
Endogenous Cortical Oscillations Constrain Neuromodulation 
by Weak Electric Fields

Stephen L. Schmidt1,5, Apoorva K. Iyengar2, A. Alban Foulser2, Michael R. Boyle1,5, and 
Flavio Fröhlich1,3,4,5,6

1 Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

2 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

3 Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

4 Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel 
Hill NC 27599

5 Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill 
NC 27599

6 Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

Abstract

Background—Transcranial alternating current stimulation (tACS) is a non-invasive brain 

stimulation modality that may modulate cognition by enhancing endogenous neocortical 

oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network 

activity in enabling and shaping the effects of tACS has remained unclear.

Objective—We combined optogenetic stimulation and multichannel slice electrophysiology to 

elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical 

oscillatory activity. We hypothesized that the structure of the response to stimulation depended on 

matching the stimulation frequency to the endogenous cortical oscillation.

Methods—We studied the effect of weak sine-wave electric fields on oscillatory activity in 

mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in 

vivo like cortical oscillations for studying the temporal relationship between network activity and 

sine-wave electric field stimulation.
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Results—Weak electric fields enhanced endogenous oscillations but failed to induce a frequency 

shift of the ongoing oscillation for stimulation frequencies that were not matched to the 

endogenous oscillation. This constraint on the effect of electric field stimulation imposed by 

endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like 

network dynamics. Together, these results suggest that the key mechanism of tACS may be 

enhancing but not overriding of intrinsic network dynamics.

Conclusion—Our results contribute to understanding the inconsistent tACS results from human 

studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations 

is key to rational design of non-invasive brain stimulation paradigms.

Keywords

transcranial alternating current stimulation; tACS; optogenetics; electric field; multielectrode 
array; resonance

Introduction

Oscillatory activity in neocortex enables temporal organization of information during 

sensory processing, cognition, and memory [1, 2]. Perturbing cortical oscillations with brain 

stimulation has become a key experimental approach to evaluate the functional, frequency-

specific roles of cortical oscillations. Targeted enhancement of cortical oscillations may in 

the future also serve as a treatment for psychiatric disorders associated with impaired 

cortical oscillations such as schizophrenia and autism [3]. Suprathreshold excitation of 

cortical networks with pulsed transcranial magnetic stimulation (TMS) can alter temporal 

structure of network activity and mediate changes in associated cognitive processes [4, for 

example 5, 6]. Recently, transcranial alternating current stimulation (tACS) has emerged as 

an alternative non-invasive brain stimulation approach for targeted modulation of cortical 

oscillations [7]. TACS applies a weak, sine-wave electric field (EF) that targets neocortical 

networks. Several studies have demonstrated cognitive enhancement by tACS in humans 

[8-11] and animals [12] and enhancing effects of tACS on neuronal activity in animal 

models in vitro [13-15] and in vivo [16, 17]. However, very little is known about the 

interaction dynamics between endogenous cortical oscillations and the small, periodic 

changes in membrane voltage caused by tACS. In fact, differences in endogenous network 

activity alter the effects of tACS on macroscopic brain activity measured by 

electroencephalography (EEG) and may explain the variability of behavioral effects for 

seemingly very similar stimulation paradigms [18]. In the long term, elucidating the role of 

endogenous activity in shaping the response to non-invasive brain stimulation is crucial for 

the development of individualized, adaptive stimulation paradigms that take into account 

ongoing network activity and adjust stimulation accordingly.

Computational simulations suggest that cortical activity is preferentially enhanced by EFs at 

the frequency of the endogenous oscillation through network resonance [15, 17]. Network 

resonance in this contexts is defined as the preference of a network to oscillate in a narrow 

frequency band in response to periodic stimulation [for review of resonance see 19], in this 

case centered on the frequency of the endogenous oscillation. Here, we combine optogenetic 

network activation with applied EF stimulation in vitro to determine how the relationship 
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between the network oscillation and stimulation frequency determines the effect of periodic 

stimulation on cortical oscillations. Using optogenetic stimulation for generating an in vivo-

like activity structure provided precise and simultaneous control of both the “endogenous” 

activity [20] and the applied EF stimulation to directly study the interaction dynamics. 

Specifically, we used optogenetic stimulation of layer 5 pyramidal cells in cortical slices of 

the Thy1-ChR2 mouse [21] to induce a pronounced slow cortical oscillation (1 Hz) that we 

then targeted with applied EF stimulation. Layer 5 pyramidal cells play a central role in low-

frequency cortical oscillations [22] and their optogenetic activation in vivo induces network 

activity that closely mimics spontaneous slow cortical oscillations [20]. Using this approach, 

we tested the hypothesis that intrinsically oscillating neocortical networks exhibit network 

resonance by preferentially responding to frequency-matched sine-wave EF stimulation.

Methods

All procedures were approved by The University of North Carolina at Chapel Hill Institute 

of Animal Use and Care and were in compliance with the National Institute of Health guide 

for care and use of laboratory animals (NIH Publications No. 8023, revised 1978).

