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Abstract
Cancer progression is often paralleled by a decline in bone mass, raising risk of fracture. Concerns
persist regarding anabolic interventions for skeletal protection, as these may inadvertently
exacerbate neoplastic tissue expansion. Given bone's inherent mechanosensitivity, low intensity
vibration (LIV), a mechanical signal that encourages osteoblastogenesis, could possibly slow
cancer-associated bone loss, but this goal must be achieved without fostering disease progression.
Seventy 12w female F1-SWRxSWXJ-9 mice, a strain prone to developing granulosa cell tumors,
were randomized into baseline control (BC: n=10), age-matched control (AC: n=30), and LIV
(n=30), which received mechanical signals (90Hz @ 0.3g) for 15m/d, 5d/w over the course of 1y.
Survival curves for AC (10 died) and LIV (8 died) followed similar trends (p=0.62), indicating
longevity was unperturbed by LIV. At 1y, bone volume of proximal tibiae in LIV mice was 25%
greater than AC (p<0.02), while bone volume of L5 vertebrae was 16% higher in LIV over AC
(p<0.02). Primary lesions and peripheral metastases were apparent in both LIV and AC; however,
overall tumor incidence was approximately 30% less in LIV (p=0.27) and, when disease was
evident, involved fewer organ systems (p=0.09). Marrow-derived mesenchymal stem cells (MSC)
were 52% lower (p<0.01) in LIV, and 31% lower (p=0.08) in mice lacking pathology, suggesting
higher MSC levels in this model may have contributed to tumor progression. These experiments
indicate that LIV helps protect bone mass in mice inherently susceptible to cancer without
compromising life expectancy, perhaps through mechanical control of stem cell fate. Further,
these data reflect the numerous system-level benefits of exercise in general, and mechanical
signals in particular, in the preservation of bone density and the suppression of cancer progression.

© 2012 Elsevier Inc. All rights reserved.

Corresponding Author: Clinton T. Rubin, Ph.D. Department of Biomedical Engineering Stony Brook University Stony Brook, New
York 11794-2580 Phone: (631)-632-2302 Fax: (631)-632-8577 clinton.rubin@sunysb.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflict of Interest:
C. T. Rubin is a founder of Marodyne Medical, Inc. and has a USPTO application under review for the ability of mechanical signals to
control metabolic disorders. The other authors declare no competing interests.

NIH Public Access
Author Manuscript
Bone. Author manuscript; available in PMC 2013 September 01.

Published in final edited form as:
Bone. 2012 September ; 51(3): 570–577. doi:10.1016/j.bone.2012.05.004.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
Exercise; Cancer Therapeutics; Mesenchymal Stem Cells

1. Introduction
Cancer progression is often complicated by rapid declines in bone density. This osteopenia
is exacerbated by the catabolic pressures of radioablative or chemotherapeutic interventions,
placing the individual at an elevated risk of fracture [1]. Just as exercise is considered an
effective means of reducing the risk of cancer [2], sedentary individuals are at an increased
risk of developing tumors at a wide range of anatomic sites [3]. Both cancer and its
treatment regimens disrupt adult stem cell reservoirs residing in the bone marrow,
populations essential to maintaining and regenerating injured tissues and organs, further
suppressing the ability to repair damaged connective tissue [4].

Taking advantage of the skeletal system's inherent sensitivity to mechanical stimuli [5],
recent evidence indicates that low-magnitude, high-frequency mechanical signals induced
via low intensity vibrations (LIV) are anabolic to bone, perhaps serving as an exercise
surrogate by introducing the spectral content of muscle contractibility into the skeletal
system [6-11]. To some degree, the osteogenic nature of these mechanical signals is realized
by biasing bone marrow-derived MSCs towards osteoblastogenesis, while suppressing the
formation of adipose tissue [12, 13]. Conversely, sedentary individuals, the infirm, or those
subject to disuse due to injury, shift the fate of the bone marrow progenitor pool towards
adipogenesis [6, 7, 13], undermining the pool of cells that contribute to skeletal mass
[14-16]. These preclinical and clinical data indicate that the absence of mechanical signals
potentiates a “default” pathway of fat formation, while physical stimuli, such as exercise,
can encourage lineage commitment to higher order connective tissues, including bone,
muscle, ligament, and tendon.

