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Abstract

Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones 

found in many mammalian species, including humans. Dysregulation of these neuropeptides have 

been associated with changes in behavior, especially social interactions. We review how the OT 

and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader–Willi 

Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these 

neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS 

have identified genetic mutations, ASD stems from multiple genes with complex interactions. 

Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the 

developing brain. We present data from a FXS mouse model affecting the fragile X mental 

retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain 

regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT 

pathways may be downstream from different etiological factors and perturbations in development. 

This has implications for ongoing studies of the therapeutic application of OT in NDD.
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1. Introduction to OT and AVP neuropeptide hormones

Oxytocin (OT) and arginine vasopressin (AVP) are small mammalian neuropeptides nine 

amino acids in length, which differ by only two amino acids. OT is produced primarily in 

hypothalamic nuclei, including the supraoptic (SON) and paraventricular nuclei (PVN). 

AVP is also synthesized in the PVN and SON. In males, additional brain regions including 

the amygdala and the bed nucleus of the stria terminalis (BNST) also produce AVP. OT and 

AVP of hypothalamic origins are transported from the SON and PVN to the mammalian 
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posterior pituitary by neurosecretion where they are released into the blood stream and act as 

hormones on target tissues. In addition, both OT and AVP are capable of moving throughout 

the central nervous system via diffusion in the cerebral spinal fluid (CSF; Neumann and 

Landgraf, 2012). The peptide-producing OT gene (OXT) is homologous with its 

evolutionarily related gene, vasopressin (AVP). The human OXT and AVP genes linked on 

chromosome 20p13 are separated by only 12 kilobases of DNA, and are positioned in 

opposite transcriptional orientations. Both have specific receptors, but their close 

evolutionary relationship permits cross-talk and interacting molecular systems. These 

neuropeptide hormones have receptors in various brain regions and throughout the body, 

including areas that are important for regulating social behavior and reactivity to stressors.

In both, the human and mouse genomes OT and AVP neuropeptide genes are located 

adjacently on the same chromosome. Often the blood levels of both hormones are highly 

correlated (Dai et al., 2012), suggesting a coordinated release. The receptors for both 

neuropeptides are localized in specific areas of the nervous system, especially in the 

brainstem. These brain regions influence social and adaptive behaviors, as well as regulate 

the hypothalamic–pituitary–adrenal axis (HPA) and autonomic nervous systems (Lim et al., 

2005, 2004). Because OT and AVP are closely related and have the ability to act on the 

other’s receptors, it has been proposed that they evolved to interact and sometimes have 

opposing physiological effects. For example, both hormones have been shown to affect the 

control of the autonomic nervous system, with OT having primarily parasympathetic actions 

and AVP serving as a central and peripheral regulatory component of the sympathetic 

nervous system and HPA axis (Kenkel et al., 2012; Sawchenko and Swanson, 1985). 

However, at high levels the neuropeptides can be partial agonists for their homologous 

receptors, which may result in AVP and OT pathways interacting (Chini et al., 1996).

Of particular importance in neurodevelopmental disorders (NDD) is the fact that OT and 

AVP can modulate social and repetitive behavior and other manifestations of anxiety and 

state regulation (Carter, 2007). Animal research has generally associated OT release or 

exposure with positive sociality, reduced anxiety, and lower levels of reactivity to stressors 

(Carter, 1998; Neumann and Landgraf, 2012). AVP influences anxiety, the regulation of 

HPA and stress responses. In general, central AVP is described as anxiogenic (Landgraf and 

Wigger, 2003). However, there is also evidence in rats that the effects of AVP are brain 

region specific and dose-dependent. For example, AVP may be anxiolytic if given in low 

doses (Appenrodt et al., 1998).

Mouse knockout (KO) studies of the OT receptor (OXTR) or OT regulators have found 

decreased social memory or recognition (Ferguson et al., 2000; Jin et al., 2007; Takayanagi 

et al., 2005). Oxtr KO mice also displayed decreased cognitive flexibility and a resistance to 

change of a learned pattern of behavior that is comparable to restricted/repetitive interests 

(Sala et al., 2011). Both social deficits and behavioral rigidity were ameliorated by OT 

administration (Sala et al., 2011). The finding that OT continues to have effects in Oxtr KO 

mice supports the hypothesis that OT can influence behavior through other receptors, 

especially the AVP receptors (e.g. AVPR1A and/or AVPR1B). Given the influence of these 

neuropeptides on brain regions affecting both social and repetitive behaviors, modulation of 
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OT and AVP pathways are being explored as treatment targets for disorders, including 

Fragile X syndrome (FXS) and Autism Spectrum Disorders (ASD).

This and other research has set the stage for a series of recent studies on the effects of 

exogenous OT treatments in humans (Ebstein et al., 2012; Macdonald and Feifel, 2013). For 

example, intranasal OT (IN-OT) administration in healthy human males increased prosocial 

behaviors and trust, especially as measured by experimental economic games (Baumgartner 

et al., 2008; Kirsch, 2005; Kosfeld et al., 2005). IN-OT may also increase gaze towards the 

eye region of the face (Guastella et al., 2008), and has been associated with improved facial 

memory (Rimmele et al., 2009), enhanced salience of social cues (Shamay-Tsoory et al., 

2009), and improved performance on the reading the mind in the eyes (RMET) task (Domes 

et al., 2007).

As previously reviewed, OT has been found to have anxiolytic effects improving social 

interactions, reducing fear, and improving the ability of healthy volunteers to interpret subtle 

social cues (Macdonald and Macdonald, 2010). In addition, OT dysfunction has been 

associated with neurop-sychiatric disorders such as autism in human studies (Domes et al., 

2007; Ishak et al., 2011; Winslow and Insel, 2004). By 2010 there were over 20 OT 

administration studies, which included ASD, schizophrenia, postpartum depression, 

posttraumatic stress disorder (PTSD), and irritable bowel syndrome (Macdonald and 

Macdonald, 2010). There have been a growing number of studies investigating the ability of 

IN-OT to treat a range of neurobehavioral disorders due to the associations between IN-OT 

and alterations in social decision-making, processing of social stimuli, certain social 

behaviors such as eye contact, and social memory.

2. Autism spectrum disorders

In 1943, Leo Kanner described a male patient with repetitive behaviors—”stereotyped 

movements [and]…repetitions carried out in exactly the same way in which they had been 

performed originally” and difficulties with social communication—”he always seemed to be 

parroting what he had heard said to him at one time or another…Words to him had a 

specifically literal, inflexible meaning. He seemed unable to generalize, to transfer an 

expression to another similar object or situation” (Kanner, 1943). This group of symptoms, 

later extended and described in detail, is currently known as ASD. As described in the 

DSM-5 (American Psychiatric Association, 2013), ASD is characterized by persistent 

deficits in social communication and social interaction across multiple contexts, and the 

diagnosis requires the presence of restricted, repetitive patterns of behaviors, interests, or 

activities. ASD is a heritable (Bailey et al., 1995) and highly heterogeneous disorder, caused 

by familial genetic risks in addition to possible gene-environment interactions during early 

development (Chaste and Leboyer, 2012). Individuals with ASD often suffer with anxiety 

disorders, irritability or aggression, and come to clinical attention due to their difficulties at 

home and school related to their communication deficits and restricted interests. 

