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Abstract
Promoter-CpG island hypermethylation is a common molecular defect in cancer cells. It has been
proposed as an alternative mechanism to inactivate BRCA1in the breast where somatic mutations of
BRCA1 are rare. To better understand breast cancer etiology and progression, we explored the
association between BRCA1 promoter methylation status and prognostic factors as well as survival
among women with breast cancer. We also examined whether dietary methyl content and functional
polymorphisms of genes involved in one-carbon metabolism influenced the methylation pattern.
Promoter methylation of BRCA1 was assessed in 851 archived tumor tissues collected from a
population-based study of women diagnosed with invasive or in situ breast cancer in 1996–1997,
and who were followed for vital status through the end of 2002. About 59% of the tumors were
methylated at the promoter of BRCA1. The BRCA1 promoter methylation was more frequent in
invasive cancers (p=0.02) and among premenopausal cases (p=0.05). BRCA1 promoter methylation
was associated with increased risk of breast cancer-specific mortality (age-adjusted HR 1.71; 95%
CI: 1.05–2.78) and all-cause mortality (age-adjusted HR 1.49; 95% CI: 1.02–2.18). Among dietary
methyl intakes in the year prior to the baseline interview examined, cases with lowest quintile of
choline intake (<20%) had higher BRCA1 methylation level in the tumor compared to the rest (66.1%
vs. 57.7%, p=0.04). Functional polymorphisms in one-carbon metabolism were not correlated with
BRCA1 methylation status. Our study is the first epidemiological investigation on the prognostic
value of BRCA1 promoter methylation in a large population-based cohort of breast cancer patients.
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Our results indicate that BRCA1 promoter methylation is an important factor to consider in predicting
breast cancer survival.
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INTRODUCTION
Breast cancer is the leading cause of cancer mortality among women 20 – 59 years of age and
the second leading cause of cancer mortality among all women1. Breast cancer is a
manifestation of abnormal genetic as well as epigenetic changes2. Promoter-CpG island
hypermethylation, accompanied by global hypomethylation, are common molecular defects in
cancer cells3, 4. Although the causal relationship is still being debated, evidence has shown
that hypermethylation is associated with silencing of many crucial genes in the neoplastic
process5. This phenomenon has also been reported in a large panel of genes in breast
cancer6.

Breast cancer gene 1(BRCA1), located on chromosome 17q21 (Figrue 1), encodes a
multifunctional protein involved in DNA repair, control of cell-cycle checkpoints, protein
ubiquitinylation and chromatin remodeling7. It was originally cloned as a gene responsible for
familial breast cancer8. About 5–50% of familial breast cancers could be explained by inherited
mutations of BRCA1 in different populations9. However, somatic mutations of BRCA1 are rare
in sporadic breast cancers despite the high degree of loss of heretozygosity (LOH) at this
locus6, 10. Therefore, other mechanisms for loss of function must exist. DNA methylation has
been proposed as an alternative mechanism to inactivate BRCA1 11. Results from various
methods of detection revealed that 9–44% breast cancer samples harbored a hypermethylated
promoter at BRCA1 11, 12.

BRCA1 status may potentially be used as a prognostic marker as studies have shown that breast
cancers with BRCA1 mutations are usually poorly differentiated, highly proliferative, ER-,
PR-, and harbor p53 mutations13. BRCA1 mutated breast cancer is also associated with poor
survival in some studies14–18.

One-carbon metabolism may be involved in the DNA methylation process as it provides the
universal methyl donor, S-adenosylmethionine (SAM). Folate, methionine and choline are the
major sources of methyl groups in foods19. There is evidence that dietary methyl donors are
capable of modulating methylation patterns in both animal models and humans20–23.
Furthermore, functional polymorphisms in one-carbon metabolizing genes could in principle
modify DNA methylation status24–26.

