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Abstract

Dopamine receptor stimulation is critical for heroin-conditioned immunomodulation; however, it

is unclear whether the ventral tegmental area (VTA) contributes to this phenomenon. Hence, rats

received repeated pairings of heroin with placement into a distinct environmental context. At test,

they were re-exposed to the previously heroin-paired environment followed by systemic

lipopolysaccharide treatment to induce an immune response. Bilateral GABA agonist-induced

neural inactivation of the anterior, but not the posterior VTA, prior to context re-exposure

inhibited the ability of the heroin-paired environment to suppress peripheral nitric oxide and tumor

necrosis factor-α expression, suggesting a role for the anterior VTA in heroin-conditioned

immunomodulation.
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1. Introduction

Opioid administration has detrimental health consequences in addition to the possible

development of addictive behaviors and dependence. Clinical studies have revealed

abnormalities in basic immune parameters in heroin users, including a decrease in

circulating lymphocytes, natural killer cell activity, cytokine production, and antibody-

dependent cellular cytotoxicity (Govitrapong et al., 1998; Nair et al., 1986; Olson et al.,

2005; Yardeni et al., 2008). Several immune parameters that are critical for innate immune

responses are altered by opioid use, such as the expression of inducible nitric oxide synthase

(iNOS) (Lysle and How, 2000) and the production of the proinflammatory cytokines, tumor

necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) (Chao et al., 1993; Pacifici et al.,
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2000). These studies suggest that chronic opioid administration results in an impaired ability

to defend against infectious disease (Theodorou and Haber, 2005).

Interestingly, opioid-induced immunosuppression has been shown to be mediated by the

central nervous system (Fecho et al., 1996; Lysle et al., 1996; Shavit et al., 1986), and the

immunosuppressive effects of exogenous opioid administration can be conditioned to the

context in which the drug is delivered. Indeed, research from our laboratory has shown that

the immune altering effects of opioids, including those of morphine and heroin, can be

conditioned to environmental stimuli by pairing opioid administration with exposure to a

distinct environmental context. As a result, a morphine-paired context can acquire immune

altering effects. For example, following conditioning sessions during which morphine

injections were paired with a distinct context, rats exhibited significant reductions in

mitogenic responsiveness of lymphocytes, natural killer cell activity, and interleukin-2

production when re-exposed to the distinct context in a drug free state, demonstrating for the

first time morphine-conditioned immunosuppression (Coussons et al., 1992). These findings

are commensurate with other studies exploring the conditioned effects of opiates on other

physiological and behavioral processes. For example, the administration of morphine has

been shown to results in the development of a conditioned hyperthermia (Broadbent and

Cunningham, 1996; Schwarz-Stevens and Cunningham, 1993; Schwarz and Cunningham,

1990). Moreover, exposure to stimuli associated with heroin use has been shown to induce

craving for heroin (Daglish et al., 2001; Sell et al., 2000; Zijlstra et al., 2009). Furthermore,

contextual stimuli associated drug self-administration has been shown to reinstate heroin-

seeking behavior (Bossert et al., 2004; Bossert et al., 2012; Fuchs and See, 2002). Thus, the

study of conditioning processes has implications for the health consequences of drug use and

drug seeking behavior and addiction.

Early evidence suggested that that dopamine and glutamate are involved in conditioned

immunomodulation (Hsueh et al., 1999; Kuo et al., 2001). Findings from our laboratory

demonstrated that dopamine receptor activity was necessary for the expression of opioid-

conditioned immune alterations, as administration of a D1-like receptor antagonist prior to

re-exposure to a morphine-conditioned stimulus prevented the suppression of natural killer

cell activity (Saurer et al., 2008a). Similar immunomodulatory effects have also been

demonstrated with heroin (Fecho and Lysle, 2000; Lysle and Ijames, 2002; Saurer et al.,

2008a).

Emerging evidence suggests that a limbic neural circuit mediates the expression of heroin-

induced conditioned immune alterations, and this circuit likely includes the ventral

tegmental area (VTA). In support of this, either GABA agonist-induced neural inactivation

of, or dopamine D1-like receptor antagonism in, the basolateral amygdala (BLA) blocks

heroin-induced conditioned immunosuppression (Szczytkowski and Lysle, 2008, 2010).