Slice Preparation and Data Acquisition

Thy1-Chr2 mice (Jackson Laboratory, Bar Harbor, ME), deeply anesthetized with Euthasol 

(0.5 mL/kg, Virbac, Fort Worth, TX), were decapitated and their brains extracted and 

quickly placed in ice-cold sucrose solution (mM: 83.0 NaCl, 2.5 KCl, 0.5 CaCl2, 3.3 

MgSO4, 1 NaH2PO4, 26.2 NaHCO3, 22.0 Dextrose Anhydrose and 72.0 Sucrose) bubbled 

with carbogen (95% O2, 5% CO2). 200 μm coronal sections containing V1 were cut using a 

vibratome (Leica Microsystems, Wetzlar, Germany) and allowed to recover in incubation 

solution (mM: 119.0 NaCl, 2.5 KCl, 1.0 NaH2PO4, 26.2 NaHCO3, 22.0 glucose, 2 MgSO4 

and 2.0 CaCl2) for at least 1 hr at 34 °C. After recovery, slices were placed on a MEA 2100 

(Multichannel Systems, Reutligen, Germany) and perfused with artificial cerebrospinal fluid 

(aCSF, mM: 119.0 NaCl, 4.5 KCl, 1 NaH2PO4, 26.2 NaHCO3, 22.0 glucose, 1.0 MgSO4, 

and 1.0 CaCl2), heated to 36 °C, at a rate of greater 4 mL per minute as in [23]. The calcium 

and magnesium concentrations in the aCSF were modeled after human CSF concentrations 

[24]. Data were recorded from 59 electrodes (30 μm diameter) in a 6 by 10 perforated array 

with 100 μm spacing between electrodes at a rate of 25 kHz.

Experimental Design

Experiments included continuous 1 Hz optogenetic stimulation by blue light (460 nm, 22 

mW maximum, approximately 200 μW delivered at slice surface) from a LED 460 

(Prizmatix, Givat Shmuel, Israel). EF was generated by applying a calibrated current from a 

stimulus isolator (World Precision Instruments, Sarasota, FL) between two AgCl wires in 

the bath. Slices were arranged on the MEA such that pia was in parallel to the stimulation 

wires and therefore approximately orthogonal to the somato-dendritic axes of the pyramidal 

cells in the slice preparation. Therefore, the EF was oriented from the wire close to layer 1 

of visual cortex to the wire close to the ventral side of the slice such that the positive first 

half-wave and the negative second half wave caused a somatic membrane depolarization and 

hyperpolarization, respectively [25, 26]. Experiments consisted of continuous 1 Hz 
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optogenetic stimulation (square-wave, 50% duty cycle) for 64 trials of EF stimulation. Each 

trial of EF stimulation consisted of 10 s of optogenetic stimulation, 10 s of EF with 

optogenetic stimulation, followed by an additional 10 s of optogenetic stimulation. The 

order of trials was randomized for both stimulation frequency (0.8, 1.0, 1.2 or 2.0 Hz) and 

stimulation amplitude (1 or 2 mV/mm EF). The EF was selected to be of similar amplitude 

to the estimated EF strength during tACS in humans [11, 27] and was below action potential 

threshold for cells at rest [14, 26]. For experiments without optogenetic stimulation, the 

same stimulation paradigm was used however the LED was disconnected from the power 

supply. In experiments with low intensity optogenetic stimulation, the intensity was 

decreased to an intensity of 1/10th of the full intensity (approximately 20 μW at slice 

surface). For experiments with varied optogenetic stimulation, we first selected the length of 

each “UP/DOWN state” from a normal distribution (mean 500 ms, standard deviation 50 

ms) for a total of 10 oscillation cycles. “UP” states here refer to the periods when the LED 

was on. Conversely, “DOWN” states refer to the inactive phase of the LED stimulation 

cycle.

Data Analysis

Multiunit traces and stimulation data were recorded using MC_Rack (Multichannel Systems, 

Reutligen, Germany). All data analysis was performed by custom-written Matlab 

(Mathworks, Natick, MA) scripts. Spikes were extracted at the time-points at which the 

recorded, high-pass filtered trace for each electrode crossed the threshold of -4 times the 

standard deviation of the trace with a 1 ms dead time. Application of the EF would 

occasionally cause a transient, stereotyped voltage spike on all electrodes at the onset, offset 

or zero-crossing of EF cycles; therefore artifact removal was performed by finding and 

removing voltage spikes that occurred on 10 or more electrodes within 1 ms. Following 

artifact removal, only electrodes in V1 were included for subsequent analysis. Single units 

(SU) were isolated using methods outlined in [23, 28, 29]. Spike trains were binned with 1 

ms resolution for each SU. The FR effect of EF stimulation was calculated as the FR during 

EF stimulation divided by the FR of the period without EF stimulation immediately 

preceding stimulation for each electrode for each trial. The activation ratio was calculated as 

the number of spikes while the LED was on divided by the total number of spikes. Whole-

slice spike trains were constructed by summing spike trains across electrodes (1 ms bins). 

Frequency transforms were calculated by convolution with Morelet wavelets followed by 

temporal averaging, and subsequent whole-slice spectra were then normalized by dividing 

by the number of summed SU. Frequency preference was calculated as the mean of the 

frequency spectra at the frequency ± 0.01 Hz subtracted by the mean of 1.5 times the 

frequency ± 0.01. This metric includes not only the enhancement of rhythmic structure at the 

frequency in question but the suppression of rhythmic structure at frequencies between the 

fundamental frequency and the first harmonic. Paired data were analyzed using a Wilcoxon 

signed rank test with a Bonferroni correction for multiple comparisons where appropriate. 