The capacity of exercise in general, and LIV in particular, to be anabolic to bone suggests
that mechanical signals may be a suitable means of protecting the skeletal system from the
catabolic consequences of cancer and its therapies. However, considering the capacity of
LIV to influence stem cell activity in the bone marrow [13, 17, 18], it is also reasonable to
raise concern that these mechanical signals may enable the formation of a stromal
framework of solid tumors [19-22], thus facilitating progression of the disease. This concern
is magnified at the molecular level, where β-catenin, through its cytoplasmic association
with the intracellular domain of E-cadherin, serves to partially mediate Wnt/Catenin
osteoblastogenic signaling in response to mechanical signals[8], yet as an oncogene it is
implicated in a wide array of human cancers [23]. Further, the MSC itself is suggested to be
a key component of the tumor microenvironment, with evidence for a role in both
suppressing [24], and promoting [25] tumor growth. Recent work which considered MSC
harvested from human epithelial ovarian microenvironments showed, in comparison to non-
pathological MSCs, that cancer-MSC were able to enhance ovarian tumorigenesis [26]. This
suggests that mechanical regulation of MSC commitment could have far-reaching effects on
cancer growth, both by driving MSC towards the formation of bone, and/or influencing the
progression of the tumor itself.

The experiments reported herein use a mouse model genetically prone to tumorigenesis to
determine if the introduction of LIV compromises longevity, protects bone density,
promotes tumor formation, and/or biases the fate of bone marrow-derived progenitor
populations. The uniqueness of this mouse strain resides in the development of spontaneous
granulosa cell tumors (GCT) of the ovary within ~30% of the population [27, 28].
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Tumorigenic onset occurs at approximately 3 months of age, which then proceed to
metastasize to the lungs and liver [27-29].

2. Materials & Methods
2.1. Animal Model

All experiments and procedures were reviewed and approved by the Stony Brook University
Institutional Animal Care and Use Committee (IACUC). An F1 strain of 70 female,
SWRxSWXJ-9 mice (The Jackson Laboratory; Bar Harbor, ME), crossbred to create a gct1
mutation, was chosen for its genetic propensity to develop spontaneous granulosa cell
tumors at around 3 months of age. Tumorigenesis occurs naturally and spontaneously in
these animals, meaning that no external pressures, such as those administered through
chemical induction or cell line injection, were used at the beginning time point in the study.
Importantly, acquiring the disease is not a certainty in these mice. This mouse strain was
selected for that very “attribute,” to establish if the mechanical signals influenced the
appearance of the disease and/or provoked an early death.

Environmental conditions remained at 12h light/dark cycles in a 20°C facility. Animals were
housed individually, fed ad libitum, and weighed weekly. Distribution of animals into
Baseline Control (BC), Age-matched Control (AC), and Low Intensity Vibration (LIV)
groups were determined using a Matlab program that specifically randomizes large sample
sizes by weight matching.

2.2. Daily Mechanical Loading Protocol
The daily loading regimen consisted of placing animals into individual 12cm × 12cm
containers on a fixed, vertically-oscillating platform (modified from Marodyne Medical;
Lakeland, FL) to administer the LIV signal; 90Hz for 15min/d for 5d/w at 0.3g ± 0.025
(where 1g = Earth's gravitational field, or 9.8m/s2). The displacements necessary to cause
such accelerations at this frequency are less than 100μm, and are barely perceptible to
human touch. AC underwent identical handling and loading protocols as LIV, but without
the platform being activated. Animal age at the beginning of the experimental protocol was
3 months, with the goal of extending the experiment for one year (15mo of age). Other than
determining survivability curves, no data from AC or LIV mice that died naturally during
that one year experimental period were used in the analyses listed below.

2.3. Tissue Harvesting and Analysis
Mice surviving the 1y experimental protocol were first anesthetized using isoflurane
inhalation, at which point whole blood was collected via cardiac puncture, heparinized and
aliquoted (100μl), followed by erythrocyte lysis (1x Pharmalyse; BD Biosciences, San Jose,
CA) for FACS analysis. Euthanasia was completed by cervical dislocation. Right tibiae and
femora were removed from each mouse and stored in 70% ethanol (EtOH). Marrow from
left tibiae and femora were preserved in Dulbecco's modified eagle's medium containing 2%
FBS, 10mM Hepes Buffer, and 1% Penicillin-Streptomycin (DMEM+) for FACS analysis.
Tissues for histological staining, including excised tumors, were fixed in 10% neutral
buffered formalin (NBF), replaced at 48h with 70% EtOH. Tissue samples of interest were
sectioned and processed in 10% NBF. 5μm, paraffin-embedded tissue sections were stained
with hematoxylin and eosin (H&E). Diagnosis of granulosa cell tumors by histologic
examination was confirmed by immunohistochemical staining with calretinin (Abcam;
Cambridge, MA), a molecular marker that is known to be widely expressed in GCT's. To
confirm sites of leukocyte recruitment, CD45 staining (BD Pharminogen; San Diego, CA),
was also performed, diluted at 1:10, 1:20, and 1:50 concentrations following heat antigen
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retrieval in citrate buffer. All analyses were performed blind to the experimental group each
animal was in.