Moreover, unilateral dopamine D1-like receptor antagonism in the BLA coupled with

contralateral NMDA glutamate receptor antagonism in the nucleus accumbens (NAc) shell

significantly attenuates the expression of heroin-conditioned immunosuppression

(Szczytkowski et al., 2011). In contrast, ipsilateral manipulation of the same brain regions

fails to disrupt heroin-conditioned immunomodulation (Szczytkowski et al., 2011). These

findings suggest that dopamine in the BLA, via the stimulation of D1-like receptors, is
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necessary for obligatory intrahemispheric interactions between the BLA and the NAc in the

control of heroin-conditioned immune alterations.

The critical source of dopamine involved in heroin-conditioned immunomodulation has not

been investigated even though the VTA is a likely candidate. Opioid administration has been

long believed to result in the disinhibition of dopaminergic projection neurons and the

subsequent release of dopamine at terminal regions via the stimulation of μ opioid receptors

on VTA GABAergic inter- and projection neurons (Johnson and North, 1992a). However,

recently a revised model has been proposed, in which opioids directly inhibit GABAergic

projections from the rostromedial tegmental nucleus to VTA dopamine neurons, thereby

suppressing tonic inhibition and resulting in enhanced phasic dopamine activity (Bourdy and

Barrot, 2012). Similarly, heroin-associated stimuli increase the activity of VTA neurons

(Kiyatkin and Rebec, 2001). Recently, investigations have focused on elucidating the

function of various subregions of the VTA, and the findings have suggested that the VTA is

a heterogeneous structure with distinct subregions differentially affecting drug-induced

behaviors. For example, μ opioid receptor antagonism in the anterior, but not posterior, VTA

prevents the acquisition of cocaine-induced conditioned place preference (Soderman and

Unterwald, 2008). Furthermore, rats self-administer the GABAA antagonist picrotoxin into

the anterior, but not the posterior, VTA (Ikemoto et al., 1997a). A study utilizing retrograde

tracing techniques determined that dopaminergic efferents from the VTA to BLA originate

in the anterior VTA (Ford et al., 2006), whereas a large proportion of dopaminergic

projections from the posterior VTA terminate in the NAc (Ikemoto, 2007). Based on these

findings and the importance of dopamine signaling in the BLA in conditioned

immunosuppression (Szczytkowski et al., 2011; Szczytkowski and Lysle, 2008, 2010), we

hypothesized that the functional integrity of the anterior, but not posterior, VTA is necessary

for the expression of heroin-conditioned immunomodulation.

To test this hypothesis, the present study selectively targeted the anterior or posterior VTA

in order to evaluate the distinct contributions of these subregions to the expression of heroin-

induced conditioned immunomodulation. Rats underwent a conditioning procedure which

consisted of repeated pairings of heroin administration with placement into a distinct

environment. Following the conditioning regimen, rats received microinfusions of saline

vehicle or a cocktail of the GABAB/GABAA agonists, baclofen/muscimol (B/M), into the

anterior or posterior VTA to temporarily inactivate these VTA subregions. Rats were then

re-exposed to the previously heroin-paired environment in a drug free state. Six hours

following re-exposure, rats received a subcutaneous injection of lipopolysaccharide (LPS) to

induce an immune response. LPS is a component of the outer cell membrane of Gram-

negative bacteria, which activates the innate immune response via the CD14/TLR4/MD-2

complex, resulting in a robust proinflammatory response (Fujihara et al., 2003). To assess

context-induced alterations in immune status, the effects of these manipulations were

examined on the expression of the proinflammatory mediators, iNOS and TNF-α, in the

spleen and/or plasma.
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2. Materials and Methods

2.1 Animals

Male Lewis rats, weighing 225–250 g, were purchased from Charles River Laboratories

(Raleigh, NC, USA). Upon arrival, animals were housed individually in plastic cages in a

colony room with a reversed light-dark (12-h) cycle maintained through artificial

illumination. Animals were allowed access to food and water ad libitum throughout the

experiment except for the time spent in the conditioning chambers when food and water

were not available. All animals were given a 2-week habituation period before the start of

experimental manipulations and were handled regularly during this time. All procedures

described were approved by the IACUC of the University of North Carolina at Chapel Hill

and conformed to National Institutes of Health (NIH) Guidelines on the Care and Use of

Laboratory Animals.