Confidence intervals were determined from 5% to 95% using bootstrapping with 1,000 

iterations.
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Results

Optogenetic in vitro model of slow cortical oscillation

To probe the interaction dynamics between neocortical network activity and EF stimulation, 

we developed an experimental approach that enabled precise control of endogenous network 

dynamics in vitro, application of EF stimulation, and simultaneous recording of neuronal 

activity in all layers of cortical networks. To this end, we first determined if full-field 

optogenetic stimulation in absence of EF stimulation robustly evoked activity in the entire 

network and not just pyramidal cells in layer 5 that express ChR2 (Fig. 1A, left). We found 

that periodic stimulation with blue light (460 nm optogenetic stimulation, 1Hz, 500 ms of 

simulation followed by 500 ms without stimulation for each oscillation cycle) robustly 

evoked network activity (Fig. 1A, right). Importantly, individual SU in all cortical layers 

responded to optogenetic stimulation to varying degrees (Fig. 1B, activation ratio, long-

tailed distribution). The spread of activation ratios demonstrates that the SU in the 

stimulated slices did not all exclusively fire in lockstep (activation ratio of 1.0) with the 

stimulation but maintained their ability to spike in absence of stimulation (activation ratio of 

0.5 if optogenetic stimulation had no effect). The SU maintained sparse firing (activation 

ratio, median ± SEM: 0.907 ± 0.003 for all SU, 0.895 ± 0.004 for L 1-4, 0.917 ± 0.004 for 

L5&6; FR: 1.30 ± 0.038 Hz for all SU, 1.33 ± 0.053 Hz for L1-4, 1.29 ± 0.052 Hz for 

L5&6; n = 3840, 1536, 2304 SU*trials, respectively; correlation: r = 0.125, p < 10−3 for all 

SU; Fig 1B). Thus, the optogenetic stimulation of the slices did not cause unphysiological 

firing rates. Despite the cell-to-cell variability, the overall network activity in individual 

slices exhibited a prominent peak at 1 Hz in most trials (1 Hz peak: 1.05 ± 0.027 spikes2/Hz, 

n = 703 trials, trials sorted by power at 1 Hz, Fig. 1C). These data demonstrate that our 

optogenetic stimulation paradigm provided a precisely tuned 1 Hz network oscillation but 

preserved in vivo-like sparseness and cell-to-cell variability of the firing patterns of 

individual neurons.

Neocortex responds to weak EF with network resonance

TACS provides a weak EF that we modeled with an applied EF generated by a voltage-

controlled current source. We simultaneously applied optogenetic stimulation to model 

endogenous network activity (Fig. 2A, Experimental set-up and waveforms for optogenetic 

and EF stimulation). We hypothesized that the response to stimulation is guided by network 

resonance near the frequency of the endogenous oscillation. Accordingly, EF stimulation of 

equal amplitude at the frequency (or its first harmonic) of the ongoing network oscillation 

would have a greater effect than stimulation with waveforms at nearby, yet mismatched 

frequencies. To test this hypothesis, we examined the network response to EF stimulation 

with two different amplitudes (1 and 2 mV/mm) at stimulation frequencies matched to (1 

Hz), twice (2 Hz), and nearby (0.8 and 1.2 Hz) the frequency of the endogenous network 

oscillation (1 Hz, induced by optogenetic stimulation). We first examined the raster plot of 

all SU for 1 Hz EF stimulation and determined that EF stimulation did not override the 

patterned network activity caused by optogenetic stimulation since oscillation cycles with 

and without EF closely resembled each other (Fig 2B, raster of all units for 1 Hz stimulation, 

n = 3840 SU*trials); peak activity occurred at the onset of the optogenetic stimulation 

during each oscillation cycle and low but detectable activity occurred in absence of 
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optogenetic stimulation (second half of stimulation period). Therefore, stimulation with EF 

amplitudes similar to the ones estimated to occur in human neocortex during tACS [11, 27] 

failed to qualitatively alter the endogenous activity structure. In order to quantify the more 

subtle effects of EF stimulation on spontaneous cortical oscillations, we assessed the change 

in frequency structure of the overall network activity within individual slices by computing 

the change in frequency spectrum (Fig. 2C). In agreement with our hypothesis of frequency-

specific modulation, we found that these modulation profiles of oscillation structure 

exhibited distinct shapes for different stimulation frequencies (0.8, 1.0, 1.2, 2.0 Hz). 

Independent of the stimulation frequency, the only clear peaks of enhancement were 

localized at or very close to 1 Hz (and its integer multiples). Therefore, our data reject the 

alternative hypothesis that EF stimulation enables the selective enhancement of network 

activity at the stimulation frequency. Rather, enhancement was strongly constrained by the 

endogenous oscillation, in particular in cases such as here where we induced a pronounced, 

in vivo-like slow oscillation by means of optogenetic stimulation. We quantified the 

modulation of the oscillatory activity by first determining the amount of enhancement at the 

EF stimulation frequency. For 1 mV/mm EF amplitude, we exclusively found an increase in 

frequency preference for EF stimulation frequencies of 1 and 2 Hz. However, for increased 

stimulation amplitude (2 mV/mm), the EF application significantly enhanced 1, 1.2, and 2 

Hz oscillations respectively (Fig. 2D; confidence intervals and statistics Supplementary 