Unfortunately there are currently no approved medications to treat the social deficits or 

restricted, repetitive behaviors (RRB) that are the core symptoms of ASD. There is some 

evidence in animal and human studies that OT improves the core symptoms of ASD.
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2.1. Intranasal andintravenous OT studies in ASD

Currently medications for ASD concentrate on alleviating certain symptoms, but not the 

core features of ASD. Risperidone and aripiprazole may be used for irritability, whereas 

guanfacine and clonidine are used off label for aggression, and selective serotonin reuptake 

inhibitors (SSRI; i.e. escitalopram, fluoxetine, and sertraline) are used to treat anxiety 

(Jaselskis et al., 1992; McCracken et al., 2002; Owley et al., 2010). Recently, OT has been 

investigated as a target the treatment for ASD core symptoms, social deficits and RRB. 

Defined by DSM-5, restricted, repetitive patterns of behavior include stereotyped or 

repetitive motor movements, insistence on sameness, inflexible adherence to routines, or 

ritualized patterns of verbal or nonverbal behavior. Highly restricted, fixated interests that 

are abnormal in intensity or focus, and hyper- or hyporeactivity to sensory input or unusual 

interest in sensory aspects of the environment are also RRB.

Several studies, using intravenous OT or IN-OT, in patients with ASD have been conducted 

(Table 1). It has been shown that nonapeptides, like AVP, can be measured in CSF after 

intranasal administration (Born et al., 2002). Ease of giving intranasal drugs makes it 

preferred for most ASD studies, although more research needs to be conducted on how IN-

OT reaches the brain and how it regulates receptors and neural pathways with different or 

chronic dosing strategies. Several studies have measured OT responses to single dose 

challenges in ASD (Andari et al., 2010; Guastella et al., 2010), while few have examined 

longer term treatment effects (Anagnostou et al., 2012). With varying administration and 

duration study protocols, studies have often focused on symptom subdomains or defined 

social tasks including: RRB (Hollander et al., 2003), emotion recognition (Dadds et al., in 

press; Guastella et al., 2010), affective speech comprehension (Hollander et al., 2007), and 

facial recognition (Domes et al., 2013).

Single dose studies, or challenges, have been utilized to study the acute and immediate 

effects of OT. An initial study in ASD examined the effects of a four-hour continuous dose 

of intravenous OT (Hollander et al., 2003). After one hour of infusion there was a decrease 

in RRB (repeating and touching). After four hours, 13 patients (86.7%) versus six control 

subjects (40%) had decreases in RRB. This study demonstrated that administration of OT 

led to a decrease in a core ASD symptom, RRB. More recently, a double-blind, randomized, 

placebo controlled study of IN-OT in 16 males with ASD (ages 12–19 years old) showed 

that a single IN-OT dose could improve the ability to recognize emotion, particularly in easy 

queries (Guastella et al., 2010). It is unclear whether emotion recognition performance goes 

back to baseline or pre-OT exposure after a single dose or if there are long-term learning 

effects.

Andari et al. (2010) also performed a single dose IN-OT study in 13 individuals with ASD 

and in age-matched controls to study the effect on social deficits. They researched the 

effects of IN-OT on trust and preference using a social ball tossing game (for greater detail 

of this task please see supplementary section of Andari et al., 2010). This group also 

assessed the visual scanning of faces under the influence of IN-OT. They found that patients 

given IN-OT had a significant preference for the “good player” (the computer player who 

tossed the ball back to the individual) that was similar to the control subjects also 

performing the task. This preference was further supported by the patients’ reporting of 
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trust, towards the “good player” after OT administration. Andari and colleagues also found 

that after IN-OT, patients increased eye gazing time on the socially informative region of the 

face. While single dose studies are valuable, evaluating long term effects of OT are essential 

to determine if OT has a therapeutic potential in ASD (Macdonald and Feifel, 2013).

Recently a five-day OT administration study was conducted during parent–child interaction 

training (Dadds et al., in press). Individuals with high functioning ASD received 12 or 24 IU 

(depending on the weight of the patient) IN placebo or IN-OT. The OT or placebo was 

administered once daily and RRB, emotion recognition, social interaction skills, and general 

behavioral adjustment were assessed. While improvements over time were detected in both 

OT and placebo, there were no differences observed between the two groups. Several 

proposed possible explanations for these null findings were: (1) emotion recognition was 

measured pre-post changes following multiple exposures versus while the patient was under 

the influence; (2) lower-order RRB respond to OT (Hollander et al., 2003), while higher-

order RRB do not (Anagnostou et al., 2012); (3) increased eye gaze frequency is usually 

measured with artificial or computerized faces, while they had “real-life” interactions; (4) 

the OT receptor system disruptions in some patients with ASD may respond differently than 

in other ASD patients; and (5) differences between the studies regarding age and diagnostic 

characteristics of the sample. Studies pairing OT with a therapeutic activity or social training 

are highly needed, although design and outcome measures across studies will need to be 

similar in order to better interpret and compare results in ASD participants.

Investigating adults with ASD, Anagnostou et al. (2012) studied the safety and therapeutic 

effects of IN-OT with respect to two core symptom domains: social cognition and 

functioning, and RRB. They performed a randomized, double-blind, placebo-controlled 

parallel trial of IN-OT versus placebo. This was the first study to employ a treatment trial of 

daily administration of IN-OT in ASD. Overall, the IN-OT was well tolerated when given 

daily and no serious adverse effects were reported. This pilot study suggested therapeutic 

potential with daily administration of IN-OT in this population of adults with ASD. This six-

week study noted improvements in social cognition, quality of life, RRB, and some 

measures of emotional well-being with IN-OT, in essence, improvement in the core domains 

of ASD. It may be important to note that reports of individual differences in the response to 

IN-OT are increasingly observed, although sample sizes in studies will need to be larger to 

explore individual response variation.

2.2. OT/AVP plasma levels in ASD

The inability to directly access the brain’s oxytocinergic pathways has constrained human 

research. Therefore, peripheral OT levels have been used as proxies for OT levels in the 

brain. A widely used measurement is plasma OT, although urine and salivary OT levels 

have also been explored in some studies. A range of studies have observed associations 

between peripheral OT/AVP levels and social stimuli (Kenkel et al., 2012; Schneiderman et 

al., 2012; Schradin et al., 2013; Seltzer et al., 2010; Wismer Fries et al., 2005; Zhong et al., 

2012).

As early as 1996, it was suggested by a number of researchers, including Waterhouse et al. 

that dysfunction in the OT and AVP systems might contribute to the atypical social 
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behaviors in ASD. Two years later by studying the OT plasma levels from 29 ASD and 30 

age-matched typical control children, Modahl et al. (1998) reported low levels of plasma OT 

in the children with ASD. In another study, which utilized Wing’s topology, children were 

classified as “aloof”, “active but odd” and “overly formal” (Leekam et al., 1997). The lowest 

OT levels were found in the “aloof” subgroup. This suggested that the most severe socially-

aloof symptoms were associated with more OT dysfunction.

Building on these results with the same study sample, Green et al. (2001) conducted another 

OT study and examined the forms of the OT peptide found in affected and unaffected 

children. Their results showed that there was an increase in OT-X, the precursor for OT, as 

well as an increase in the ratio of OT-X/OT associated with the reduction in OT observed in 

the patients with ASD. During the normal production of OT, the extended form (OT-X) is 

cleaved by enzymatic activity to yield the active peptide OT. There was also a positive 

correlation between OT-X and checklist items associated with ASD including stereotypies; 

OT-X correlated negatively with an item describing abnormalities in comfort giving within 

the ASD group. Consequently, changes in OT processing, specifically a failure to 

completely process the prohormone OT-X, might lead to a deficiency in OT, thus 

exacerbating some of the symptoms of ASD, such as features of social deficits. To our 

knowledge this study has not been replicated. Furthermore, other studies often in older 

patients have failed to report an OT deficiency (Jansen et al., 2006; Miller et al., 2013). 

