. GG; 

OR = 1.31, 95 % CI 1.03–1.68 for Whites and OR = 1.22, 95 % CI 1.00–1.49 for African 

Americans), (rs532411 CT/TT vs. CC; OR = 1.31, 95 % CI 1.02–1.66 for Whites and OR = 1.22, 

95 % CI 1.00–1.48 for African Americans), and (rs3218634 CG/CC vs. GG; OR = 1.29, 95 % CI 

1.02–1.65 for Whites). These three SNPs are in high linkage disequilibrium in both races. Tumor 

subtype analysis showed the same SNPs to be associated with increased risk of Luminal breast 

cancer. SKAT analysis showed no significant combined SNP effects. These results suggest that 

variants in the POLQ gene may be associated with the risk of Luminal breast cancer.
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Introduction

The integrity of DNA is constantly threatened by damage from both endogenous and 

exogenous sources [1]. Unrepaired DNA damage can result in genomic instability, leading 

to point mutations, deletions and insertions, as well as chromosomal alterations. These 

defects increase the probability of a hit to an oncogene or tumor suppressor and may lead to 

carcinogenesis. To maintain genomic integrity, there is an intricate system of damage 

response mechanisms [2]. Researchers have identified at least 15 different DNA 

polymerases in humans which are essential for DNA replication, DNA repair, and the 

tolerance of DNA damage [3].

DNA replicative polymerases which carry out the bulk of DNA synthesis have evolved to be 

precise and efficient [4]. Despite this high fidelity, a replication error may generate a one-

sided double-strand break (DSB) or degrade to a full DSB if it is not repaired prior to 

initiation of DNA replication [5, 6]. To resume DNA replication at a stalled replication fork, 

two damage tolerance mechanisms have been proposed [7]. During template switching, 

synthesis on the undamaged template strands can continue to a limited extent [3, 7, 8]. In 

contrast, the specialized DNA polymerases that conduct translesion synthesis do not directly 

repair the damage, but rather bypass the damage to prevent replication fork stalling. Unlike 

replicative polymerases, bypass polymerases lack 3′ to 5′ exonuclease (proofreading) 

activity and are able to resume replication without an undamaged template. However, this 

also contributes to their low fidelity and potential misincorporation of nucleotides [9].

Previous research has shown that mutations in bypass polymerases may be associated with 

the risk of cancer [10]. POLH (pol eta) was shown to be highly efficient in the bypass of UV 

lesions, such as cyclobutane pyrimidine dimer (CPD) [11]. Germline mutations in POLH 

identified in xeroderma pigmentosum (XP) patients were the first evidence that bypass 

polymerases may be involved in human cancer [12]. XP is an autosomal recessive genetic 
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disorder of DNA repair in which individuals are unable to repair damage caused by UV light 

and thus are at high risk of developing skin cancer [13].

While genetic variation in other DNA repair pathway genes have been studied extensively in 

association with breast cancer, focus on DNA bypass polymerases has increased more 

recently. Several studies have evaluated bypass polymerases in association with breast 

cancer risk [14–19]. Two reports from the NHS (Nurses’ Health Study) II cohort evaluated 

single-nucleotide polymorphisms (SNPs) from 5 bypass polymerase genes [18, 19]. Han et 

al. reported that 3 SNPs in POLK (rs3213801, rs5744533, and rs3756558) were associated 

with pre-menopausal breast cancer risk (239 cases, 477 controls) (p < 0.05) [18]. However, 

in the study of postmenopausal women (1,145 cases, 1,142 controls), there were no 

associations with any of the bypass polymerase SNPs [19]. In an in vivo study of breast 

cancer cells, Yang et al. reported elevated POLI expression when exposed to UV radiation 

[14]. In a gene sequencing study, Wang et al. identified several mutations in POLB, 

including an 87-bp deletion in the catalytic domain of the gene [15]. In two other reports, 

POLQ overexpression in tumors was associated with poor prognosis of breast cancer [17, 

20].

We evaluated the association between germline DNA bypass polymerases variants and 

breast cancer risk in the Carolina Breast Cancer Study (CBCS), a large population-based 

case–control study with a racially diverse study population and tumor subtype data. This 

analysis offered a unique opportunity to evaluate both breast cancer subtype and race-

specific effects of seven bypass polymerase genes.

Materials and methods

Study population

The CBCS is a population-based case–control study of breast cancer conducted in 24 

counties of central and eastern North Carolina and has been described previously [21, 22]. 