We previously reported that intakes of B vitamin as well as common polymorphisms in one-
carbon metabolizing genes were associated with breast cancer risk in the population-based
Long Island Breast Cancer Study Project 27–29. Herein, we investigated promoter methylation
status of BRCA1 in relation to clinical/pathological factors and breast cancer survival in the
same population. The influence of dietary methyl intake as well as polymorphisms in one-
carbon metabolizing genes on BRCA1 promoter methylation was also examined.
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MATERIALS AND METHODS
Study population

We utilized the resources of the parent case-control as well as the follow-up study of the Long
Island Breast Cancer Study Project, a population-based study. The study participants included
women newly diagnosed with a first primary breast cancer who participated in the original
case-control study30 and were subsequently re-interviewed about five years later and followed
for vital status31. Details of the study design have been described in detail previously30–33.

Exposure data was obtained as part of the 1) case-control (baseline) interview; 2) follow-up
interview; and 3) medical record abstraction. The questionnaires were administrated to assess
the demographic characteristics, breast cancer-related factors, tumor characteristics and
treatment information. The study protocol was approved by the Institutional Review Boards
of the collaborating institutions.

Study outcome
The National Death Index was used to ascertain all-cause and breast cancer-specific mortality.
Among the 1508 women diagnosed with breast cancer in 1996–1997, 198 (13.1%) deaths
occurred by December 31, 2002. The mean follow up time was 5.6 years (range: 0.2–7.4).
Based on International Classification of Diseases (ICD) codes 174.9 and C-50.9 listed as a
primary or secondary code on the death certificate, 124 (62.6%) of these 198 deaths were due
to breast cancer.

Tumor block retrieval and DNA extraction
Tumor tissue blocks were requested from all 35 participating hospitals of the parent study. In
total, breast cancer tissue blocks were successfully retrieved for 975 case participants (67.2%).
We compared the demographic and clinicopathological features between cases with or without
tumor block available for methylation analysis in our study. Although most characteristics are
similar between these two groups, some factors were different. Case women who had tumor
samples available for methylation analysis tended to be older (mean age 59.6 vs. 57.9;
p=0.005); to have an invasive tumor (87.8% vs. 80.1%; p<0.001); and to be post-menopausal
(70.7% vs. 64.6; p=0.01).

The paraffin blocks from each case participant were used to generate 15x 5 micron and 10x 10
micron thick slides. Tumor tissues were isolated from 10 micron paraffin sections by
microdissection. Tumor DNA was isolated by adding 30 ul of proteinase K-digestion buffer
(50mM Tris, pH 8.1, 1 mM EDTA, 0.5% Tween 20, 10 ug/ml proteinase K) to the tube and
incubating overnight at 37ºC. Proteinase K was inactivated incubating the samples at 95ºC for
10 min and centrifugation.

Analysis of BRCA1 promoter methylation
BRCA1 promoter methylation was determined by methylation-specific PCR (MSP) with
bisulfite-converted DNA (illustrated in Figure 1). Bisulfite modification of DNA to convert
unmethylated cytosine residues to uracil was carried out using the CpGnome DNA
Modification Kit (Chemicon International, Purchase, NY) following the protocol from the
manufacturer. The sequences of the primers were: i) Methylated primer: forward-5’-GAG
AGG TTG TTG TTT AGC GG-3’; backward-5’-CGC GCA ATC GCA ATT TTA AT-3’; ii)
Unmethylated primers: forward-5’-TGG TAA TGG AAA AGT GTG GGA A-3’;
backward-5’-CCC ATC CAA AAA ATC TCA ACA AA-3’. PCR was carried out in a total
volume of 20 μl containing 0.5 U of AmpliTaq Gold II (Roche, Nutley, NJ, USA). The amplicon
is 146bp in length. Each PCR reaction underwent initial denaturation at 95°C for 10 min, and
40 cycles of the following profile: 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C followed by a
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final 10-min extension at 72°C. The PCR products were then analyzed by electrophoresis on
a 2% agarose gel, stained with ethidium bromide and visualized by UV transillumination. DNA
is considered methylated if PCR product is yielded using methylation-specific primers.
Bisulfite-modified universal methylated DNA (Chemicon International, NY) and distilled
water were used as positive and negative controls in the assay. The assay was successfully
completed for 851 subjects; the main reason for failure of methylation assessment was
insufficient DNA from tumor blocks.