Future studies may benefit from the measurement of OT-X in addition to plasma OT given 

the diverse methods employed for assaying OT, and the finding that the failure to process 

this prohormone can lead to a deficiency of OT.

Recently, connections between peripheral OT/AVP levels and ASD were investigated 

(Miller et al., 2013). Miller et al. measured OT and AVP plasma levels in 75 boys and girls 

(40 high-functioning ASD, 35 typically developing) aged 8–18 years. Miller et al. not only 

reported associations between the plasma levels and ASD behaviors, but sex differences as 

well. Higher levels of OT were observed in all girls, and all boys had significantly higher 

levels of AVP. The higher OT levels were associated with greater anxiety in all girls, and 

with better pragmatic language in all subjects. Gender differences were also noted within the 

ASD sample. A positive association between AVP levels and RRB was reported in ASD 

girls, although a non-significant association with RRB was found in boys with ASD. 

Because of the limited number of girls affected by ASD, few other studies have sampled a 

large enough sample size of girls to investigate gender differences in OT plasma levels or 

response to exogenous administration.

Some studies have examined OT levels in addition to other hormones and blood biomarkers. 

In a study of adults with ASD, basal OT levels and heart rate were elevated in the ASD 

group compared to healthy controls. These adults with ASD showed normal cortisol 

responses to a public speaking task, but no change in norepinephrine, epinephrine, OT or 

AVP (Jansen et al., 2006). Recently, Hammock et al. (2012) analyzed correlations between 

the biomarkers of plasma OT and whole-blood serotonin (5-HT) levels in children and 

adolescents diagnosed with ASD and not on medications. Animal studies have shown that 

OT and 5-HT influence each other’s release (Bagdy and Kalogeras, 1993; Jorgensen et al., 

2003; Yoshida et al., 2009) and there have been many reports of hyperserotonemia within a 
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subgroup of individuals with ASD (Abramson et al., 1989; Chugani et al., 1999; Kuperman 

et al., 1985; Leboyer et al., 1999; Leventhal et al., 1990; Schain and Freedman, 1961). OT 

and 5-HT were negatively correlated with each other in the Hammock et al. (2012) study. 

Whole blood 5-HT was found to be negatively correlated with age, having lower levels in 

adolescence than in childhood. This OT/5-HT relationship was especially prominent in 

children younger than 11 years old. Age may be an important covariate, because some 

studies do not find OT deficiencies or have reported higher than expected OT levels in their 

ASD samples (Jansen et al., 2006; Miller et al., 2013). OT like 5-HT may change after 

puberty according to recent data (Hammock et al., 2012).

Interest in parental bonding has led to the study of OT levels in parents of typical children, 

and more recently parents of children with ASD. An association between peripheral OT and 

parental care, both maternal and paternal, was reported by Feldman et al. (2012). When 

comparing parents and non-parents, parents were found to have higher levels of OT. Higher 

plasma OT levels were also associated with longer durations of gaze synchrony and 

reporting of greater parental care during the parent’s childhood, while lower plasma OT 

corresponded to less parental touch. Subsequently, Xu et al. (2013) published a study 

comparing the OT and AVP plasma levels of mothers with and without ASD children in a 

Han population. They found that the mothers of ASD children had significantly lower 

plasma OT/AVP compared to the control mothers, as well as, a significant correlation 

between the plasma levels of the neuropeptides and the child’s autistic behavior scores.

Over the last few years studies measuring peripheral OT have increased. As discussed in 

McCullough et al. (2013) and Szeto et al. (2011), the methodologies can lead to vastly 

different results (increased values, decreased values or values differing by an order of 

magnitude). For example, Modahl et al. (1998) performed plasma extractions and then 

radio-immunoassays (RIA) whereas Miller et al. (2013) utilized an enzyme immunoassay 

(EIA) with different plasma preparation methods. Additionally, there is also specific lab 

generated RIA versus commercial EIA and RIA kits. When manufacturer instructions are 

followed, values obtained have a similar order of magnitude, but it has been noted that some 

of these kits may also be detecting closely related metabolites. Note that studies often 

prepared samples differently with varying plasma processing/extraction methods and use of 

different assay techniques. Future research will need to determine if differences observed in 

the resultant OT levels of ASD studies reflect differences in the study populations (i.e. age) 

and/or the methods for assaying OT. ASD is a very heterogeneous disorder and OT level 

differences may be specific to clinical and etiological subgroups within the broader ASD 

population. In addition, there is variability of OT plasma levels across typical and healthy 

populations. The inherent U-shaped distribution (Zhong et al., 2012) observed in normative 

populations may also add to variability seen in OT measurements in ASD studies.

2.3. OT and AVP animal and genetic studies in ASD

The search for genes and biological risk factors contributing to ASD and its core symptoms 

has resulted in a range of human and animal model studies. Recently, several researchers 

have examined how the OT system is altered in various animal model or influences social 

and repetitive behaviors. For example, the BTBR T+tf/J (BTBR) mice have low social 
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interactions, decreased vocalization in social settings and increased levels of repetitive self-

grooming, behavioral phenotypes similar to the core symptoms of ASD. Comparing BTBR 

to the standard inbred highly sociable mouse, C57BL/6J (B6), Silverman et al. (2010) found 

elevated OT in the PVN, plasma corticosterone (in the trunk), and glucocorticoid receptor 

(GR) mRNA in CA of the hippocampus in the BTBR. Measurements of the other 

neurochemicals (CRF in PVN, GR mRNA in CA2 and PVN) showed no differences 

between the strains.

Another model, the BALB/cJ, has low sociability across development (Brodkin, 2007). A 

substrain of the BALB/cJ, the BALB/cByJ mouse, was also characterized as a good ASD 

model (Brodkin, 2007; Moy et al., 2007). These mice displayed low sociability with intact 

olfaction, locomotor activity and relatively high levels of anxiety. Similarly, the C58/J 

mouse is another ASD mouse model described in 2010 by Ryan et al. (2010). These mice 

show low sociability and deficits in social communication. Most striking, however, is their 

abnormal RRB including increased rates of pivoting, back flipping, upright scrabbling and 

“jack-hammer” jumping. All the traits are found in both the males and females of the C58/J 

strain. Recently, the reactions of the BALB/cByJ and C58/J strains to OT administration 

were compared (Teng et al., 2013).

Teng et al. (2013) did not only note the different reactions to OT administration between 

BALB/cByJ and C58/J, they also studied whether acute versus subchronic administration 

had differing outcomes (see paper for drug and experimental timeline). Both strains were 

administered OT peripherally via intraperitoneal administration. Acute administration in 

BALB/cByJ showed no change in sociability, and RRB were not assessed in this timeline. 

However, in the subchronic regimen BALB/cByJ mice displayed a significant increase in 

social behaviors. Subchronic OT administration in the C58/J model also induced prosocial 

effects. In male mice these effects appeared two weeks post treatment, but the prosocial 

effects were evident in female mice sooner. Regarding RRB, Teng et al. observed a decrease 

in repetitive behaviors with increased self-grooming after an acute single dose of OT, in the 

C58/J mice. Most notably these studies have provided insight into how the genetic 

heterogeneity observed in humans may account for the wide variety and degree of behaviors 

seen in ASD. Additionally, the Teng et al. study highlighted how treatments can be 

dependent on both genotype and dose regimen. It is striking that all three mouse models of 

ASD have alterations in the OT system or respond to OT administration. This suggests that 

OT may be affected downstream in strains of mice that have different etiological factors 

influencing social and repetitive behaviors.