Briefly, rapid case ascertainment was implemented to identify eligible cases from the North 

Carolina Central Cancer Registry (NCCCR) [23]. Eligible cases included women ages 20–

74, living in the selected North Carolina counties during their primary breast cancer 

diagnosis. There were 2 phases of enrollment: Phase 1 (1993–1996) enrolled only invasive 

cancers, while Phase 2 (1996–2001) also included women with in situ cancer. Eligible 

controls were identified using DMV records for women under age 65 and Medicare lists for 

women ages 65 and older. Controls were frequency matched to cases based on race and age 

using randomized recruitment to oversample African American and younger women, a 

subgroup underrepresented in research studies of breast cancer [24]. This study was 

approved by the Institutional Review Board of the University of North Carolina at Chapel 

Hill.

Study subjects who met eligibility criteria and provide written informed consent were 

scheduled for an in-home visit that included a comprehensive interview and specimen 

collection by a trained study nurse. Permission was obtained from cases to access medical 

records and tumor tissue. The nurse-administered interview collected information about 

demographic factors and known and suspected breast cancer risk factors. A 30-mL blood 
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sample was collected at the end of the nurse visit. Blood samples were collected from 88 % 

of cases and 90 % of controls. Whites were more likely to provide blood samples than 

African Americans (88 vs. 83 %), but there were no significant differences in other risk 

factors for those who provided a blood sample and those who did not [25, 26]. A total of 

2,311 cases (894 African American and 1,417 Whites) and 2,022 controls (788 African 

Americans and 1,234 Whites) were successfully enrolled in the study. This included 862 

cases and 790 from Phase 1. The overall response rates for cases and controls were 78 and 

57 %, respectively. Other study response rates have been reported previously [26].

SNP selection and genotyping

We selected 30 candidate SNPs in seven bypass polymerase genes which were included as 

part of a larger genotyping panel. Given cost limitations, we targeted SNPs across a large 

number of genes in the TLS pathway which met one of two criteria: (1) prior association 

analysis identification or (2) data from in vitro or in silico reports. These SNPs included 

non-synonymous missense, regulatory (5′ UTR and 3′ UTR), and intronic variants 

(including splice SNPs) with a minor allele frequency (MAF) of at least 5 % in African 

Americans or Whites (Supplemental Table 1)

DNA was extracted from peripheral blood lymphocytes by standard methods using an 

automated ABI-DNA extractor (Nuclei Acid Purification System, Applied Biosystems, 

Foster City, CA, USA) [22]. High-throughput genotyping of selected SNPs was conducted 

as part of a larger set of 1,536 SNPs by the UNC Mammalian Genotyping Core using 

Illumina GoldenGate assay (Illumina, Inc., San Diego, CA) [27]. Assay intensity data and 

genotype cluster images for all SNPs were reviewed individually. Overall, 1,373 of 1,536 

(89 %) SNPs passed quality control. Out of the genotyped 30 bypass polymerase SNPs, we 

excluded five SNPs for which genotyping resulted in poor signal intensity or genotyping 

clustering, as well as, loci that were non-polymorphic overall (rs3730823, rs28382644, 

rs28382635) or in either race (five SNPs in Whites, two SNPs in African Americans). All 

SNPs tested were in Hardy–Weinberg Equilibrium (HWE) (p < 0.05) (Supplemental Table 

2). Our final analysis included genotyped data for 22 SNPs in the bypass polymerase 

pathway in 1,946 of 2,311 (85 %) cases and 1,747 of 2,022 (88 %) controls. Participants that 

did not self-identify as White or African American were excluded in the final analysis (N = 

26 cases and N = 29 controls).

In addition, 144 ancestry informative markers (AIMs) were genotyped to estimate African 

and European ancestry using maximum likelihood estimates (MLE). In this study, we 

selected SNPs with minor allele frequency (MAF) differences of at least 60 % between the 

HapMap CEU and YRI populations that had high values for Fisher’s information criterion, 

which is the inverse of the maximum likelihood estimation (MLE) of the ancestral 

proportion [28].

IHC analysis and subtype ascertainment

Immunohistochemical (IHC) markers were used as a surrogate for gene expression based 

subtyping [29]. IHC staining and scoring procedures have been explained previously in 

detail [29–32]. Briefly, tumor tissue blocks were used to confirm diagnosis by a pathologist 
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and to conduct IHC subtyping. Formalin-fixed paraffin-embedded (FFPE) tumor tissue was 

available 80 % of cases and immunohistochemistry was completed for 62 % of cases. 