Dietary assessment
As part of the baseline interview, participants were asked to complete a modified Block food
frequency questionnaire (FFQ), which assessed intake of over 100 food items in the year prior
to the interview 33. The frequency and portion size data were translated to daily intakes of
nutrients from both dietary and supplement sources using the National Cancer Institute’s
DietSys version 3 for folate, and a previously described protocol for choline, methionine and
betaine 34. Habitual use of multivitamin supplements was also obtained from the FFQ. Dietary
intake values for one-carbon related micronutrients and compounds were calculated based on
interview data assessed from this FFQ.

Blood sample collection and genotyping
Blood samples were collected from 73% of the cases at the time of the baseline interview by
trained field staff 30 and DNA was isolated from blood specimens using the methods previously
described32. Genotyping was conducted on 9 polymorphisms in the one-carbon metabolism
pathway using methods described elsewhere 27, 28.

Statistical Analysis
Correlation of BRCA1 promoter methylation status of the tumor tissue with patient
demographic characteristics, other factors that may affect prognosis, and with known
characteristics of the breast cancer diagnosis was examined using the chi-square statistic for
categorical variables and by two-sample t-test for continuous variables. The Kaplan-Meier and
the log-rank test were used to examine the crude association between BRCA1 promoter
methylation status and survival35. The Cox proportional hazard regression35 was used to
estimate the hazard ratio (HR) and 95% confidence interval (CI) for breast cancer-specific and
all-cause mortality, with adjustments made for age at diagnosis (continuous). Potential
confounding effect by other factors known to influence survival among breast cancer patients
was evaluated by adjustment in the Cox model. These factors include age at diagnosis, cancer
type (in situ vs. invasive), menopausal status (pre- vs. post-), race, family history of breast
cancer and history of benign breast. One-carbon metabolism-related nutrient intakes in the year
prior to the interview were categorized based on the distributions observed in cases with
methylation data. Percentages of cases with methylated BRCA1 promoter were compared
within each quintile. Nutrients examined in the study include folate, methionine, choline,
betaine and B vitamins (B1, B2, B3, B6, B12). Whether the distribution of the one-carbon
genotypes differed with respect to BRCA1 methylation status was examined using the chi-
square statistic. All statistical analyses were performed using SAS statistical software version
9.1(SAS Institute, Cary, NC).

RESULTS
BRCA1 methylation and clinicopathological characteristics of breast cancer

Promoter methylation status of BRCA1 was assessed in breast tumor samples from a
population-based sample of 851 women, including 104 in situ and 747 invasive cases (Table
1a). Overall 504/851 (59.2%) of tumors showed methylation at the promoter of BRCA1. Table
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1 summarizes the relationship between BRCA1 methylation status and potential prognostic
factors. BRCA1 promoter methylation was more frequent in cancers that were classified as
invasive (p=0.02) and among premenopausal women (p=0.05). BRCA1 promoter methylation
was not associated with age at diagnosis or family history of breast cancer.

As shown in Table 1b, hormone receptor status, as recorded on the medical record, was
determined by immunohistochemistry and was available on a subset of the samples (625 out
of 851). BRCA1 promoter methylation status was not associated with ER or PR status in this
subpopulation. For a smaller subset of women, we were able to obtain information on tumor
size (n=321) and node involvement (n=327) from the medical record. BRCA1 promoter
methylation was more frequent in cancers with at least one node involved (p=0.003) and with
tumor size greater than 2 cm (p=0.003).