2.2 Drug Administration

Heroin (diacetylmorphine) was obtained from NIDA (Bethesda, MD, USA) and dissolved in

0.9% sterile saline. Heroin was administered subcutaneously at a dose of 1 mg/kg. This dose

was selected based on prior experiments in our laboratory showing that it induces

conditioning and alters LPS-induced iNOS and TNF-α mRNA expression in spleen tissue

(Lysle and How, 2000; Lysle and Ijames, 2002; Szczytkowski and Lysle, 2007)

2.3 Surgical Procedures

Animals were fully anesthetized with 0.35 mL intramuscular injections of 1:1 (vol:vol)

ketamine hydrochloride (100 mg/mL) mixed with xylazine (20 mg/mL) and placed into the

stereotaxic apparatus. Animals were implanted bilaterally with 26-gauge guide cannulae

(Plastics One, Roanoke, VA, USA). The cannulae were angled at 10° and directed towards

the anterior VTA (AP −5.0, ML ± 2.2, DV −6.1 mm, relative to bregma) or posterior VTA

(AP −6.0, ML ± 2.1, DV −6.3 mm, relative to bregma). Animals were given a 2-week post-

surgical recovery period before the start of conditioning trials.

2.4 Conditioning Procedure

All animals received five conditioning sessions in standard conditioning chambers (BRS/

LVE, Laurel, MD, USA). Chambers were fitted with a metal grid floor design and cedar

bedding to create an environment distinct from that of the home cage and to provide both

olfactory and tactile cues for conditioning. Artificial noise machines were used to minimize

background noise. All conditioning took place during the dark phase of the light cycle in a

room separate from the animal colony and the conditioning chambers were kept dark to

minimize effects on circadian rhythms. On each conditioning day, a subcutaneous injection

of heroin (1 mg/kg) was administered immediately prior to placement into the chamber for

60-min. Training sessions were separated by 48 h.

2.5 Test of Heroin-Conditioned Immunomodulation

Six days following the final conditioning session, animals received bilateral microinfusions

of saline vehicle (0.3 μL per hemisphere) or B/M (0.3/0.03 nmol per 0.3 μL per hemisphere)
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into the anterior or posterior VTA. Injectors extended 3 mm beyond the tip of the guide

cannula. Injections were delivered over 1 min, and the injectors were left in place for 1 min

after the injection to allow for proper diffusion of fluid away from the infusion site. Thirty

minutes later, the rats were re-exposed to the previously heroin-paired conditioning chamber

or remained in their home cages (home cage control groups) for 60 min. Heroin was not

administered on the test day in order to isolate the effect of the context on immune

responses. After the 60-min time period, all rats received a subcutaneous injection of LPS

(1000 μg/kg) and were immediately returned into their home cages. LPS, a component of the

cell wall of Gram negative bacteria, was used to induce iNOS and TNF-α production. Prior

work from our laboratory has determined the dose and route of delivery used in the present

study to be effective in generating a robust proinflammatory response (Szczytkowski et al.,

2011; Szczytkowski and Lysle, 2007, 2008, 2010) Six hours after LPS administration, all

animals were euthanized. The 6-h time point was selected based on previous research in our

laboratory showing maximal iNOS induction 6 h following LPS administration (Lysle and

How, 2000).

2.6 Histology

Samples of spleen and blood were collected for analysis. Spleen samples were either stored

in an Ambion® RNA Later solution or Roche complete protease inhibitor cocktail solution.

To confirm proper cannula placement, Alcian blue dye was infused via the cannula. Brains

were then extracted and post-fixed in a 4% paraformaldehyde solution. Following fixation

the brains were transferred to a 30% sucrose solution for cryoprotection and then frozen at

−80 °C until further analysis. Coronal sections (40 μm) were taken and stained with cresyl

violet for verification of cannula placement. The data of animals with cannula placement

outside of the targeted region were removed from subsequent data analyses.

2.7 Real-Time qRT-PCR

To determine iNOS and TNF-α expression, real time RT-PCR was performed on tissue

samples from the spleen. Total RNA was extracted from a section of each of the tissues

using TRI-Reagent (Molecular Research Center, Cincinnati, OH), a modification of the

original method described by Chomczynski and Sacchi (1987). RNA was quantified

spectrophotometrically (GeneQuant II, Pharmacia-Biotech, Piscataway, NJ, USA). Reverse

transcription was performed using Oligo(dT)18 primer and Moloney Murine Leukemia

Virus-Reverse transcriptase following the protocol of the Advantage RT-for-PCR Kit from