2.4. Flow Cytometry
Flow cytometric analyses employed the use of a FACSAria cytometer (BD Pharminogen;
San Diego, CA). Fluorescent antibody tagging utilized specific markers (BD Pharminogen;
San Diego, CA) for hematopoietic precursors, MSCs, and immunogenic tissues. Flow
cytometry data reported for AC and LIV groups represented the average of all cell
populations quantified separately for each animal, processed individually for a single
marker. For each sample, cells were homogenized and dissociated from their respective
tissues in 3mL of DMEM+ in order to maximize cell viability before tissue processing.
Subsequent washing steps consisted of the addition of DPBS and centrifugation (4°C,
2000rpm, 10min). 2×106 cells from each tissue (with the exception of blood) were
quantified individually from each animal using an automated cell counter (Scepter,
Millipore; Billerica, MA), fixed with 1% neutral buffered formalin (NBF) in Hank's
buffered salt solution (HBSS), and stained for specific hematopoietic markers. Specific
leukocytes (CD4+: helper T-cells; CD8+: cytotoxic T-cells; CD19+: B cells; CD11c+:
dendritic cells; CD335+: natural killer cells) were quantified based on staining for distinct
surface markers. Sca-1+, c-kit+, CD90.2+, CD105+ & CD44+ were designated as unique
MSC cell surface identifiers and populations positive for all five markers were sub-gated
accordingly [18, 30, 31]. HSC's were quantified using known “LSK” markers (Lineage-,
Sca-1+, & c-kit+) in conjunction with side population staining (Vybrant Dyecycle Violet,
Invitrogen; Rockville, MD) [32, 33].

2.5. Micro-Computed Tomography
A range of bone morphology parameters of the proximal tibial metaphysis and L5 vertebrae
was quantified ex vivo using high-resolution X-ray micro-computed tomography (μCT,
Scanco Medical; Wayne, PA). These included bone volume (BV), bone volume fraction
(BV/TV), trabecular number, thickness and spacing, and Structure Model Index (SMI) [34].

2.5.1. Proximal Tibia—Beginning 300μm distal to the growth plate, 1200μm of the
metaphysis was evaluated at 12μm resolution and 55keV intensity settings. A threshold for
each slice was set exclusively for cortical and trabecular bone using an automated script
[35]. The reconstructed solid 3D images were then used to quantify bone microarchitecture.

2.5.2. L5 Vertebrae—A 400μm cylindrical sample of trabecular bone from the center of
the vertebral body (diameter = 0.8mm; height = 0.4mm; comprised of 40 slices at 10μm
intervals) at 10μm resolution and 70keV intensity settings. The reconstructed slices
generated a 3D rendering used to quantify microarchitecture as a representative region of the
spine. The axial skeleton was not harvested from BC, so baseline comparisons for L5 could
not be made.

2.6. Statistical Analysis
Significance (p≤0.05) between LIV and AC groups, and between healthy and those animals
with visible evidence of tumor pathology upon gross dissection, was determined using
Student's t-test. One-way ANOVA was used for μCT analysis for baseline control and
Tukey's post hoc with a significance of p≤0.05. The Mann-Whitney test was used to
determine the Gaussian distribution of the data. A Kaplan Meier Survival Analysis was
performed to determine if there was a difference in longevity between LIV and AC. Chi-
square tests were performed to determine if the LIV signal influenced the number of animals
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with tumors relative to AC, and if LIV influenced the number of organs with pathology
relative to AC.

3. Results
3.1. Longevity

Over the course of the study, 8 animals were lost within the LIV group (27%), while 10
were lost in AC (33%), indicating similar survivability over the 1y course of the study (Fig.
1; p=0.62). Unless otherwise noted, data from animals that died over the course of the study
were not included in the analysis.

3.2. Bone Morphology
Micro-CT analyses of the proximal tibia indicated that trabecular bone volume (Tb.BV) and
bone volume fraction (Tb.BV/TV) in the 64w old AC had decreased by -47% (p<0.01) and
-45% (p<0.01), respectively, from 12w BC (Fig. 2). In contrast, Tb.BV in 64w LIV mice
was +25% greater (p<0.03) and Tb.BV/TV +24% higher (p<0.02) than AC. In the axial
skeleton, Tb.BV was +15% (p<0.03) and TV.BV/TV was +16% higher (p<0.02) in the L5
vertebrae of LIV mice as compared to AC (Fig. 3). Within the same region of the L5
vertebrae, the structure model index (SMI) was 40% more plate-like in LIV than AC
(p<0.01). No significant differences between AC and LIV were observed for trabecular
number, trabecular thickness, or trabecular spacing. No differences were measured in
cortical bone indices.