BRCA1 methylation and survival
Among the 851 women with methylation data available, a total of 122 (14.3%) deaths were
observed; 79 (64.8%) of these were due to breast cancer. As showing in Figure 2, BRCA1
methylation was associated with breast cancer-specific mortality among the cohort of women
in our analysis (p for log-rank test =0.03). Compared to cases with an unmethylated BRCA1
promoter, those who had a methylated BRCA1 promoter had 72% increased risk of dying from
breast cancer at the end of follow up (age-adjusted HR: 1.72, 95% CI: 1.06–2.79). A similar
result was observed for all-cause mortality with borderline significance (p for log-rank test
=0.05); cases with methylated BRCA1 promoters had 45% increased mortality risk when
compared to those who had unmethylated BRCA1 promoters (age-adjusted HR: 1.45, 95% CI:
0.99–2.11). The BRCA1 methylation and survival association was of borderline significance
after adjusting for age, cancer type (in situ vs. invasive), menopausal status (pre- vs. post-),
race, family history of breast cancer and history of benign breast disease in a multivariate model
(multi-variate adjusted HR for breast cancer-specific mortality: 1.67, 95% CI: 0.99–2.81; for
all-cause mortality: 1.40, 95% CI: 0.94–2.08).

One-Carbon metabolism and BRCA1 methylation
We explored whether dietary intake of one-carbon related nutrients was associated with
BRCA1 methylation status. As shown in Figure 3, none of the nutrient intakes was associated
with BRCA1 methylation except choline; very low choline intake (lowest quintile) was
associated with higher methylation (66.1% vs. 57.7%, p=0.04) compared to the rest.

We did not observe any relationships between BRCA1 promoter methylation and functional
polymorphisms in the one-carbon metabolizing genes [(MTHFR C677T (rs1801133) and
A1298C (rs1801131); TYMS 5’-UTR tandem repeat; DHFR 19bp deletion; MTR A2756
(rs1805087); MTRR A66G (rs1801394); BHMT G742A (rs3733890); RFC1 A80G
(rs1051266); and cSHMT C1420T (rs1979277)] (data not shown).

DISCUSSION
To reduce the disease burden of breast cancer, it is important to identify etiologic factors of
the disease as well as factors that predict survival. We studied BRCA1 promoter methylation
because the importance of this gene has been well documented in breast carcinogenesis 36. To
the best of our knowledge, this is the first epidemiologic study on the prognostic value of
BRCA1 methylation. The cohort of women with breast cancer was drawn from a large
population-based sample that encompassed a broad age range making the study results more
generalizable than a series of cases from a single institution. Furthermore, the comprehensive
lifestyle and dietary information as well as collection of biological samples allowed us to
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examine interactions among environmental, genetic, and epigenetic factors in relation to breast
cancer mortality.

We found BRCA1 promoter methylation in ~59% of tumors, a level higher than other published
studies from other groups, which ranged from 9–44% 11, 12. Several factors may account for
these differences. First, the assay used for methylation measurement varied from study to study.
Because contamination from adjacent tissue may occur during tissue dissection, unmethylated
DNA from the normal cells might attenuate the methylation levels of the tumor tissue. In our
study, tumor tissues were micro-dissected from paraffin-embedded sections so the
contamination was minimized. Secondly, MSP detects differential methylation status by
amplification of bisulfite-treated DNA with primers specific for methylated vs. unmethylated
DNA37. CpG sites residing within the primer sets were used as a proxy for the methylation
status of the region of interest. Although most published studies mentioned above used MSP,
the primer sequences and target regions varied from study to study.

We found that BRCA1 promoter methylation was more frequent in invasive than in in situ
carcinomas. Since information on breast cancer subtype was not readily available for the other
published studies, we could not compare the methylation-cancer type relationship observed
here directly with other studies. In a small subset of our population for whom medical record
data were available, we also found a higher prevalence of BRCA1 promoter methylation in
cases with at least one node involved and with tumor size greater than 2 cm. Taken together,
these associations suggest that methylation occurs in sequence during tumor development and
progression. More advanced tumor stage could have higher methylation level. Thus, it is
possible that the variation in methylation prevalence reported across studies could also be due
to the variation in the distributions of cases’ stage at diagnosis across studies.