As the animal models have shown, the genetic heterogeneity of individuals with ASD could 

also account for the complexity of the disorder’s genetic etiology. In a recent review 

(Ebstein et al., 2009), genetic polymorphisms of receptor and pathway regulators of OT and 

AVP, such as AVPR1a, OXTR, neurophysin I and II, and CD38 were discussed. In this 

review, Ebstein and colleagues presented preliminary data regarding their findings about 

CD38, a transmembrane glycoprotein involved in OT secretion and associated with OT 

plasma levels. The group genotyped 12 tag single nucleotide polymorphisms (SNPs) across 

CD38 in 170 ASD trios. IQ and social skills via Vineland Adaptive Behavior Scales 

(VABS) were assessed in the sample. They found a significant association between CD38 
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SNPs and categorical ASD measures, assessed by the Autism Diagnostic Interview - 

Revised (ADI-R; Lord et al., 1994) and Autism Diagnostic Observation Schedule - Generic 

(ADOS-G; Lord et al., 2000). Significance was also observed between VABS scores and 

four CD38 SNPs, haplotypes and VABS, and CD38 mRNA levels and VABS. Two studies 

in 2010 further supported a role for CD38 in ASD. Lerer and colleagues (2010) noted a 

reduced expression of CD38 in the lymphoblastoid cells of patients with ASD as compared 

to “unaffected” parents. Then Munesue et al. (2010), observed a CD38 SNP in association 

with high functioning ASD in some populations. In 2012, several CD38 studies were 

completed that looked at the association of CD38 and ASD. In particular, Sauer et al. (2012) 

researched the common CD38 variant, rs3796863, in healthy young men. This SNP stood 

out in the ASD association studies performed by Lerer et al. (2010) and Munesue et al. 

(2010). Data were attained in a double-blind placebo-controlled crossover design using IN-

OT. The subjects performed two tasks following administration of OT or placebo: (1) a face 

matching task, and (2) a gaze processing task. They found that the men with the ASD risk 

allele had significantly slower reaction times (RT) during the face matching task and that it 

was specific to social versus non-social stimuli. IN-OT reduced RT in the risk group. Gaze 

processing did not yield any significant results. Functional MRI data also were attained as 

the subjects performed the tasks. Sauer et al. (2012) hypothesized decreased activity in the 

amygdala and fusiform brain regions of the risk allele group given the results of previous 

studies (Jemel et al., 2006; Schultz, 2005). Unexpectedly, they saw increased activation in 

the fusiform brain regions. This led them to conclude that while more research needs to be 

done to confirm their findings, the link between CD38, the processing of social information 

and ASD was further solidified.

Other researchers have looked directly at the OXTR gene, to find possible genetic links 

between OT and ASD. Wu et al. (2005) genotyped four SNPs across OXTR in 195 Chinese 

Han ASD trios. With Family Based Association Testing (FBAT), they revealed significant 

associations between ASD and two OXTR SNPs (rs2254298, rs53576). When the markers 

were combined to create haplotypes, significant associations were found for all markers and 

especially in haplotypes containing rs53576. Following up the Wu et al. study, Jacob et al. 

(2007) researched rs53576 and rs2254298 in a Caucasian sample with strictly defined 

autism. They genotyped the OXTR SNPs in 57 autism trios. In this sample a significant 

association was observed between diagnosis and rs2254298. While the G allele was more 

frequent than the A allele, of note was the overtransmission of the G allele to the autistic 

Caucasian probands versus over-transmission of the A allele in the Chinese Han sample. 

Additional studies by Yrigollen et al. (2008) and Campbell et al. (2011) continued to build 

an association between the OT system and ASD. Yrigollen and colleagues hypothesized that 

genes associated with affiliative, social, and/or bonding behaviors would also be associated 

with ASD and several of its symptoms. Therefore, they studied 177 ASD probands from 151 

families and they found the statistical strength was in the OXTR results. Different OXTR 

SNPs were significantly associated with stereotyped behaviors, communication skills, the 

multivariate ADI phenotype and multi-measurement variable overall diagnosis. Also, there 

was a significant SNP in the OXT/AVP region associated with stereotyped behaviors. In 

2011, Campbell and colleagues, utilizing a repository sample of 2333 individuals with ASD 

in 1238 pedigrees, analyzed 25 markers across OXTR and detected associations. Although 
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these SNPs had previously been associated with ASD diagnosis in studies, they also looked 

at associations with subphenotype measurements of social impairments in ASD and found 

associations with their selected three SNPs and ADOS, ADI-R and SRS measurement. 

While the results of the studies indicate a need for further research, these genetic studies 

have laid the foundation linking OT, social tasks, and more broadly ASD.

3. Prader–Willi syndrome and OT

Prader–Willi syndrome (PWS) is a complex disorder with multisystem effects and a distinct 

behavioral phenotype. It occurs in approximately 1/10,000–1/30,000 births, and is initially 

characterized by severe infantile hypotonia and difficulty feeding, although later in infancy 

and into adolescence individuals with PWS often eat excessively and develop morbid 

obesity. Other characteristics of PWS include hypo-gonadism, short stature, small hands and 

feet and strabismus. The cognitive phenotype is marked by delayed motor and language 

development, and behavioral difficulties including compulsive behavior, stubbornness and 

temper tantrums (Bittel et al., 2007b; Cassidy et al., 2011). The many behavioral and 

psychiatric manifestations of PWS are evident in early childhood, and are characterized by 

hyperactivity, impulsivity, temper tantrums, emotional lability, anxiety and repetitive 

behavior (Borghgraef et al., 1990; Gross-Tsur et al., 2001; Whitman and Accardo, 1987). 

Often this phenotype is suggestive of ASD as well as attention deficit hyperactivity disorder 

(ADHD; Cassidy et al., 2012). Face processing is also altered in individuals with PWS, as 

they have difficulty reading facial expressions (Whittington and Holland, 2011).

The cause of PWS is the lack of expression of specific paternal genes located on 

chromosome 15q11.2-q13. Many of the genes expressed in this region come from the father, 

as those from the mother are normally inactivated. Consequently, either a lack of expression 

or absence of the paternal copy of the genes in this region leads to no expression (Saitoh et 

al., 1997). This may occur through microdeletions in the paternal chromosome, no copy of 

the paternal chromosome paired with two copies of the maternal chromosome—uni-parental 

disomy (UPD), or imprinting defects due to epige-netic causes (Cassidy et al., 2012). The 

genes expressed in this region have been studied at length to develop models of PWS and to 

delineate their roles in the different aspects of the PWS phenotype. Such studies are 

complicated by differences in the behavioral phenotype between individuals with deletions 

and those with UPD, as those with UPD have a less severe phenotype (Bittel et al., 2007a) 

and higher verbal IQ scores (Dimitropoulos et al., 2000).

While the deletion of no one individual gene has been found to cause PWS, research has 

shown that the lack of expression of multiple genes may be central to the syndrome’s 

expression. Specifically, five polypeptide coding genes, namely MKRN3, MAGEL2, 

MAGED1, NECDIN and SNURF-SNRPRN, have been shown to be centrally involved in 

PWS. Animal models lacking one of these genes have been developed for Magel2 

(Boccaccio et al., 1999), Maged1 (Dombret et al., 2012), Necdin (Lavi-Itzkovitz et al., 2012; 

Muscatelli et al., 2000) and Snurf (Tsai et al., 1999), although none of these individual gene 

disruption models completely recapitulates the PWS phenotype.
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Another line of approach to elucidate the physiological underpinnings of PWS has been to 

examine the OT system in individuals with PWS as well as in animal models. There is a 

deficit of OT producing neurons in the PVN of persons with PWS (Swaab et al., 1995), as 

well as lower levels of OT in CSF (Martin et al., 1998). IN-OT administration increases trust 

in others and decreases disruptive behavior in individuals with PWS (Tauber et al., 2011). In 

addition, administration of OT has also been shown to rescue behavior in a Maged1 deletion 

model of PWS in which there is a decrease in hypothalamic OT (Dombret et al., 2012). 