Table 1). These results show that cortex preferentially responded to EF stimulation at the 

frequency of endogenous oscillation and its first harmonic. We then examined the effect of 

the stimulation on the endogenous activity at 1 Hz. Indeed, EF stimulation at the frequency 

of the network oscillation (1 Hz), its first harmonic (2 Hz), and below the network frequency 

(0.8 Hz) all enhanced the rhythmic activity caused by optogenetic stimulation at 1 Hz for 

low amplitude stimulation. EF stimulation amplitude to 2 mV/mm caused an increase of 1 

Hz oscillation for all EF stimulation frequencies (Fig. 2E; Supplementary Table 2). Again, 

we found that perturbations at the frequency of the ongoing oscillation and the first 

harmonic preferentially enhance the ongoing oscillation. However, EF stimulation at the 

frequency below that of the ongoing oscillation also enhanced the oscillation. We therefore 

concluded that cortical networks respond to sine-wave EF stimulation, and likely by 

extension, tACS, with the properties of network resonance. EF stimulation predominantly 

enhanced the endogenously present oscillation and shifts in frequency of the endogenous 

were unattainable in these experiments. We next probed for outlasting effects by comparing 

the 10 s after EF enhancement to that of the 10 s preceding stimulation. We did not find any 

outlasting effect for any amplitude or frequency EF stimulation (Fig S1); this lack of 

outlasting effect is most likely due to the short duration of the EF stimulation and the 

randomization of the different stimulation frequency conditions in our study.

EF stimulation increases neuronal activity levels

Does EF stimulation only alter the temporal structure of network activity or does it also alter 

the net activity levels of individual neurons? To address this question, we next investigated 

how EF stimulation alters the overall activity levels of individual neurons by measuring 

firing rates (FRs) of SU. We examined modulation of FR during the UP state (500 msec 

activity caused by optogenetic stimulation), the DOWN state (500 msec of relative 

quiescence in absence of optogenetic stimulation), and the entire cycle while EF stimulation 
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was applied compared to that of the preceding interval of optogenetic stimulation only (Fig. 

3). Indeed application of most EF stimulations tested here increased FR during the UP state 

of the 1 Hz cycle (Fig 3A left, Supplementary Table 3). During the DOWN state, only EF 

stimulation that was matched to the frequency of the optogenetic stimulation (1 Hz EF 

stimulation) caused a FR decrease for both stimulation amplitudes (Fig 3A center, 

Supplementary Table 4). When we compared the total FR with EF stimulation to the FR 

without EF, we observed that 2 mV/mm EF enhanced FR for most stimulation frequencies 

(Fig. 3A right, Supplementary Table 5). However the total FR was not significantly 

increased for all low amplitude (1 mV/mm) EF stimulation frequencies except for 

mismatched frequency (1.2 Hz) stimulation. Thus in agreement with the findings on network 

oscillation structure, matching the stimulation frequency to the endogenous network 

frequency caused differential modulation of the network activity in contrast to non-matching 

stimulation frequencies.

We next assessed the temporal profile of the FR modulation by applied EF stimulation. In 

absence of EF stimulation, a pronounced increase in FR occurred at the onset of optogenetic 

stimulation followed by decay in FR with a relatively abrupt transition to low activity levels 

when the stimulus was turned off at 500 ms (black traces in Fig. 3B, left). Overall, this 

activity profile was maintained in presence of EF stimulation (blue and red traces in Fig 3B 

left; Top: 1 Hz EF; Bottom: 2 Hz EF). We then calculated the percent change caused by 

application of EF and fitted a sine-wave to this time-profile of FR modulation (Fig 3B, 

right). We found that enhancement of neural activity by EF lagged behind the stimulus 

waveform for 1 Hz EF stimulation (goodness of fit: R2 = 0.71 for 1 mV/mm and 0.62 for 2 

mV/mm; ϕ = −0.21 for 1 mV/mm at 1 Hz and −0.14 for 2 mV/mm at 1 Hz; Fig. 3B, top). 

Similarly, EF stimulation at 2 Hz caused a temporal modulation profile that followed a 2 Hz 

sine-wave (R2 = 0.45 for 1 mV/mm and 0.64 for 2 mV/mm, Fig 3B bottom). Again we 

observed a phase delay between the EF stimulation and the change in FR (ϕ = −0.58 for 1 

mV/mm at 1 Hz and −0.74 for 2 mV/mm at 2 Hz; for results of 0.8 and 1.2 Hz EF see Fig 

S2). We then examined pairwise correlations between single units to determine if the 

increase in oscillatory structure was caused by an increase in similarity of firing patterns of 

individual neurons at a finer time-scale. Pairwise correlations on the 50 ms timescale were 

virtually unaltered (Supplementary Table 6). The increased oscillatory structure did thus not 

depend on increased synchronization at faster time-scales. Together, these results 

demonstrated an overall increase in FR for EF stimulation (with the exception of low-

amplitude, frequency-matched stimulation) and a temporal modulation of activity levels that 

closely followed the applied EF waveform.

Conditions that limit occurrence of network resonance

Our finding of endogenous network dynamics constraining the effect of stimulation is likely 

most prevalent in the case of pronounced endogenous activity and low-amplitude periodic 

perturbations. To experimentally delineate the conditions in which the above demonstrated 

interaction dynamics apply, we performed additional control experiments. First, we 

conducted control experiments with 2 mV/mm EF in the absence of optogenetic stimulation. 