We found that BRCA1 promoter methylation was more frequent in tumors from premenopausal
women despite the fact that age of diagnosis was not associated with BRCA1 methylation.
Studies have indicated that estrogens stimulate the expression of BRCA1 38. On the other hand,
BRCA1 was shown to have an ability to inhibit the cellular response to estrogens by direct
interaction with estrogen receptor39, 40. Nevertheless, we did not observe any association
between BRCA1 methylation and ER/PR status in our study.

BRCA1 mutation status as a potential prognostic marker had been explored previously. A recent
review by Liebens et al 41 summarized differences in survival outcome in relation to
BRCA1 germline mutations. Evidence exists indicating that BRCA1 mutation carriers had a
worse survival 14–18. Carriers of BRCA1 mutations had functionally defective proteins,
resulting in some loss of function. Promoter methylation represented an alternative mechanism
for loss of function of BRCA1. Our study is the first to report that BRCA1 promoter methylation
influences breast cancer survival in an epidemiologic study. Decreased survival associated with
methylated BRCA1 corroborates the findings on BRCA1 mutations. This finding may have
clinical significance as it identifies a subgroup of patients with worse survival and could help
in tailoring of breast cancer treatment based on epigenetic profiles.

With the exception of choline intake, we found no association between intake of nutrients
involved with one-carbon metabolism and BRCA1 methylation status. Although previous
studies have shown that dietary methyl content and one-carbon gene polymorphisms were
capable of modulating global DNA methyl content in animal models and humans20–26,
modulation of promoter methylation of specific genes has not been demonstrated. Choline is
an essential nutrient required for one-carbon metabolism 42. Evidence from animal studies has
implied a causal relationship between choline-deficiency and carcinogenesis 43, 44. The recent
results from the Nurses’ Health Study showed that increasing choline intake was associated
with an elevated risk of colorectal adenoma 45. Our results from the same population used in
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this study showed that higher choline intake was associated with decreased breast cancer risk
29. Here, we observed that very low choline intake was associated with more frequent
BRCA1 promoter methylation. Global hypomethylation of the genome of the tumor cells are
well-observed phenomenon4 and it is linked with deficiency of methyl-content diet46.
However, the relationship between methyl-content in diet and gene-specific methylation is not
well-known. Since the epigenetic changes may be reversible and diet is a modifiable factor,
further investigation into this relationship could aid in our search for breast cancer
chemoprevention strategies.

One limitation of our study is that BRCA1 expression was not measured in the tumor tissues.
Thus, we could not explore the functional mechanism of gene silencing through DNA
methylation. Previous studies have generated conflicting results on BRCA1 expression and the
subcellular localization of this protein by using various antibodies for immunohistochemical
staining 47–49. This discrepancy was even more pronounced when paraffin-embedded tissues
were used 50. Nevertheless, the fact that our results corroborate those from BRCA1 mutation
studies suggests that promoter methylation indeed results in gene silencing or loss of gene
function.

Another limitation of our study is that tumor DNA was not available for all case participants
of the Long Island Breast Cancer Study Project, which is a population-based study. Although
there were some differences between those with and without tumor DNA available for our
analyses (described in the Methods section), the benefit of utilizing our population-based
sample is that we are able to quantify the differences between the two groups. This valuable
contrast aids in our interpretation of the generalizability of our study results to the general
population. It is this type of information that is often unavailable from other study populations,
such as those derived from a hospital-based case series. Nonetheless, caution should be taken
when comparing our results across studies, or to the general population.