Although rescue was not attempted in the Necdin model, this mutant also shows a reduction 

in OT-producing neurons in the hypothalamus (Muscatelli et al., 2000). Consequently, there 

appears to be disruption of the OT system in individuals with PWS, which is recapitulated in 

different animal models. However, the exact mechanism of OT dysregulation is unclear.

4. Williams syndrome and OT

Williams syndrome (WS) was first described over 50 years ago (Williams et al., 1961). The 

first reported cases were focused on infants with hypercalcemia, developmental delays, 

cardiac malformations and dysmorphic facial features (Morris, 1993). However, better 

characterization of this syndrome has elucidated a distinct behavioral phenotype marked by 

an increased social drive paired with social fearlessness, poor judgment, difficulty forming 

peer relationships and high anxiety levels (Jarvinen et al., 2013). The cause of this disorder 

has been determined to be a deletion of 25–30 genes in the q11.23 region of either maternal 

or paternal chromosome 7 that spans approximately 1.5 megabases (Ewart et al., 1993; 

Korenberg et al., 2000; Lowery et al., 1995; Schubert, 2009). ELN, the gene for elastin, was 

the first deleted gene identified and its absence is indicative of a diagnosis of WS. While 

ELN disruption affects connective tissue, particularly of the aorta (Lowery et al., 1995), 

other genes such as LIMK1, CYLN2, GTF2I and GTF2IRD1 are involved in the behavioral 

phenotype of WS (Jarvinen-Pasley et al., 2008). The deletion of Gtf2i as well as Gtf2ird1 

has been shown to be involved in the social pheno-type specifically (Proulx et al., 2010; 

Sakurai et al., 2011).

The social phenotype associated with WS is striking due to the hypersociability of the 

affected individuals, as well as the preference for novel social over non-social stimuli 

(Jarvinen-Pasley et al., 2008; Jarvinen-Pasley et al., 2010) and increased eye contact (Mervis 

et al., 2003). In addition, the speech of individuals with WS is marked by high levels of 

socially engaging language as compared to controls or individuals with other developmental 

disorders such as Down Syndrome (Jarvinen-Pasley et al., 2010; Jarvinen et al., 2013). 

However, this does not translate into the development of social relationships as individuals 

show difficulty with social adjustment (Gosch and Pankau, 1994, 1997) and social judgment 

(Einfeld et al., 1997; Gosch and Pankau, 1997). In addition, affected individuals show 

deficits in social understanding, as evidenced by difficulty identifying affect (Gagliardi et 

al., 2003; Plesa-Skwerer et al., 2006) or other’s mental states (Jarvinen-Pasley et al., 2008).

The high sociability of individuals with WS positions this syndrome as a good mechanism 

through which to understand the biological underpinnings of social behavior. Mouse models 

of WS include GTF2I deficient mice which display increased social interaction with novel 

mice and diminished social habituation (Sakurai et al., 2011) and Gtf2ird1 deletions, which 
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also show increased sociability (Proulx et al., 2010). Recently, de novo duplications of 

regions of 7q11.23 have been shown to be associated with ASD, whereas deletions of the 

same region lead to WS (Sanders et al., 2011). Such opposite effects of gene expression 

leading to markedly contrasting phenotypes raises the issue of dosage effects, but it should 

be noted that both ASD and WS phenotypes include abnormal social relationships, although 

through different mechanisms. Whereas individuals with WS show prolonged face gaze, 

those with ASD display reduced face gaze (Riby and Hancock, 2009). In addition, although 

children with WS and ASD display high levels of anxiety, individuals with ASD have higher 

levels of RRB as well as greater rates of social phobia and separation anxiety (Cascio et al., 

2012).

As deletions or increased expression of genes in the region defining WS can lead to the 

contrasting phenotypes of WS or ASD, respectively, the possibility of dysregulation of OT 

was examined by Dai et al. (2012). They show increased baseline levels of OT in individuals 

with WS as compared to controls. Additionally, OT levels correlated positively with 

increased approach to strangers as well as decreased adaptive social behaviors. These results 

suggest that there may be a dose dependent effect of OT, as high levels may impair adaptive 

social behavior and may partly underlie the maladaptive social phenotype of WS.

5. Fragile X syndrome

Named for the fragile site observed at Xq27.3, Fragile X Syndrome (FXS) is the most 

common inherited form of intellectual disability and the most common known single gene 

mutation associated with ASD (O’Donnell and Warren, 2002). Prevalence estimates range 

from ~1 case in 1000 to 1 case in 4000 males and has settled at 1 case in 6000 worldwide for 

females (Brown, 1990; Morton et al., 1997; Turner et al., 1996; Webb, 2010). This rare 

genetic disorder is characterized by specific physical features, as well as cognitive and 

behavioral phenotypes (Berry-Kravis et al., 2002, 2011; McLennan et al., 2011). The 

physical features can include: a long narrow face with large protruding ears, connective 

tissue abnormalities (i.e. hyperextensive joints), macroorchidism, macrocephaly, obesity 

(especially in young males), loose skin over the hands, a high arched palate, a vertical 

plantar crease and flat feet (Moy et al., 2009; Schapiro et al., 1995). The behavioral and 

social characteristics of FXS include: hyperactivity, attention difficulties, mood lability, 

compulsive and perseverative behaviors, some aggressive outbursts, learning deficits, 

developmental delays (including delayed speech development), social shyness and gaze 

avoidance, sensory hypersensitivity and withdrawal from touch, stereotypic movements and 

behaviors (i.e. hand flapping and rocking), poor motor coordination and echolalia 

(Hagerman et al., 2009; Hall, 2009; Hall et al., 2009; Moy et al., 2009). Many of these 

behaviors are linked to the anxiety level of the individual, a meaningful link because 

physiological studies have noted increased sympathetic and decreased parasympathetic 

activity and poor coordination between the systems in children and adolescents with FXS 

(Hall et al., 2009).

Cognitive tests have indicated a specific pattern of strengths and weaknesses. FXS 

individuals exhibit deficits in visuospatial tasks, quantitative skills, short-term and working 

memory, expressive language skills, sequential processing and executive function (Berry-
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Kravis et al., 2002; Cornish et al., 1999; Freund and Reiss, 1991; Hall et al., 2012; Kwon et 

al., 2001; Maes et al., 1994). Relative strengths include receptive language skills, visual 

memory, acquisition of factual information, imitation skills and gestalt processing (Berry-

Kravis et al., 2002). This population also has susceptibility to certain other neuropsychiatric 

disabilities including ASD, ADHD, anxiety disorders, and neurological disorders such as 

epilepsy (Hessl et al., 2001; Pretorius et al., 1998). While the genetic cause of FXS has been 

found, the neurological basis of FXS symptoms continues to be unknown. MRI studies have 

found that individuals with FXS have enlarged lateral ventricles and increased caudate 

nucleus volumes relative to control subjects (Reiss et al., 1995). Anatomical studies of post-

mortem brains have revealed that dendritic spines of neocortical pyramidal neurons of FXS 

subjects are longer and thinner than those of matched controls, indicating perhaps the spines 

fail to mature normally in FXS patients (Hinton et al., 1991; Irwin et al., 2001; Rudelli et al., 

1985; Wisniewski et al., 1991).