ER/PR status was abstracted from medical records for 80 % of cases while IHC was used for 

the remaining 20 % of cases. The concordance between these two methods was 81 % [33]. 

A total of 1,424 (77 % of available tumor blocks) were successfully subtyped and classified 

into one of five “intrinsic” subtype groups: Luminal A (ER+ and/or PR+, HER2−, Luminal 

B (ER+ and/or PR+, HER2+), HER2+/ER− (ER−, PR−, HER2+), and basal-like (ER−, PR−, 

HER2−, HER1+ and/or CK 5/6+), with those negative for all 5 markers considered 

‘unclassified’ [30].

For the current study, we classified tumors as either Luminal (ER+ and/or PR+; n = 788), 

basal-like (ER−, PR−, HER2−, CK 5/6+ and/or EGFR+; n = 199) or HER2+/ER− (n = 94). 

We excluded ‘unclassified’ tumors from further analysis due to their uncertain status. The 

major distinction between the two Luminal subtypes are their proliferation signatures, 

measured by the expression of CCNB1, MKI67, and MYBL2 (49). HER2 expression only 

identifies about 30 % of Luminal B tumors, and information about proliferation markers was 

not available in the current study. Therefore Luminal A and B tumors were combined into a 

single ‘Luminal’ category (48, 49). Additionally, most other studies do not have subtype 

data available and only have estrogen receptor status data. Therefore, we conducted an 

additional exploratory analysis using estrogen receptor (ER) status to evaluate comparability 

to “intrinsic” subtype results. We found that ER positive effects were concordant with 

Luminal subtype results; while ER negative (ER−) effects correlated with those of basal-like 

and HER2+/ER− subtypes (Supplemental Table 3). There were no differences between 

CBCS cases with and without subtyping data in terms of age, menopausal status, or family 

history.

Statistical analysis

We calculated allele and genotype frequencies stratified by case status and self-reported race 

(African American or White). We assessed departure from HWE for each locus by 

comparing expected versus observed genotype frequencies among race-specific (White and 

African American) controls using χ2 tests (p < 0.05). We calculated pairwise linkage 

disequilibrium (LD) r2 using SAS Genetics (version9.1.3) (SAS Institute, Cary, NC) 

stratified by race.

We used unconditional logistic regression models to estimate odds ratios (ORs) and 95 % 

confidence intervals (CIs) for race-stratified effects of base excision repair SNPs on breast 

cancer, based initially on the additive model. We coded genotype as an ordinal variable (0, 

1, or 2 for the number of minor alleles carried by the individual). We excluded non-

polymorphic SNPs or SNPs with a minor allele frequency of less than 0.05 in either race. 

Due to large number of rare homozygote variants, the final analysis was conducted using a 

dominant genetic model. Less than 2 % of participants self-identified as another race and 

were not included in the final analysis. We adjusted for proportion of African ancestry, as 

measured with a set of 144 AIMs [34, 35]. Final models were adjusted for age at diagnosis, 

proportion of African ancestry, and offset term for the sampling design [24].
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Subtype analyses

We coded breast cancer subtype as a categorical variable with four levels (control, Luminal, 

HER2+/ER−, and basal-like). We used unconditional polytomous regression models to 

estimate ORs and 95 % CI for each subtype compared to controls.

Correction for multiple testing

We used FDR (false discovery rate) correction for multiple testing, following the method of 

Benjamini and Hochberg [36]. Corrections were based on the number of SNPs tested and 

were performed separately for African American and Whites in the race-stratified analysis 

and separately for Luminal, HER2+/ER− and basal-like categories in the subtype analysis. 

Observed p values (trend) from the additive model were used to determine q values. The q 

value is defined as the minimum FDR that can be attained when calling a SNP significant 

(i.e., expected proportion of false positives) [37]. Q values were computed using the 

software package R. Statistical significance was set at q < 0.10.

Pathway-based analysis

We used SNP-set kernel association test (SKAT) to evaluate the combined effects of the 

genotyped SNPs in the bypass polymerase pathway [38]. A SNP-set refers to a set of related 

SNPs that are grouped based on prior biological knowledge. In the current study, a SNP-set 

was formed based on SNPs in bypass polymerase genes [38]. The formation of SNP-sets 

harnesses the potential correlation between SNPs to increase power [39]. We chose a linear 

kernel under the assumption of a log-linear model. Kernel regression methods convert 

genomic information for a pair of individuals to a kernel score representing either similarity 

or dissimilarity. When applied to all pairs of the individuals, this information formed a 

positive semi-definite matrix [40]. We tested the global hypothesis for SNPs in the pathway 

separately for White and African American participants [38].