In these experiments, the network activity without EF stimulation did not exhibit any peak in 

the frequency spectrum (Fig 4A). In contrast to the results presented above, the EF 
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application enhanced the oscillatory structure at the frequency of the EF stimulation (median 

enhancement at stimulation frequency: 0.102 [0.076 0.132] spikes2/Hz for 0.8 Hz EF, 0.067 

[0.032 0.101] spikes2/Hz for 1.0 Hz EF, 0.073 [0.038 0.104] spikes2/Hz for 1.2 Hz EF, and 

0.059 of [0.043 0.071] spikes2/Hz for 2.0 Hz EF; p < 10−3 for each stimulation frequency; n 

= 144 trials; Fig. 4B-C left). In further contrast to experiments with a strong oscillation 

evoked by the optogenetic stimulation, only EF stimulation of 1.0 and 2.0 Hz increased the 

frequency preference for 1.0 Hz oscillations (median enhancement at 1 Hz: 0.009 [−0.015 

0.016] spikes2/Hz for 0.8 Hz EF, 0.067 [0.039 0.103] spikes2/Hz for 1.0 Hz EF, 0.015 

[−0.010 0.027] spikes2/Hz for 1.2 Hz EF, and 0.055 [0.034 0.075] spikes2/Hz for 2.0 Hz EF; 

p = 1, p < 10−3, p = 1, p <10−3 respectively; n = 144 trials; Fig. 4C, right). Therefore, 

without an endogenous oscillation, EF stimulation increased oscillatory structure at all 

stimulation frequencies evaluated. In agreement with our overall hypothesis, these results 

suggest that the structure of the endogenous activity determines if and to what extent EF are 

constrained in their effect on network dynamics. Thus, we next investigated two other 

scenarios in which we reduced the strength of the endogenous oscillation modeled by 

optogenetic stimulation. We hypothesized that a reduction in endogenous rhythmic structure 

would enable even frequency-mismatched stimulation waveforms to enhance oscillations at 

the EF stimulation frequency.

First, we lowered the intensity of the optogenetic stimulation to 20 μW. With this lower 

intensity stimulation, the strength of the evoked oscillation was lower than that caused by 

the full intensity stimulation (1.15 [1.12 1.24] spikes2/Hz for low intensity optogenetic 

stimulation, 3.49 [3.35 3.64] spikes2/Hz full intensity, p < 10−3 Wilcoxon ranked sum test, n 

= 640 and 703 trials respectively, Fig 5A). We then applied EF stimulation with 2 mV/mm 

amplitude. Similarly to the experiments with no optogenetic stimulation, EF stimulation was 

able to increase frequency preference at all stimulation frequencies evaluated (median 

enhancement for EF stimulation frequency: 0.068 [0.022 0.124] spikes2/Hz for 0.8 Hz EF, 

0.173 [0.097 0.260] spikes2/Hz for 1.0 Hz EF, 0.107 [0.075 0.140] spikes2/Hz for 1.2 Hz 

EF, and 0.047 [0.016 0.083] spikes2/Hz for 2.0 Hz EF; p < 0.005 for each stimulation 

frequency; n = 160 trials; Fig. 5B-C left). However, the increase in oscillatory structure at 

the EF stimulation frequency trended to be larger for 1.0 Hz stimulation (confidence that 

response to 1 Hz stimulation was different: p = 0.0898 for 0.8 Hz stimulation, p = 0.0595 for 

1.2 Hz stimulation and p = 0.0029 for 2 Hz stimulation, Wilcoxon ranked sum test with a 

Bonferroni correction for 3 comparisons). The frequency preference for the ongoing cortical 

oscillation was only enhanced for frequency matched (1 Hz) stimulation (median 

enhancement for optogenetic stimulation frequency: −0.052 [−0.125 −0.009] spikes2/Hz for 

0.8 Hz EF, 0.173 [0.101 0.261] spikes2/Hz for 1.0 Hz EF, −0.048 [−0.110 −0.009] 

spikes2/Hz for 1.2 Hz EF, and 0.039 [−0.015 0.080] spikes2/Hz for 2.0 Hz EF; p = 0.026, p 

< 10−3, p = 0.167, and p = 0.383 respectively; n = 160 trials; Fig. 5C right). Thus, with a less 

pronounced endogenous oscillation, EF stimulation provided the best enhancement when 

stimulating at the frequency of the ongoing oscillation. However mismatches stimulation 

also enhanced frequency preference for the EF stimulation frequency.

Second, we reduced the strength of the ongoing oscillation by using a optogenetic 

stimulation waveform with a broader spectral peak around 1 Hz. Specifically, we varied the 

length of each “UP” and “DOWN” state by randomly drawing 20 durations from a normal 
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distribution around 500 ms (standard deviation 50 ms). We then compared the multiunit 

frequency response to optogenetic stimulation of the experiments shown in Figs. 1-3 to the 

response to the variable duration optogenetic stimulation. The frequency structure of the 

stimulation waveform still exhibited a peak frequency of 1 Hz. However, the frequency 

content was spread over a broader band (Fig. 6A). Due to this change in the optogenetic 

stimulation, the evoked cortical oscillation was also altered but still exhibited a peak 

frequency at 1.0 Hz (Fig. 6B). However, the cortical response at 0.8 and 1.2 Hz was 

relatively enhanced when normalized by the peak (1 Hz) amplitude (Supplementary Table 7, 