Clontech (Palo Alto, CA, USA). Specific products from the PCR reaction were detected

with Universal ProbeLibrary Probes (Roche, Indianapolis, IN). PCR amplifications were

performed using standard protocols, the LightCycler TaqMan Master Real-Time PCR Kit,

and the LightCycler II instrument (Roche, Indianapolis, IN). A master mix containing all

reaction components was prepared and then 20 μl of cDNA with master mix was placed in

glass capillary tubes designed for use in the LightCycler II system. Primers and probes for

immune parameters were as follows: (iNOS) 5′-TGAGGATTACTTCTTCCAGCTCA-3′
and 5′-TGGGTGTCAGAGTCTTGTGC-3′, using probe #25; (TNF-α) 5′-

GGGCCTCCAGAACTCCAG-3′ and 5′-GAGCCATTTGGGAACTTCT-3′, using probe

#98. Primers were synthesized by the Nucleic Acids Core Facility (Lineberger Cancer

Center, UNC-Chapel Hill). Copy numbers were generated based on an internal standard
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curve. Amplifications were carried out for 45 cycles and curves showing fluorescence at

each cycle were determined by the computer software (Roche). Samples were pre-incubated

for 10 min at 95°C to activate the Fast-Start Taq DNA polymerase. The cycle temperatures

were 95 and 60 °C and the cycle times were 10 and 30 s for the denaturing and annealing/

extending, respectively. Fluorescence level was determined at the end of the extending

phase for each cycle of PCR. A final cooling phase was carried out at 40° C for 30 s. The

analysis of the fluorescence in standards and samples over the course of 45 cycles was used

to derive the number of copies of the target molecule in each sample. Additionally,

assessments of housekeeping gene expression, L13A, were made to verify comparable RNA

quality of among samples. L13A primers were 5′-CCCTCCACCCTATGACAAGA-3′ and

5′-GGTACTTCCACCCGACCTC-3′, using probe #74. The data are expressed as copy

numbers.

2.8 Nitrite/Nitrate Assay

The nitrite/nitrate concentration in plasma samples was assessed using the Greiss reagent

assay described previously (Szczytkowski and Lysle, 2007). Briefly, 6 μl of plasma was

diluted in 44 μl of dH2O, and the sample was incubated in the dark for 90 min with 10 μl of

nitrate reductase (1.0 U/ml), 20 μl of 0.31M phosphate buffer (pH 7.5), 10 μl of 0.86mM

NADPH (Sigma), and 10 μl of 0.11mM flavin adenine dinucleotide in individual wells of a

96-well plate. Next, 200 ml of Greiss reagent, consisting of a 1:1 (v/v) solution 1%

sulfanilamide in 5.0% phosphoric acid and 0.1% N-(1-napthyl) ethyl-enedamine

dihydrochloride in distilled water, was added to the samples. The color was allowed to

develop for 10 min at room temperature, after which, the absorbance was determined using a

spectrophotometer set at 550 nm. All reactions were carried out in triplicate. The total

micromolar concentration of nitrite was determined for each sample based on a standard

curve. Recovery of nitrate is greater than 95% using this assay.

2.9 ELISA

To assess TNF-α protein expression, protein was extracted from homogenized tissue using

freeze/thaw lysis in tris-buffer containing antiproteinases. Protein was quantified

spectrophotometrically (Bio-Tek, μQuant Monochromatic Microplate Spectrophotometer,

Winooski, VT, USA) using Bio-Rad protein dye. Samples were normalized per unit protein

based on spectrophotometric analysis. Invitrogen (Carlsbad, CA) rat TNF-α ELISA test kits

were used to determine the levels of TNF-α protein in each tissue sample. The samples were

processed following the kit manufacturer’s protocol. Sample concentrations were

determined based on plotting absorbance against the concentrations of supplied standards.

2.10 Statistical Analysis

Two-way analysis of variance was performed on all data sets. The first factor was test

context, which compared re-exposure to the conditioned environment to home cage groups,

and the second factor was inactivation treatment, comparing VTA inactivation with B/M or

saline. Post-hoc analyses were performed using Fisher’s Least Significant Difference tests.