3.3. Histology and Pathology
Animals bearing mature granulosa cell tumors were readily identifiable due to distension of
the abdomen. Upon dissection, the most prominent of all lesions were the primary solid
ovarian tumors. In certain instances, ovarian cysts measuring up to 8mm3 were also noted.
Histological examination of the tumors revealed sheets of cells with central necrosis, nuclear
grooves, Call-Exner bodies, and numerous mitotic figures. Immunohistochemical staining
confirmed that these lesions were calretinin+ and CD45-, consistent with the diagnosis of
granulosa cell tumors (Fig. 4) [28, 36]. Mature ovarian tumor growth extended from the
pelvic cavity into the abdominal cavity. Gross examination of the excised, mature GCT
typically revealed adhesion to the kidneys and occasional extension to the thoracic spine.

Upon further inspection of the abdominal cavity, those animals with visually evident tumors
were also noted to have enlarged lymph nodes (LN) along the subcutaneous lymphatic
vasculature adjacent to the hind-limb musculature, the mediastinum, and in the inguinal
regions. Enlarged LN's were found in the para-aortic regions as well but not to the extent as
those of the peripheral LN's. Histological examination of the LN's revealed only sinus
histiocytosis in some nodes, but in others metastatic granulosa cell tumors with focal
necrosis was observed.

Combining the overall incidence of primary tumors and metastatic lesions in the ovaries,
peripheral and aortic lymph nodes, liver and lung, this pathology pervaded 54% of AC mice,
while evident in 38% of LIV who survived to 15 months of age (p=0.27). A non-significant
trend was identified in those mice with pathology evident in multiple organ systems (i.e.,
liver, ovary, lung), which was approximately 45% lower in mice subject to the LIV signal
(p=0.09). There was no discernible, qualitative site-specific difference in sites of tumor
metastasis or tissue pathology between the groups.
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3.4. Flow Cytometry
At the end of the protocol, the 1y total cell counts quantified from the marrow of AC and
LIV were 12.5×106 and 11.5×106 cells, respectively, while healthy vs. mice with pathology
contained 12.3×106 and 11.5×106 cells, respectively (nsd). Based on the five positive
markers, marrow populations enriched for MSCs were -52% lower (p=0.01) in LIV mice as
compared to AC (Fig. 5a, Table 1). Regardless of treatment group, comparing MSCs in mice
with no visible pathology versus those containing gross pathologic tissues showed a trend of
being -31% lower (Fig. 5b; p=0.08). The lower number (8%) of HSC-enriched populations
in the bone marrow of LIV as compared to AC mice was not significantly different (p=0.25;
Table 1). Flow cytometry data was not processed at baseline and, therefore, cannot be used
for comparison (simultaneous processing was not possible).

3.5. Mice with Pathology: LIV vs. AC
In an effort to evaluate the influence of mechanical signals on those animals with evidence
of the disease, bone and MSC parameters were compared between AC and LIV mice with
visual evidence of tumor pathology. Tb.BV/TV of the tibia and of the L5 vertebrae of LIV
mice bearing pathology showed evidence of a trend towards being higher than AC (+17%,
p=0.12; and +13%, p=0.29, respectively; Fig. 6). The population of MSC in the BM of LIV
remained significantly lower than AC by -60% (p<0.04).

4. Discussion
Osteoporosis, a common co-morbidity of cancer [37], is often exacerbated by aggressive
chemo- and radio-therapies [37-41]. Cancer-associated declines in bone strength ultimately
increase the risk of fracture, while disease or treatment-based disruption of the bone marrow
stem cell pool could compromise the tissue repair process [42]. While antiresorptive agents
(e.g., bisphosphonates) have helped cancer patients to mitigate these losses [43-45],
concerns arise regarding long term complications, including osteonecrosis of the jaw [46]
and atypical fractures of the femur [47]. Further, the skeletal benefits of using anabolic
agents may not balance concerns surrounding their role as a potential promoter of neoplastic
cell expansion, and thus their use is restricted [48]. In some contrast to pharmacologic
strategies, physical activity is universally promoted as a means to help preserve bone density
[49]. Unfortunately, the very nature of cancer and/or its treatments is such that participating
in even a mild exercise regimen can be difficult [50] and, during extreme bone loss, might
precipitate the very fracture it is intended to prevent.