Fig. 6B right). We then applied 2 mV/mm EF stimulation to slices activated with this 

optogenetic stimulation paradigm. Similarly to the results in (Fig 2C), EF stimulation 

increased the frequency preference for 1.0 Hz using 1.0, 1.2 and 2.0 Hz stimulation, 

however EF stimulation at 0.8 Hz did not increase the frequency preference for 1.0 Hz 

(median enhancement at optogenetic stimulation frequency, 1 Hz: 0.003 [−0.044 0.048] 

spikes2/Hz for 0.8 Hz EF, 0.199 [0.127 0.289] spikes2/Hz for 1.0 Hz EF, 0.063 [−0.021 

0.134] spikes2/Hz for 1.2 Hz EF, and 0.148 [0.053 0.222] spikes2/Hz for 2.0 Hz EF; p = 1, p 

< 10−3, p = 0.014 and p = 0.001 respectively; n = 176 trials; Fig 6C & 6D left). With 

increased frequency structure at 0.8 and 1.2 Hz in the optogenetic stimulation, the EF 

stimulation was able to significantly enhance frequency preference for the applied EF 

frequency (median enhancement at EF stimulation frequency: .446 [0.348 0.532] spikes2/Hz 

for 0.8 Hz EF, 0.198 [0.127 0.275] spikes2/Hz for 1.0 Hz EF, 0.092 [0.038 0.161] 

spikes2/Hz for 1.2 Hz EF, and 0.104 [0.040 0.157] spikes2/Hz for 2.0 Hz EF; p < 10−3 for all 

groups; n = 176 trials; Fig 6D right). Therefore, the ongoing variable oscillation also shaped 

the network response to EF stimulation.

Finally, we asked if increasing the strength of the EF stimulation would enable the EF 

stimulation to override the endogenous network dynamics. To answer this question, we 

performed experiments with 8 mV/mm field strength. At such high amplitude, the EF 

stimulation was indeed able to increase frequency preference for the EF frequency despite 

the ongoing oscillation at 1 Hz (median enhancement at EF stimulation frequency: 0.382 

[0.258 0.560] spikes2/Hz for 0.8 Hz EF, 0.471 [0.221 0.661] spikes2/Hz for 1.0 Hz EF, 

0.319 [0.173 0.441] spikes2/Hz for 1.2 Hz EF, and of 0.185 [0.130 0.290] spikes2/Hz for 2.0 

Hz EF; p < 10-3; n = 208 trials; Fig 7A-B left). Only EF stimulation at 1.0 Hz increased the 

frequency preference for 1.0 Hz while EF stimulation at 0.8 Hz suppressed the frequency 

preference for 1.0 Hz (median enhancement at optogenetic stimulation frequency: −0.142 

[−0.209 −0.049] spikes2/Hz for 0.8 Hz EF, 0.483 [0.223 0.661] spikes2/Hz for 1.0 Hz EF, 

0.0444 [0.000 0.126] spikes2/Hz for 1.2 Hz EF, and 0.100 [−0.018 0.245] spikes2/Hz for 2.0 

Hz EF; p = 0.017, p < 10−3, p = 0.915 and p = 0.054 respectively; n = 208 trials; Fig 7B 

right). From these data, we concluded that indeed a comparatively strong EF may override 

the response-dependence of EF stimulation on the ongoing cortical oscillation.

Discussion

Targeted modulation of cortical oscillations with non-invasive brain stimulation has the 

potential to enable significant progress (1) in the study of the causal role of oscillations in 

cognition and behavior and (2) in the development of novel treatments for neurological and 

psychiatric disorders associated with deficits in the macroscopic cortical activity patterns. 
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However, in absence of a direct demonstration of the underlying mechanism of action by 

which such stimulation interacts with ongoing network dynamics, this progress will be 

severely hampered.

Application of weak EFs by transcranial current stimulation represents one promising 

approach to noninvasive brain stimulation [30-32]. The presence of endogenous activity is 

crucial for EFs to have an effect on network dynamics since the depolarization caused by the 

EF is too small to activate neurons at rest [14, 17, 33]. In essence, neurons need to be close 

to firing threshold for the resulting sub-millivolt perturbation of the membrane voltage to be 

an effective modulator of endogenous network activity. Previous in vitro studies have shown 

enhancing effects of sine-wave EF stimulation on ongoing network activity [13-15]. 

However, the direct assessment of the interaction dynamics has been limited to 

observational descriptions of the effects of weak EF due to limited control of spontaneous or 

pharmacologically induced oscillations. Here, we used optogenetic tools to directly assess 

these interaction dynamics by exercising precise temporal control of both the endogenous 

activity (induced by optogenetic stimulation) and the EF stimulation. We established that 

sine-wave EF patterns with very low amplitude can indeed enhance network dynamics even 

in presence of very pronounced, rhythmic neocortical network activity that resembles in vivo 

activity patterns. In agreement with predictions from previous experimental [15, 34] and 

computational work [17], we show that the choice of stimulation frequency relative to the 

endogenous oscillation frequency plays a key role in determining the effect of stimulation. 