The majority of FXS patients have social anxiety and almost a third have symptoms that 

overlap with ASD (Hagerman et al., 2010). Published studies have reported the prevalence 

rate of FXS and autistic behaviors/ASD diagnosis to range from 25–47%, however sample 

sizes are often small (Hatton et al., 2006; Morton et al., 1997). Like FXS and ASD, autistic 

symptoms are more common in males than females. Individuals with both FXS and ASD 

often have poorer developmental outcomes, lower cognitive abilities, lower levels of 

adaptive behavior and more problem behaviors than FXS individuals with fewer autistic 

behaviors. Of the individuals with FXS and autistic behaviors, 15–40% of males and a few 

females meet the diagnostic criteria for ASD (Berry-Kravis et al., 2002). This group also 

tends to present with more severe communication deficits, stereotyped behaviors, and social 

anxiety versus social disinterest. Additionally, males present with more severe 

developmental delays than females. Overlapping behaviors between ASD and FXS, such as 

eye gaze avoidance (Hall et al., 2009), have led many scientists to study FXS as a way to 

understand and possibly target treatment for ASD. Some of the medical problems exhibited 

within this population include seizures (15–20% of male children, usually limited to 

childhood), gastroesophageal reflux, failure to thrive in early infancy, hypotonia, recurrent 

otitis media and sinusitis, vision problems, cardiac valve prolapse, sleep disorders, and 

orthopedic issues and dental malocclusions. In the few girls studied with FXS, these medical 

problems are more variable (Berry-Kravis et al., 2002).

Diagnosis is based on DNA analysis that identifies the number of CGG repeats in the fragile 

X mental retardation 1 (FMR1) gene at the Xq27.3 site (Turner et al., 1996). In most 

affected individuals, this genetic disorder is caused by a trinucleotide (CGG) repeat 

expansion in the 5’ untranslated (promoter) region of the FMR1 gene. FMR1 encodes the 

fragile X mental retardation protein (FMRP); a 69kDa protein found in most adult and fetal 

tissues, high concentrations are noted in the brain and testes. The expression of FMRP in the 

brain seems to be experience dependent and is produced in the soma and near the synapse 

(Berry-Kravis et al., 2002, 2011). FMRP is essential to the shaping of dendritic spines 

(Davidovic et al., 2011). The protein and network of mRNA targets and interacting proteins 

contribute to several forms of synaptic plasticity involving learning and memory processes, 

notably induced by activation of type I metabotropic gluta-mate receptor (mGluR; 
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Davidovic et al., 2011). Mice lacking FMRP have impaired long-term potentiations in 

somatosen-sory cortex (Li et al., 2002), visual cortex (Wilson and Cox, 2007), olfactory 

cortex (Larson et al., 2005), cingulate cortex, and amygdala (Zhao et al., 2005) and 

enhanced long-term depression in hippocampus (Huber et al., 2002). In synapto-somal 

preparations, stimulation of mGluR results in a FMRP-dependent increase in protein 

synthesis (Weiler et al., 1997, 2004). It is hypothesized that a decrease in Fmr1 functionally 

affects the protein interaction network with direct consequences on signaling cascade and 

cellular metabolism (Davidovic et al., 2011). There are two different FMR1 mutations, full 

mutation and permutation (Goodrich-Hunsaker et al., 2011a, 2011b). Premutation, 

associated with Fragile X-associated tremor/ataxia syndrome (FXTAS; Wang et al., 2010), 

has a repeat length of 50–200 and does not usually cause mental deficits, but shyness, 

anxiety, and premature ovarian failure have been known to occur. Premutations do appear 

however to influence translation of FMR1 mRNA (Feng et al., 1995). In many individuals 

with premutations, excess FMR1 mRNA is produced, yet below normal FMRP is 

synthesized (Tassone et al., 2000a, 2000b) and may contribute to approximately 10% of 

male and 2–3% of female ASD cases (Wang et al., 2010). Upon female transmission the 

premuta-tion can become a full mutation. FXS is caused by full mutation which is 4200 

trinucleotide repeats, and results in hypermethylation of the gene and transcriptional 

silencing (Tassone et al., 2000a). This creates an FMRP deficiency in the brain, which leads 

to FXS presentation (McLennan et al., 2011; Tassone et al., 2000a). Very rarely have other 

mutations in the FMR1 gene involving deletions (Gedeon et al., 1992; Wohrle et al., 1992) 

or a point mutation (De Boulle et al., 1993) resulted in symptoms identical or even more 

severe than FXS.

5.1. IN-OT as treatment for FXS

Evidence has supported the investigation of OT as a treatment for FXS (Bartz and 

Hollander, 2006; Hall et al., 2012; Hollander et al., 2007). As described earlier OT, released 

endogenously or given exogenously, has been associated with positive social behaviors, 

reductions in anxiety, obses-siveness and stress reactivity, the central release of AVP and 

other peptides such as corticotropin-releasing factor, and may serve to counter the defensive 

behavioral strategies associated with stressful experiences (Carter, 2007). However, similar 

to ASD, available treatments for FXS focus on managing symptoms: stimulants are 

prescribed for attention deficit and hyperactivity; SSRI and antipsychotics treat aggression 

associated with anxiety; and carbamazepine are used for treatment of seizures (Hampson et 

al., 2011). Currently, there are no treatments on the market targeting the molecular 

abnormalities of FXS (Gurkan and Hagerman, 2012). Recent studies have begun to 

investigate IN-OT due to the autistic-like behaviors observed in FXS, and the social and 

anxiolytic effects of OT.

As of the time of publication, very few studies had been performed to research the effect of 

IN-OT on FXS, especially in humans. One such study was conducted by Hall et al. (2012). 

They set up a randomized double-blind placebo-controlled single-dose trial performed with 

intranasal administration of placebo, 24IU OT and 48 IU OT. Studying eight low 

functioning males between the ages of 13 and 28 years with FXS, they hypothesized that the 

prosocial and anxiolytic effects of OT would reduce, if not alleviate, socially inappropriate 
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behaviors and social anxiety. The group collected eye gaze frequency, heart rate, respiratory 

sinus arrhythmia, heart rate variability (HRV) during two social challenges (10 min total in 

length), and salivary cortisol levels before and after the challenge, which was conducted 50 

min after OT administration.

Confirmation of the hypothesis that OT would have beneficial consequences in FXS would 

be an increase in eye gaze frequency, a reduction in physiological arousal, and a decrease in 

salivary cortisol. The researchers observed a significant main effect with OT. As compared 

to placebo, 24IU OT led to a significant increase in eye gaze frequency. They found a 

significant decrease in salivary cortisol for the 48 IU dose as compared to placebo. No 

effects were observed in the physiological measurements (HR, HRV, and RSA), however, 

given the small sample and heterogeneous population additional research is needed. Based 

upon the data to date, Hall and colleagues hypothesized that in FXS administration of OT 

may dampen amygdala reactivity towards social stimuli that causes anxiety (Kirsch et al., 

2005; Petrovic et al., 2008), decrease HPA axis activation, and increase social motivation 

(Witt and Insel, 1992; Witt et al., 1992).

5.2. Animal models: a way to look at moderators of neurodevelopmental pathways and 
outcomes?

Animal models have proven indispensable in the understanding of diseases and disorders, 

and in the development of pharmaceuticals used to treat them. The quality of an animal 

model is ascertained based on how well it can meet certain criteria of validity. Three of these 

criteria are construct, face and predictive validity (Bernardet and Crusio, 2006). How well 

the model’s behavioral traits resemble the core traits of the disorder is face validity. 