All analyses were conducted with alpha set at p < 0.05. Only significant interactions and

main effects are reported.
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3. Results

3.1 Anterior VTA Inactivation

Figure 1A shows the effect of anterior VTA inactivation on LPS-induced heroin-conditioned

iNOS mRNA expression in spleen tissue following exposure to the heroin-paired context or

the home cage. The ANOVA of iNOS mRNA copy numbers revealed a significant context

by treatment interaction effect [F(1,16) = 14.88, P < 0.005]. Post-hoc analyses revealed that

saline-treated rats exposed to the heroin-paired context exhibited a significant reduction in

iNOS mRNA expression compared to that in the home cage. In contrast, rats that received

intra-VTA microinjections of B/M failed to exhibit differences in iNOS mRNA expression

after exposure to the previously heroin-paired environment or the home cage. There were

also no differences across groups in housekeeping gene expression (data not shown).

Figure 1B shows the effect of anterior VTA inactivation on LPS-induced plasma nitrate/

nitrite levels. The ANOVA of nitrate/nitrite levels revealed a significant context by

treatment interaction effect [F(1,16) = 5.83, P < 0.05]. Post-hoc analyses revealed that

saline-treated rats exposed to the heroin-paired context exhibited a significant reduction in

iNOS mRNA expression compared to that in the home cage. Rats that received intra-VTA

microinjections of B/M failed to exhibit differences in iNOS mRNA expression after

exposure to the two contexts and compared to the saline-treated home cage control group.

Figure 2 shows the effect of anterior VTA inactivation on LPS-induced TNF-α mRNA and

protein expression. The ANOVA found a significant context by treatment interaction effect

for TNF-α mRNA expression [F(1,16) = 6.46 P < 0.05] and TNF-α protein levels [F(1,15)

= 4.57, P < 0.05]. Post-hoc analyses revealed that saline-treated rats exposed to the heroin-

paired context exhibited a significant reduction in TNF-α mRNA expression and protein

levels compared to home cage animals. By comparison, animals that underwent anterior

VTA inactivation prior to context re-exposure showed no significant difference in LPS-

induced TNF-α mRNA expression or protein levels compared to anterior VTA saline

infused controls. No differences in housekeeping gene expression were observed across

groups (data not shown).

3.2 Posterior VTA Inactivation

Figure 3A shows the effect of posterior VTA inactivation on LPS-induced iNOS mRNA

expression. Analysis revealed a significant context main effect only [F(1,15) = 20.32, P <

0.0001]. Thus, context re-exposure produced a similar decrease in iNOS mRNA expression

in the posterior VTA inactivated and control groups, relative to home cage exposure.

Figure 3B shows the effect of posterior VTA inactivation on LPS-induced nitrate/nitrite

levels in blood plasma. The ANOVA also revealed a context significant main effect only

[F(1,15) = 7.28, P < 0.05]. Therefore, context re-exposure produced a similar decrease in

nitrate/nitrite levels in the posterior VTA inactivated and control groups, relative to home

cage exposure.

Figure 4A shows the effect of posterior VTA inactivation on LPS-induced TNF-α mRNA

expression. The ANOVA of TNF-α mRNA expression revealed a marginally significant
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main effect of context [F(1,14) = 4.22, P = 0.059]. Thus, context re-exposure produced a

similar decrease in n TNF-α mRNA expression in the posterior VTA inactivated and control

groups, relative to home cage exposure.

Figure 4B shows the effect of posterior VTA inactivation on LPS-induced TNF-α protein

levels. The ANOVA of TNF-α protein levels revealed significant context [F(1,15) = 14.68,

P < 0.005] and drug treatment main [F(1,15) = 10.12, P < 0.01] effects. Thus, the posterior

VTA inactivated group exhibited lower TNF-α protein levels than the saline control group.

However, context re-exposure produced a similar decrease in n TNF-α mRNA expression in

the posterior VTA inactivated and control groups, relative to home cage exposure.

4. Discussion

In the present study, neural activity in the anterior or posterior VTA was inhibited using

GABA agonists prior to re-exposure to a heroin-paired environmental context in order to

determine whether subregions of the VTA play different roles in the expression of heroin-

conditioned immune alterations. Anterior VTA neuronal inactivation disrupted the

immunosuppressive effects of the heroin-paired context on LPS-induced TNF-α and iNOS

expression. This suggests that the functional integrity of the anterior VTA is necessary for

the expression of heroin-induced conditioned immune suppression of proinflammatory

mediators. In marked contrast, posterior VTA inactivation failed to alter heroin-paired

context-induced alterations of proinflammatory mediators even though it produced a

context-independent reduction in TNF-α protein levels. Overall, this pattern of findings

suggests that the anterior VTA, but not the posterior VTA, has a critical role in heroin-

induced conditioned immune alterations. These findings expand our understanding of the

neural circuitry involved in heroin-conditioned immunomodulation by identifying a source

of dopamine that alters the activity of several other brain regions within the mesolimbic

dopamine system, as well as provide insight into the neural mechanisms of drugs of abuse.