Specifically, we found that a pronounced endogenous oscillation precluded the generation of 

activity patterns at other (nearby) frequencies and that the enhancement of the endogenous 

oscillation depended on the EF stimulation frequency. We then tested the apparent constraint 

endogenous network dynamics impose on modulatory effects of stimulation; indeed, with no 

endogenous oscillation present or with application of higher amplitude EF stimulation, 

oscillations at the EF stimulation frequency could be enhanced. We also reduced the 

strength of the endogenous oscillation (by reduced optogenetic stimulation) and found that 

these dynamics still constrained the effects of stimulation at trend level. Finally, with a 

temporally varied endogenous oscillation, we again found that mismatched stimulation 

could increase the endogenous oscillation but also increased oscillatory structure at the EF 

stimulation frequency.

The field has yet to converge on whether application of EF increases the net average FR of 

networks. In our hands, the average FR over 10 s was increased for most of the 2 mV/mm 

EF stimulation frequencies. This result agrees with the previously reported increase in 

multiunit activity evoked by field strengths as low as 1 mV/mm in [14]. However other 

studies have observed that while EF stimulation increased FR during the positive going 

phase of the stimulation, during the negative-going phase of the stimulation the FR was 

decreased, thus resulting in no net change [15]. This distinction may be important for future 

studies aimed at determining if tACS acts by synchronizing neural oscillators or evoking 

more activity as a function of the temporal structure of the stimulation waveform.

Our findings demonstrate that the state of the targeted networks plays an important role in 

determining the response to EF stimulation. Such state-dependent response of neuronal 

circuits is well known for sensory input that reaches sensory areas in cortex. For example, 
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the neuronal representation of visual [35] and auditory [36] inputs depends on overall brain 

state. Our results suggest that this “gating” by brain state (defined by the presence of 

specific network-level activity patterns) also applies to external stimuli directly provided to 

neuronal networks by brain stimulation. Matching the brain stimulation to the specific 

endogenous network dynamics of an individual at a given time-point may therefore be 

crucial for effectiveness and thus an appealing opportunity for individualized treatment. 

Indeed, in human motor cortex, the presence of a pronounced beta oscillation was found to 

determine whether beta (20 Hz) or theta (5 Hz) frequency tACS best facilitated motor-

evoked potentials by transcranial magnetic stimulation [34]. Here we have performed EF 

stimulation in the presence and absence of a cortical oscillation and likewise observed 

different cortical response dependent on the cortical oscillation. In contrast, we used EF 

stimulation frequencies within the same frequency band as the ongoing cortical oscillation 

since oscillations in different frequency bands are likely generated by different mechanisms 

and presently cannot be simultaneously modeled in a slice preparation. Importantly, a 

similar phenomenon has also been reported for alpha oscillations where the effect of tACS 

on macroscopic network dynamics depended on the strength of the ongoing oscillation [37]. 

However, in this case, the presence of strong alpha oscillations precluded further 

enhancement by frequency-matched tACS. Yet, enhancement was successful for the case of 

weak endogenous alpha oscillations in the same participants. This difference in the effect of 

frequency-matched stimulation can have several causes, including the presence of ceiling 

effects. Taken together with the results presented here, the effect of EF stimulation may vary 

from enhancement at any frequency, to enhancement only of the endogenous oscillation, to 

no enhancement at the stimulation frequency, depending on the strength of the ongoing 

cortical oscillation.

Importantly, further studies will be needed to fully elucidate the mechanism of action of 

tACS for other cortical oscillations with different frequency structure such as the gamma 

oscillation (>30 Hz). Since cortical oscillations at different frequencies are likely generated 

by distinct single cell and network mechanisms, it is as of now unclear if the work presented 

here will generalize to other cortical oscillations. For example, the gamma oscillation likely 

arises from the dynamic interaction of pyramidal cells and fast-spiking inhibitory 

interneurons that exhibit their own resonance profile [38]. Nevertheless, the overall 

approach taken in this study will likely be equally elucidating when applied to the study of 

tACS that targets other frequency bands and therefore lays the groundwork for a 

comprehensive understanding of tACS and its interaction with cortical network dynamics 

[39].

Our study focused on unraveling the interaction dynamics between periodic, weak EF and 

oscillatory network activity. Understanding tACS will require the study of other important 

aspects of stimulation delivery. In particular, we used a model system of tACS where we 

directly applied calibrated EF to cortical slices in vitro and recorded microscopic network 

dynamics measured by SU activity. Thus, our study does not provide any insight into the 

spatial patterning of the stimulation (i.e. EF distribution) as a result of the current 

application to the scalp in human tACS. Only the intersection of the mechanisms of 

temporal targeting (demonstrated here), spatial targeting [40], and functional targeting [34] 
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will provide the tools for developing highly specific stimulation paradigms. We also cannot, 

with only one slice, examine the mechanisms of applying anti-phase tACS to different brain 

regions. This type of stimulation has shown interesting behavioral results [8, 41], but cannot 

be probed with the methods used here. Likely, distinct mechanisms such as switching 

between multiple stable states may mediate such effects on coherence [42]. Nevertheless, 

our in vitro approach provides essential advantages that can help build an important bridge 

between computational studies (that inherently lack biological plausibility) and in vivo 

studies in animals and humans that often do not provide the level of experimental access and 

control required to elucidate the interaction dynamics. Using optogenetic stimulation of 

layer 5 pyramidal cells causes naturalistic slow rhythmic activity in vivo; here we adapted 

this approach for in vitro stimulation. We found such stimulation to cause a clear network 

rhythm although individual cells continued to exhibit low, naturalistic firing rates in 

presence of stimulation. Given the known role of layer 5 pyramidal cell to greatly contribute 

to the genesis of slow (cortical) rhythms, our approach provided the opportunity to maintain 

in vivo like activity patterns in vitro.