Predictive validity is established when a drug reduces or improves symptoms in both the 

model and human. Construct validity is the “quality” of the model, its ability to accurately 

measure or represent what it claims to be measuring (Cronbach and Meehl, 1955). There are 

several FXS animal models, three in mice and a drosophila model that meet multiple 

criteria.

Two homologous genes to Fmr1 in vertebrates are Fxr1 (fragile X related gene) and Fxr2. 

The genes are highly homologous at the protein structure level and bind mRNA and bind to 

FMRP. Their proteins, FXR1P and FXR2P are both expressed in the brain and specifically 

in cell bodies, but they are also found in the dendrites near the synapse. Both Fxr1 and Fxr2 

KO mice have been produced. FXR1P deficient (Fxr1−/−) mice die within 24 h of birth, 

while heterozygous mice exhibit abnormal limb musculature. Fxr2 KO have a normal 

lifespan, learning deficits similar to Fmr1 KO, and circadian rhythm deficits (Berry-Kravis 

et al., 2011). The fruit fly model, a mutant lacking dFmr1 (also known as dFxr) protein, 

exhibits overextension of neurites during development of mushroom bodies (brain region 

linked with memory) and have a behavioral phenotype that includes circadian rhythm 

abnormalities and altered courtship behavior (Berry-Kravis et al., 2011; Gatto and Broadie, 

2009).

One of the best characterized animal models of FXS was developed in 1994 by the Dutch-

Belgian Fragile X Consortium. This mouse model, which lacks FMRP throughout its 

lifespan, corresponds to the molecular endpoint of the human disease. This mouse was 
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created by inserting a neomycin cassette into exon 5 of the murine Fmr1 gene. The insert 

disrupts the transcription of Fmr1 mRNA causing an absence of FMRP. Even though the 

cause may not be identical, this mouse model exhibits behavioral similarities to FXS. Fmr1 

KO, in comparison to the wild-type (WT) strain, are described as having lower than normal 

levels of initial social interactions (Mineur et al., 2006), fail to show a preference for social 

novelty, and display inappropriate social responses (Pietropaolo et al., 2011). In contrast, the 

OT and AVP knockout (OTKO or AVPKO) mice display high levels of social contact that 

does not diminish over time, but also fail to show indication of familiarity (Crawley et al., 

2007).

While macroorchidism is observed in the Fmr1 KO animals (Bakker et al., 1994) as well as 

in FXS patients, the behavioral patterns differ between the patients and the KO. By most 

accounts Fmr1 KO mice appear to have relatively normal behavior, but research has shown 

that the behavioral and cognitive deficits of the KO are actually quite subtle and parallel 

FXS patients (Berry-Kravis et al., 2002; D’Hooge et al., 1997; Paradee et al., 1999; Peier et 

al., 2000). Among the behavioral phenotypes displayed in Fmr1 KO are deficits in object 

recognition memory (including a failure to habituate to objects), and impairment of spatial 

memory (Mineur et al., 2002).

Several studies indicate that Fmr1 KO mice are hyperactive and show indications of 

increased anxiety (Bakker et al., 1994; Mineur et al., 2002; Spencer et al., 2005) and sensory 

hyperre-sponsiveness, especially to auditory stimuli (Chen and Toth, 2001; Frankland et al., 

2004; Nielsen et al., 2002). Loud tones may induce audiogenic seizures. Fmr1 KO also 

exhibit abnormal social interactions, including a general reduction in social contact and a 

failure to show social recognition (Bernardet and Crusio, 2006; Mineur et al., 2006; Spencer 

et al., 2005; Yan et al., 2004). In some tasks there is variability in the results (i.e. complex 

visual and auditory discriminant tasks and activity level in an open field). The symptom 

variability among mouse models for FXS may be due to differences in genetic backgrounds. 

A similar hypothesis has been proposed to explain the variability observed in the symptoms 

of FXS patients. For example, in research by Pietropaolo et al. (2011), the validity of the 

Fmr1 KO mouse on the B6 background was tested against WT and Fmr1 KO on the FVB 

background. They found the Fmr1 KO on the B6 background to be a good model for FXS 

and a suitable model for ASD (Pietropaolo et al., 2011; Yan et al., 2004).

These mice also have neuropathologic phenotypes that are similar to FXS patients including 

density of dendritic spines of pyramidal neurons in the visual and somatosensory cortices 

that are greater in adult Fmr1 KO than WT. Some brain areas, in both mice Fmr1 KO mice 

and FXS patients, have spines that appear similar to developing versus mature spines 

(Berry-Kravis et al., 2002). Absence of FMRP in both humans and mice results in improper 

development of dendritic spines on cortical pyramidal neurons (Comery et al., 1997; Irwin et 

al., 2000; Irwin et al., 2001; Irwin et al., 2002). The use of the Fmr1 KO mouse has also 

provided some insight into the normal cellular function of FMRP. The subtle cognitive 

deficits of Fmr1 KO mice present difficulties for preclinical testing of potential treatments, 

and highlight how complex the relationship between the mouse and human phenotypes are. 

One possibility is that the cognitive processes in which FMRP plays a vital role in humans 

are poorly developed in mice; thus mice lacking FMRP are not particularly disabled, at least 
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compared to severely-affected patients. A second possibility is that other proteins can 

compensate for FMRP in the mouse but not in the human. Third, the behavioral paradigms 

thus far applied to the mouse model do not efficiently assay or correlate with the cognitive 

domains most affected in individuals with FXS.

5.3. Examining OT in neurodevelopmental animal models: a way to examine early effects?

Below we present preliminary data examining the OT and AVP systems in a mouse model 

in order to learn more about FXS pathway interactions during development. The methods 

used in this study are described in the text for Fig. 1. These preliminary results, based upon 

counts of immune-reactive cells, suggest a reduction in both OT-positive (Fig. 1) and AVP-

positive (Fig. 2) cells in the PVN of Fmr1 KO as compared to WT (Table 2). A trend, 

although not significant, towards lower OT-positive cells was also noted in the SON (Table 

3). To analyze possible differences in the OXTR, the abundance of OXTR-immunoreactive 

cells were also measured in the hippocampus, retrosplenial granular and piriform cortices. 

None of these areas showed a significant difference in OXTR-immunoreactive cell density 

as compared to WT mice (p>0.05). The PVN is an important component of the HPA axis, 

and reductions in OT-positive and AVP-positive cells of the PVN might be associated with 

deficits in the capacity to regulate emotional reactivity. Earlier work in voles has suggested 

that either OT or AVP may support a general tendency toward social contact (Cho et al., 

1999). Thus, the absence of either OT or AVP in the presence of the other did not produce 

an “asocial” animal. However, selective social preferences, such as those necessary for pair 

bond formation, appear to require stimulation of both OT and AVP receptors. The 

importance of both OT and AVP to selective behaviors also may be supported by the fact 

that mice “knocked-out” for either OT or the OXTR no longer exhibited selective social 

memory (Young and Flanagan-Cato, 2012).

Although the preliminary data shown here for Fmr1 KO mice need to be replicated in a 

larger sample and in other animal models, we include these findings as an example of 

possible approaches to examining the role of peptides including, OT and AVP, in 

molecularly characterized genetic syndromes. Work across these models also could provide 

additional insight regarding the role of OT and AVP in early development, especially in 

syndromes in which atypical trajectories in social development occur.