Previous research in our laboratory suggests that dopamine regulates multiple elements of

the neural circuitry underlying conditioned immunomodulation. In support of this,

inactivation of the BLA and blockade of dopamine D1-like receptors within the BLA

prevent the suppressive effect of the heroin-associated context on iNOS induction and on

TNF-α and IL-1β expression in spleen and liver tissue (Szczytkowski and Lysle, 2008,

2010). Dopamine D1-like receptor antagonism in the NAc shell blocks the expression of

morphine-induced conditioned immune alterations (Saurer et al., 2008b). In a recent

functional disconnection study from our laboratory (Szczytkowski et al., 2011), we provided

evidence that the NAc plays a critical role in heron-conditioned immunomodulation as an

element of a larger VTA-BLA-NAc circuit. In that study, rats received unilateral

administration of the D1-like dopamine antagonist, SCH23390, in the BLA in combination

with unilateral administration of the NMDA or AMPA/kainate antagonist, into the ipsilateral

or contralateral NAc on test day. Contralateral manipulation (i.e., disconnection) of the

VTA-BLA-NAc circuit inhibited the heroin-conditioned immunosuppression of iNOS and

TNF-α expression in the spleen. Conversely, the ipsilateral manipulation, which left

intrahemispheric information processing between the BLA and NAc intact in one

hemisphere, failed to alter proinflammatory responses. Given that the VTA is one of the
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primary sources of dopamine to the BLA (Rosenkranz and Grace, 1999), these findings

suggest that serial information processing via a VTA-BLA-NAc circuit is necessary for the

expression of heroin-conditioned immunomodulation. However, the direct role of the VTA

and the subregions of the VTA in conditioned heroin effects had not been investigated prior

to this study.

There are studies, consistent with the present findings, demonstrating functional differences

between subregions of the VTA, as microinfusions of the GABAA agonist muscimol into the

anterior, but not posterior VTA, significantly reduced cocaine self-administration (Lee et al.,

2007). Furthermore, rats will self-administer the GABAA receptor antagonist picrotoxin into

the anterior, but not the posterior, VTA (Ikemoto et al., 1997b). This effect may be mediated

by the disinhibition of dopaminergic neurons in the anterior VTA and subsequent dopamine

release in the NAc since picrotoxin administration into the anterior VTA increases dopamine

overflow in the NAc (Ikemoto et al., 1997a). Functional differences between anterior and

posterior VTA subregions reflect differences in neurochemistry and connectivity between

these VTA subregions (Johnson and North, 1992b; Swanson, 1982). For example, the

anterior and posterior VTA contain different proportions of dopaminergic and glutamatergic

neurons and GABAergic interneurons, with a higher proportion of GABAergic interneurons

and dopaminergic neurons located in the anterior VTA and posterior VTA, respectively

(Olson et al., 2005; Yamaguchi et al., 2007). Interestingly, VTA efferents to the BLA are

localized in the anterior VTA, which was verified using retrograde tracing techniques (Ford

et al., 2006; Ikemoto, 2007). Conversely, dopamine neurons from the posterior VTA project

to NAc core and medial shell, with a significant amount of overlap in projections between

the anterior and posterior VTA.

Given the previously discussed importance of dopamine in the BLA in heroin-conditioned

immunosuppression, we hypothesized that the anterior, but not posterior, VTA would be

important in the expression of heroin-conditioned immunomodulation. The results of the

present study support this hypothesis. Our findings also suggest that projections from the

posterior VTA, which include projections to the NAc shell and core, are not critical for the

expression of the observed heroin-conditioned suppression of proinflammatory mediators.

On the other hand, dopaminergic signaling to the NAc originating from the anterior VTA

may play a role in heroin-conditioned immunosuppression. Importantly, interactions

between the VTA, NAc, and BLA appear to be complex, as dopamine release in the NAc is

proposed to be regulated by BLA glutamatergic efferents (Jones et al., 2010). Consistent

with this, temporary neural inactivation of the BLA results in decreased discriminative

stimulus-induced evoked NAc dopamine release. In addition, BLA inactivation has no effect

on NAc dopamine release following VTA stimulation, indicating that the BLA does not

modulate dopamine release indirectly through the VTA (Howland et al., 2002). Taken

together, these previous findings suggest that dopaminergic signaling from the anterior VTA

may result in dopamine release at the terminal level in the NAc.