Results

Characteristics of the CBCS population with genotyping data are described in Table 1. The 

distributions of age, proportion of African ancestry, and menopausal status were similar 

between cases and controls. African American cases were more likely to be diagnosed at a 

later stage and were more likely to have tumors that were ER negative. African Americans 

were twice as likely to be classified as having basal-like tumors compared to Whites (22 vs. 

11 %).

Genotype associations by race

The race-stratified adjusted ORs for TLS SNPs are summarized in Table 2. Most SNPs did 

not show a meaningfully increased or decreased odds ratio. However, for both race groups, 

SNPs in POLQ were associated with an increased odds ratio under the dominant genetic 

model (p < 0.05). POLQ rs487848 (AG + AA vs. GG) showed a statistically significant 

(uncorrected) positive association with breast cancer risk in Whites (OR = 1.31; 95 % CI = 

1.08, 1.68) and African Americans (OR = 1.22; 95 % CI = 1.00, 1.49). POLQ SNP rs532411 

(CT + TT vs. CC) was also significantly associated with increased breast cancer among both 

races (OR = 1.31; 95 % CI = 1.02, 1.66) and (OR = 1.22; 95 % CI = 1.00, 1.48), 
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respectively. Finally, POLQ SNP rs3218634 (CG + CC vs. GG) showed an increased risk in 

breast cancer in Whites (OR = 1.29; 95 % CI 1.02, 1.65). After adjustment for multiple 

testing, none of the SNPs remained significant at the 0.10 FDR level (Table 3).

Genotype associations by subtype

In subtype-specific analyses, the 3 POLQ SNPs were significantly associated with Luminal 

breast cancer (p < 0.05 without FDR correction): rs487848 AG + AA vs. GG (OR = 1.34, 95 

% CI 1.02–1.67); rs532411 CT + TT vs. CC, (OR = 1.33, 95 % CI 1.06–1.65); rs3218634 

CG + CC vs. GG, (OR = 1.26, 95 % CI 1.01–1.57). Additionally, another POLQ SNP 

(rs1381057 CT + TT vs. CC) was significantly associated with HER+/ER− breast cancer 

(OR = 1.44; 95 % CI = 1.06, 1.93). The same set of POLQ SNPs was significantly 

associated with ER+ breast cancer (Supplemental Table 1). However, after FDR adjustment 

for multiple testing, none of these SNPs were significantly associated with ER+ breast 

cancer (q = 0.10).

Pathway-based analysis

We assessed the global p value for two different SNP-sets stratified by race using the SNP-

set Kernel Association Test (SKAT), adjusted for AIMs, and offset term. We did not find 

any significant associations for SNP-sets. A Kernel machine test of no linear effects yielded 

a global p value of 0.40, and 0.54 for African Americans and Whites, respectively 

(Supplemental Table 4).

Discussion

Given the relatively low fidelity and high mutational potential of bypass polymerases, it was 

initially hypothesized that SNPs in DNA bypass polymerases may be linked to increased 

cancer risk. We did not find a consistent pattern of association with breast cancer risk 

overall or within a given subtype for most SNPs we evaluated. Subsequently, specialized 

bypass polymerases were shown to bypass lesions in an error-free manner [41–43]. 

Therefore, functional redundancy in this pathway may weaken associations between specific 

bypass polymerases SNPs and breast cancer. Indeed, lesion specificity and functional 

redundancy are both evolutionary tactics which may ensure that genomic integrity is 

maintained [44].

Despite the weak results for most bypass polymerases, we did observe evidence for both 

race- and subtype-specific associations between three POLQ variants and an increased 

breast cancer risk. To our knowledge, other studies have not investigated these associations. 

All of the SNPs showing an association appeared to predict increased risk of Luminal breast 

cancer. Our power to detect associations in the other subtypes (i.e., basal-like) was limited. 

Although not statistically significant using the FDR, these findings are suggestive and 

warrant replication in other studies. Within each race, these three POLQ SNPs were in LD 

with each other making it difficult to identify which, if any SNPs were most likely to have 

functional effects. Two out of three identified POLQ SNPs had a SIFT score 0.05 or less, 

indicative of being a damaging functional SNP (Supplemental Table 1). However, functional 
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studies and fine mapping of the region are needed to further hone in on a potential causal 

variant.