6. Conclusion and next steps

Each of the disorders described here (ASD, PWS, WS and FXS) is unique and each 

condition is characterized by atypical social behaviors, often with a tendency toward high 

levels of anxiety. Given the importance of OT and AVP to mammalian social behaviors and 

anxiety, the neuropeptides’ investigative value in these syndromes is not unexpected. This 

review summarized the possible role of OT in these NDD (Table 4) through experiments 

conducted by others and ourselves.

Each of these early developmental disorders displays alterations in the OT system. These 

changes may impact behavior and emotional regulation through a variety of molecular and 

neuroendocrine pathways. For example, our preliminary data suggests a decreased number 

of OT-positive and AVP-positive cells in the PVN of Fmr1 KO mice, a mouse model for 
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FXS. Individuals with PWS have shown lower levels of OT in CSF (Martin et al., 1998) and 

fewer OT producing cells in the PVN (Swaab et al., 1995). A subgroup of ASD affected 

children also appeared to have lower plasma OT levels (Modahl et al., 1998). In contrast 

WS, which is characterized by hypersociability, had a positive correlation between OT 

levels and increased stranger approach and decreased adaptive social behavior (Dai et al., 

2012).

At present, the largest concentration of studies on the role of dysregulated OT pathways has 

been conducted in ASD. However, as new data are emerging it is striking that other 

disorders with phenotypes marked by abnormal social behavior, as well as anxiety (in some 

cases manifested by RRB) also appear to have abnormalities found within the OT system. 

For example, as in ASD, individuals with PWS have difficulty with social competence 

(Dimitropoulos et al., 2013), are aloof and avoid eye contact (Dimitropoulos et al., 2009). 

Furthermore, RRB is also evidenced in PWS (Greaves et al., 2006), although to a lesser 

degree than in ASD as measured by the Repetitive Behavior Scale-Revised (RBS-R; Flores 

et al., 2011). A subset of the genetic region associated with PWS is also associated with an 

increased risk for ASD, as maternally inherited duplications of the 15q11–13 region are 

associated with 1–3% of ASD cases (Bolton et al., 2001; Cook et al., 1997; Vorstman et al., 

2006).

WS and ASD also share commonalities as both are marked by abnormal social phenotypes 

and anxiety. However, unlike PWS, individuals with WS show a phenotype that is markedly 

different from ASD. Although both groups are at risk for anxiety, individuals with ASD 

show higher levels of social phobia and separation anxiety, as well as higher rates of RRB. 

However, individuals with WS have higher scores on measures of generalized anxiety 

(Rodgers et al., 2012). WS is characterized by an increase in OT levels (Dai et al., 2012), as 

well as a deletion of the 7q11.23 region, as opposed to a de novo duplication which leads to 

ASD (Sanders et al., 2011). It is likely that features of ASD and WS are manifestations of 

gene dosage effects on similar behaviors. Studies of FXS and ASD mechanisms may also 

inform each other, as mutations in mGluR5 can contribute to the diagnosis of FXS or ASD, 

and mGluR5 antagonists have shown promise in alleviating ASD symptoms in mouse 

models (Silverman et al., 2012) as well as FXS pathology. Due to the rarity of these 

disorders and the complex animal models needed to study them, many of these experiments 

have small sample sizes. However, these studies remain significant and together provide a 

motivation and direction for future research in NDD, especially disorders with dysfunctional 

social behaviors as a symptom.

As summarized in this review, the dysregulation of the OT system in animals and humans is 

associated with marked deficits in social behavior as well as anxiety. This commonality 

across multiple NDD may indicate a shared OT pathway that is affected during 

development. The use of animal models, particularly those developed for FXS, WS and 

PWS will provide insight into such a pathway, as these disorders have well characterized 

genetics. In contrast, there are over a 103 disease genes and 44 genomic loci reported to be 

involved in ASD (Betancur, 2011). However, unlike ASD research, there is a lack of human 

data on the pathophysiology of FXS, WS and PWS, and pharmacological interventions. 

Ideally, scientists want to identify specific molecular pathways to target distinct syndromes 
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and disorders for treatment. However, many effective medical treatments, such as drugs for 

hypertension, modulate common neurochemical or hormone pathways that are downstream 

from etiologically contributing factors. Combining the strengths of human and animal model 

studies across these NDD may provide important clues into the developmental role of OT. 

Additionally, as general mechanisms underlying social and emotional behaviors are 

specified, it may become possible to elucidate the complex neurophysiology of and create 

treatment targets for FXS, PWS, WS and ASD.
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Fig. 1. 
Expression of OT in the paraventricular nucleus (PVN), as measured by ICC, is reduced in 

Fmr1 KO mice as compared to the wild-type (WT). Methods: The animal model was 

generated with WT and Fmr1 KO mice from a colony founded with stock obtained from the 

Jackson Laboratory (Bar Harbor, ME, USA) that was backcrossed onto a B6 background > 

10 generations. Mice were genotyped using primers described previously (the Dutch-

Belgian Fragile-X Consortium, 1994). Cells were stained using the immunocytochemical 

(ICC) staining procedures, following protocols described in early work on OT and AVP in 

voles (Yamamoto et al., 2004). All sections were double-stained for NeuN (a marker that 

stains cell nuclei only in neurons), which allowed precise localization of cytoarchitectonic 

boundaries. Stained sections were mounted on subbed slides and examined with OT and 
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AVP antibodies (OT antibodies were generously provided by M. Morris and AVP antibodies 

were obtained from MP Biomedical #647171, formerly ICN; Solon, OH, USA). Slices of 

tissue for each animal were categorized as described in (Paxinos and Franklin, 2004) and 

carefully matched across subjects to allow comparable sections. Imaged slides were 

captured at 10 ×, then coded and scored by an experimentally blind scorer using Image J 

(NIH, Bethesda, MD) software. OT and AVP stained cells in the PVN of the hypothalamus 

regions were stained separately for OT and AVP (N=6–7 mice per group). Boxed sampling 

areas were: 125 × 125 µm2 (PVN total staining density), 250 × 375 µm2 (PVN fibers), 93.75 

× 93.75 µm2 for cell counts bilaterally in both the PVN and SON.
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Fig. 2. 
Expression of AVP in the paraventricular nucleus (PVN). In Fmr1 KO mice, as compared to 

the wild-type (WT) AVP expression is reduced as measured by ICC.
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Table 4

A Summary of OT Affects on NDD.

Disorder Neuropeptide system affected References

Autism spectrum Atypical (↓↑ observed) levels of OT in blood (human) Modahl et al. (1998)

disorders IN-OT ↑ social task performance and ↓ repetitive behaviors
(human)

Andari et al. (2010) and Hollander et al. (2003)

To be studied: human neuropathology and animal models For a more extensive list of human trials see Table 1

Prader–Willi syndrome ↓ OT producing cells in the PVN (human) Swaab et al. (1995)

↓ Level of OT in CSF (human) Martin et al. (1998)

IN-OT ↑ trust and ↓ disruptive behaviors (human) Tauber et al. (2011)

↓ Hypothalamic OT in Maged1 deletion model (animal) Dombret et al. (2012)

Williams syndrome ↑ OT levels (human) Dai et al. (2012)

To be studied: human neuropathology and animal models

Fragile X syndrome ↓ OT+ and AVP+ cells in the PVN (Fmr1 KO mice) See Tables 2 and 3, and Figs. 1 and 2

IN-OT ↑ eye gaze frequency (human) Hall et al. (2009) and Hall et al. (2012)

IN-OT ↓ salivary cortisol (human) Hall et al. (2012)

To be studied: human neuropathology

Brain Res. Author manuscript; available in PMC 2015 January 25.