The present studies do not address the inputs responsible for the activation of the VTA. In

other studies, we have demonstrated that inactivation of the dorsal hippocampus prevents

heroin-conditioned immunosuppression of LPS-induced nitric oxide production

(Szczytkowski et al., 2013). Furthermore, a recent study demonstrated that a bi-synaptic
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functional circuit conveys information from the CA3 region of the dorsal hippocampus to

the anterior VTA via the lateral septum (LS). As a result, GABA agonist-induced

inactivation of the LS attenuates excitatory and inhibitory neuronal firing in the VTA

following CA3 stimulation. In addition, inactivation of the CA3, as well as the LS, impairs

drug context-induced reinstatement of cocaine-seeking behavior (Luo et al., 2011). These

findings suggest that activation of CA3 glutamatergic pyramidal neurons results in the

disinhibition of VTA dopamine neurons via this circuit, thus contributing to the expression

of context-reward associations. It is possible that similar mechanisms play a role in heroin-

conditioned immunomodulation.

In conclusion, the present study demonstrates that GABA agonist-induced inactivation of

the anterior, but not posterior, VTA blocks heroin-conditioned immunosuppression of iNOS

induction and the expression of TNF-α in spleen tissue. Taken together with previous

findings, these results enhance our understanding of the neural circuit involved in the

conditioned effects of heroin on immune function, further elucidating the mechanisms

responsible for increased susceptibility to infections associated with heroin-conditioned

contextual stimuli, as well as contributing to the understanding drug reward conditioning

neural circuitry.
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Figure 1.
Effects of context re-exposure and B/M-induced inactivation of the anterior VTA on LPS-

induced: (A) expression of iNOS mRNA as determined by real-time RT-PCR. The data are

expressed as iNOS copy number per 10ng cDNA based on a standard curve using Roche

LightCycler software. (B) nitrate/nitrite serum levels as determined by Greiss Reagent

Assay. The data are expressed as the mean micromolar concentration of nitrite/nitrate. The

error bars represent the standard error of the mean. There was a significant interaction

between context and inactivation and post-hoc analysis compared context re-exposure and

home cage within inactivation treatment (* indicates post hoc comparison p < .05).
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Figure 2.
Effects of context re-exposure and B/M-induced inactivation of the anterior VTA on LPS-

induced: (A) expression of TNF-α mRNA determined by real-time RT-PCR. The data are

expressed as TNF-α copy number per 10ng cDNA based on a standard curve using Roche

LightCycler software. (B) production of TNF-α protein determined by ELISA. The data are

expressed as picograms of protein per ml. The error bars represent the standard error of the

mean. There was a significant interaction between context and inactivation and post-hoc

analysis compared context re-exposure and home cage within inactivation treatment (*

indicates post hoc comparison p < .05).
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Figure 3.
Effects of context re-exposure and B/M-induced inactivation of the posterior VTA on LPS-

induced: (A) expression of iNOS mRNA as determined by real-time RT-PCR. The data are

expressed as iNOS copy number per 10ng cDNA based on a standard curve using Roche

LightCycler software. (B) nitrate/nitrite serum levels as determined by Greiss Reagent

Assay. The data are expressed as the mean micromolar concentration of nitrite/nitrate. The

error bars represent the standard error of the mean. The analysis showed a main effect of

context for both iNOS mRNA and serum levels of nitrate/nitrite (p < .05), but no significant

interaction with inactivation.
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Figure 4.
Effects of context re-exposure and B/M-induced inactivation of the posterior VTA on LPS-

induced: (A) expression of TNF-α mRNA determined by real-time RT-PCR. The data are

expressed as TNF-α copy number per 10ng cDNA based on a standard curve using Roche

LightCycler software. (B) production of TNF-α protein determined by ELISA. The data are

expressed as pictograms of protein per ml. The error bars represent the standard error of the

mean. The analysis showed a main effect of context (p < .05) for both mRNA and protein.

There was also a main effect of inactivation for TNF-α protein (p < .05). There was no

significant interaction between context and inactivation.
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