In summary, we examined BRCA1 promoter methylation status and explored its relationship
with clinicopathological factors and breast cancer survival. Our study, which is based on data
drawn from a large population-based sample, is the first to report on the prognostic value of
BRCA1 promoter methylation status in breast cancer in an epidemiologic study. Our results
indicate that BRCA1 promoter methylation is an important factor to consider in predicting
breast cancer survival.
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Figure 1.
Schematic illustration of the BRCA1 promoter region for methylation analysis. The view of
the genomic context was adapted from USCS Genome Browsers (http://genome.uscs.edu).
BRCA1 gene is in the reverse strand. Blue bar shows the exons of the RefSeq Genes and the
green bar shows the predicted CpG island in the promoter region. Location of transcription
start sites (TSS) was shown also shown. Region examined (Exon 1 and nearby region) was
zoomed in to show the location of the primers for methylation-specific PCR and CpG sites
(red bars) in the sequence.
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Figure 2.
Survival plot for breast cancer patients by BRCA1 promoter methylation status in the tumor
tissue - Kaplan–Meier analyses of survival among all 851 breast cancer cases. Vertical lines
in the curve represent the death events.
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Figure 3.
Methyl-nutrient intake and BRCA1 promoter methylation. Nutrient intakes in the year prior to
the baseline interview were categorized into quintiles based on the distributions observed
among cases with methylation data shown in the figure as Q1–Q5. Numbers shown are
percentages of cases with methylated BRCA1 promoter in tumor tissue within each quintile.
(*choline intake: lowest quintile with the other four quintiles: 66.1% vs. 57.7%, p=0.04)
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Table 1
Table 1a. Association between BRCA1 promoter methylation and potential predictors of breast cancer survival assessed
at the baseline interview (N=851)1

Table 1b. Association between BRCA1 promoter methylation and potential predictors of breast cancer survival assessed
at the baseline interview

Feature BRCA1 methylated, n=504
(59.2)

BRCA1 unmethylated, n=347
(40.8)

p-value

Age at diagnosis (y)

 ≤60 259(59.7) 175(40.3) 0.78

 >60 245(58.8) 172(41.2)

 mean age 59.0 60.4 0.12 (t-test)

Race n=503 n=346

 White 463(58.5) 329(41.5) 0.21

 Black 29(69.0) 13(31.0)

 Other 11(73.3) 4(26.7)

Cancer type n=504 n=347

 in situ 51(49.0) 53(51.0) 0.024

 invasive 453(60.6) 294(39.4)

Menopausal status n=493 n=340

 pre- 157(64.3) 87(35.7) 0.051

 post- 336(57.0) 253(43.0)

Family history n=488 n=333

 no 399(59.9) 267(40.1) 0.570

 yes 89(57.4) 66(42.6)

History of benign breast disease n=503 n=347

 no 417(60.2) 276(39.8) 0.214

 yes 86(54.8) 71(45.2)

Supplement use2 n=498 n=341

 no 262(60.0) 175(40.0) 0.713

 yes 236(58.7) 166(41.3)

Active smoking n=504 n=347

 never 229(60.6) 149(39.4) 0.192

 current 88(53.0) 78(47.0)

 past/former 187(60.9) 120(39.1)

Passive smoking n=491 n=340

 never 95(58.6) 67(41.4) 0.397
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Feature BRCA1 methylated, n=504
(59.2)

BRCA1 unmethylated, n=347
(40.8)

p-value

 current 73(54.1) 62(45.9)

 past/former 323(60.5) 211(39.5)

 Folate intake (ug/day) n=498 n=341

 mean (dietary) 264.9 258.7 0.52(t-test)

 mean (total) 443.8 450.1 0.79(t-test)

Feature BRCA1 methylated, n=504
(59.2)

BRCA1 unmethylated, n=347
(40.8)

p-value

ER status n=372 n=253

 negative 89(59.7) 60(40.3) 0.952

 positive 283(59.4) 193(40.6)

PR status n=372 n=253

 negative 135(59.2) 93(40.8) 0.905

 positive 237(59.7) 160(40.3)

Node n=202 n=125

 0 142(57.3) 106(42.7) 0.003

 1+ 60(76.0) 19(24.0)

Tumor size n=199 n=122

 ≤ 2cm 141(57.1) 106(42.9) 0.003

 2cm-5cm 52(78.8) 14(21.2)

 >5cm 6(75.0) 2(25.0)

1
Numbers in the parenthesis are percentages of methylated or unmethylated case in each category.

2
Supplement: multivitamin supplement use in the 5 years prior to the baseline interview.

*
Fisher's Exact Test
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