Together, these results provide a mechanism of action of tACS at the network level and 

point towards next-generation tACS that provides individualized, state-dependent feedback 

tACS for the enhancement of cortical oscillations [43]. The most important next step 

towards this goal will be the successful recording of brain activity during stimulation as 

recently demonstrated for EEG combined with tACS [44].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Endogenous oscillations constrain neuromodulation by weak electric fields.

Weak electric fields enhance neocortical oscillations by resonance.

Frequency-matched tACS is likely most effective for enhancement of cortical rhythms.
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Figure 1. Optogenetic Stimulation Activates Cortical Networks in Vitro
(A) Left: Coronal slice positioned on multielectrode array with 100 μm spacing between 

electrodes. Right: Modulation of action potential firing by optogenetic stimulation (2 s trace 

of multiunit activity for three sample electrodes) (B) FR versus Activation Ratio for all SU 

in layers 1 through 4 (left) and layers 5 and 6 (right). (C) Frequency response to 10 s of 

optogenetic stimulation with mean response overlaid (black). Spontaneous activity was 

modulated by optogenetic stimulation and exhibited pronounced 1 Hz oscillation.
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Figure 2. Interaction Dynamics between Endogenous Oscillation and EF Stimulation
(A) Top: Optogenetic stimulation (cyan) is applied to L5 pyramidal neurons (green) while 

EF is applied between two AgCl wires (gray, example field lines in black) with the positive 

terminal nearest layer 1 of visual cortex. Bottom: Example trials (shortened to 3s for 

visualization). (B) Raster plot for all SU for each trial with 1 Hz EF stimulation. (C) 

Difference spectra between activity during EF stimulation and the preceding 10s for all EF 

stimulation frequencies and amplitudes. (D) Frequency preference for the stimulation 

frequency. (E) Frequency preference for 1 Hz. Error bars indicate 5 to 95% confidence 

interval. * p < 0.05.
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Figure 3. Firing Rate Modulation by EF Stimulation
(A) Left: Enhancement of FR during UP states. FR was enhanced by most EF stimulation 

amplitudes and frequencies during the UP state. Center: Enhancement of FR during the 

DOWN state. FR was significantly decreased for 1 Hz EF stimulation across stimulation 

amplitudes. Right: Total enhancement of FR by EF. In most cases application of 2 mV/mm 

EF increased total FR while only 1.2 Hz stimulation increased FR for 1 mV/mm EF. SU 

with an activation ratio of < 1 (at least one spike during the DOWN state) shown. (B) Left: 

Spiking activity as a single cycle of the applied EF frequency for 1 and 2 Hz EF stimulation 

(color) with the averaged preceding 10 s of oscillatory activity (black). Right: Percent 

change by application of EF (color) and fitted sine-waves (black, dashed). Phase delay 

(shown in radians) between the applied EF signal and resulting change in activity was 

observed for both conditions. Error bars indicate 5 to 95% confidence interval. * p < 0.05.
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Figure 4. Modulation of Frequency Structure in Absence of an Endogenous Oscillation
(A) Frequency spectrum of spontaneous activity in cortical slices with neither optogenetic 

stimulation nor EF stimulation. (B) Enhancement of frequency structure by EF stimulation 

only. (C) Frequency preference for the EF stimulation frequency (left). Frequency 

preference for 1 Hz oscillations (right). In absence of strong cortical oscillations, all 

frequencies were enhanced and only 1 and 2 Hz EF stimulation enhanced preference for 1 

Hz oscillations. Error bars indicate 5 to 95% confidence interval. * p < 0.05.
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Figure 5. EF Stimulation of Networks Exhibiting Weak Cortical Oscillations
(A) Spectra of the response to full intensity optogenetic simulation (gray) and 10% intensity 

optogenetic stimulation (blue). (B) Enhancement of cortical oscillations by EF stimulation. 

(C) Change in frequency preference for the EF stimulation frequency (left) and for the 1 Hz 

oscillation (right). Error bars indicate 5 to 95% confidence interval. * p < 0.05.
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Figure 6. EF Stimulation of Networks Exhibiting Cortical Oscillations with Variable UP and 
DOWN state duration
(A) Spectrum of the 10 s optogenetic stimulation waveform (cyan). EF stimulation 

frequencies are indicated in black. (B) Left: Spectra of the response to 1 Hz square-wave 

optogenetic stimulation (gray) and response to temporally variant optogenetic stimulation 

(blue). Right: Response optogenetic stimulation, normalized by the oscillation amplitude at 

1 Hz. (C) Spectra of the enhancement of oscillations by EF stimulation for 0.8 (green), 1.0 

(yellow), 1.2 (red), 2.0 (blue) Hz stimulation. (D) Left: Frequency preference for oscillations 

at the frequency of the EF stimulation. Right: Frequency preference for 1 Hz oscillations. 

Error bars indicate 5 to 95% confidence interval. * p < 0.05.
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Figure 7. High Amplitude EF Stimulation
(A) Difference spectra between 10 s of application of 8 mV/mm EF stimulation and the 

preceding 10 s. (B) Left: Frequency preference for the EF stimulation frequency. Right: 

Frequency preference for 1 Hz stimulation. Error bars indicate 5 to 95% confidence interval. 

* p < 0.05.
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