The POLQ gene, located at chromosome 3q, is a member of the A Family that encodes the 

protein polymerase theta. POLQ has also been implicated as playing a role in other DNA 

repair mechanisms such as base excision repair (BER) and crosslink repair [45, 46]. POLQ 

is able to efficiently bypass oxidative DNA lesions such as abasic (AP) sites and thymine 

glycol in vitro [41, 47–49]. Another lab study showed that POLQ successfully extends from 

mismatches and bases opposite (6–4) photoproducts [41]. On the other hand, POLQ-

deficient mutants exhibited hypersensitivity to oxidative base damage induced by H2O2 

[50]. The results of the current study, together with previous experimental evidence, suggest 

POLQ may play an important role in breast cancer risk.

A pair of recent studies has linked POLQ overexpression in tumors to breast cancer 

progression and poorer prognoses [16, 17, 51]. Lemee et al. examined gene expression 

profiles of tumors from two cohorts of European women with untreated primary breast 

cancer. Patients’ tumor cells that overexpressed POLQ had a 4.3-fold increased risk of death 

compared those with normal expression [17]. Higgins et al. also found elevated levels of 

POLQ expression in breast cancer cells, which was linked to poor prognosis in early breast 

cancer patients [16]. While these findings emphasize the role of POLQ after disease onset, 

genes that influence progression also have been shown to influence early disease/etiology 

and therefore these findings also suggest that POLQ merits further investigation.

These findings should be considered in light of strengths and limitations. Compared to other 

genetic association studies of breast cancer, CBCS has a larger proportion of African 

Americans (over 40 %). In addition, CBCS has detailed subtype data on tumors from a large 

population-based sample of women allowing a unique investigation of the genetics of 

specific breast cancer subtypes as well as the ability to extend study results to the population 

as a whole. Stratification by subtype does reduce power for some race-specific and subtype 

comparisons, especially for HER2+/ER− and basal-like tumors, which may explain why 

only associations in Luminal tumors were found. Future research that includes large 

numbers of breast cancer cases with less common subtypes and focuses on oversampling 

African American cases should have improved power to more precisely estimate subtype 

associations, especially among African American women.

We had genotype and subtype data for a large proportion of CBCS participants. Tumor 

tissue was available for 1,845 of 2,311 cases (80 %) and subtyping using IHC was 

completed for 1,424 of 2,311 cases (62 %) [33]. A comparison of subtyped and non-

subtyped CBCS cases showed that the subtyped cases were not significantly different from 

the CBCS as a whole with respect to age and menopausal status. However, cases with 

subtype data were more likely to be African American and to have a later stage at diagnosis, 

which may bias estimates for SNPs related to race or disease aggressiveness [31].

It is also noteworthy that definitions for Luminal breast cancer have evolved since original 

CBCS IHC subtyping methods were published [29]. As a result, Luminal breast cancers 

cannot be divided into finer categories (Luminal A vs. Luminal B) without information on 
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proliferation markers or PR percentage [52, 53]. Therefore, there is heterogeneity within the 

group of Luminal breast cancers defined here. Nonetheless, our subtyping methods have the 

advantage of excluding tumors that were negative for all markers tested. Only triple 

negatives that were also positive for a basal-like marker are included among basal-like 

cancers, reducing outcome misclassification potential in this important subgroup.

Although we did not find any significant combined effects of SNPs in the TLS pathway 

using SKAT, use of kernel-based machine learning to assess pathway effects in breast 

cancer is an important advance in studying gene–gene interactions [19, 54]. While our 

pathway analysis was limited by the density of SNP coverage across TLS pathway genes, it 

is important to understand gene–gene interactions in breast cancer pathways. Future 

application of SKAT to similar data should consider tag-SNP approaches, which may better 

capture variation in candidate pathways.

In summary, this study adds important new information on the role of bypass polymerases in 

breast cancer etiology using tumor tissue to evaluate subtype-specific effects and considers 

carefully selected regulatory and coding SNP-sets in a biologically established DNA repair 

pathway. We identified three novel SNPs in the POLQ gene not previously associated with 

breast cancer. Larger studies such as the CBCS Phase 3 with improved power for race- and 

subtype-specific analyses and collaborative consortia [55, 56] will help gain further insight 

into the role of genetic variation in the DNA bypass polymerases and the risk of breast 

cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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