Mechanical signals both large (resulting in >2,000 microstrain at the bone surface) and small
(<10 microstrain)[11], several orders of magnitude below those generated by strenuous
activity [51], can positively influence bone mass, even under the added duress of disuse
[52]. These mechanically-mediated enhancements in bone density are achieved, at least in
part, by biasing the MSC population towards formation of skeletal tissue and away from
adipose accumulation, most notably by driving MSC differentiation through the Wnt/β-
catenin pathway [13, 17, 53-55].

To consider the use of mechanical signals as osteoprotective agents while combating cancer,
whether or not in concert with cancer treatments, care must be taken to ensure that tumor
growth is not accelerated. To this point, β-catenin – a key mediator of mechanically induced
bone remodeling – is known to have a role in tumor growth and metastasis [23, 56]. The
data presented here indicate that brief, daily exposure to extremely low magnitude
mechanical signals helped to preserve bone density but did not compromise survivability or
promote disease progression in mice with a high propensity for the spontaneous
development of GCT.
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GCT's are classified as ovarian stromal tumors and are considered rare in humans, occurring
in one out of every 200,000 people per year, comprising just 2% of all malignancies arising
from the ovary [36]. Supporting previous studies which reported the ability of LIV to protect
bone morphology [57, 58], both the trabecular bone volume and bone volume fraction
indices of the tibia and vertebrae in LIV mice were significantly higher than that measured
in their AC counterparts. The structure model index (SMI), an index of bone quality [34],
indicated that the LIV signal protected trabecular architecture as more plate-like, than rod-
like structures, a morphology considered to be stronger and more resilient to fracture [59].

These studies also indicate that the fate of certain bone marrow-derived mesenchymal
lineages can be influenced by mechanical loading, with a lower fraction of MSC being
measured in bone marrow of the LIV mice as compared to the AC. In parallel, a trend was
observed in that MSC-enriched populations were higher in the bone marrow of those mice
bearing visible pathology - whether AC or LIV - as compared to those mice lacking tumors
evident upon dissection.

The emphasis of the data presented here has been on the comparison of LIV vs. AC mice,
and determining if the osteoregulatory potential of mechanical signals also promoted risk of
the disease. Nevertheless, as anticipated, mice from each group succumbed to the disease
through twelve month protocol, and several from each group showed evidence of pathology
when examined at 15 months of age. When considering only those mice with pathology,
there was a trend towards higher bone density in the tibia and spine of the LIV group as
compared to AC, paralleled by a significantly lower level of MSC in the bone marrow.
Whether the lower MSC is simply correlated to a lower tumor burden in the diseased mice,
or is actually responsible for the suppression of pathology, cannot be concluded from this
study. Nevertheless, when considered with the longevity data, these results suggest that
mechanical signals - which perhaps serve as a surrogate to exercise - represent a non-
pharmacological means of protecting bone structure in those susceptible to cancer – and
those which carry the disease - without enabling the disease itself.

The contributing role of MSC to the tumor microenvironment is controversial, with evidence
for both promotion and suppression of tumor progression [24, 25]. In the case of epithelial
ovarian carcinoma, not only are MSC “universally present” in human ovarian cancer, but
these cancer associated MSCs promoted the growth and abnormal characteristics of co-
cultured ovarian cell lines in vitro [26]. Our data suggests that not only do mechanical
signals have the capacity to suppress MSC number in the bone marrow, but that a corollary
is also true – that an increasing tumor burden is associated with an elevated MSC progenitor
pool. Importantly, the suppression of the MSC pool by the mechanical signals in the LIV
group at 1 year was achieved without affecting HSC levels, indicating that this was cell
specific, and not a systemic response per se. As such, the capacity of exercise in general, or
mechanical signals distilled from the exertion, may reduce tumor progression by potentially
limiting ongoing interactions between MSC and cancer stem cells, while biasing MSC fate
towards higher order connective tissues such as bone.

As an indication of the spread of the disease, disparate tumor foci were quantified revealing
that enlarged aortic lymph nodes, primarily reflecting increased inflammation, were actually
metastatic foci, contributing further to tumor pervasion in addition to the primary ovarian
tumors. A role for the suppression of tumor growth by mechanical signals was further
supported by a trend of reduced tumor number in the LIV mice, as compared to AC, and the
lower number of LIV mice with disease that involved more than one organ system. These
data taken in combination with decreased levels of MSC-enriched populations observed in
LIV mice are interpreted as a possible reflection of the benefits of exercise in reducing
disease pathogenesis, perhaps by driving MSC differentiation towards higher-ordered
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connective tissue, such as bone or muscle, thus hindering their contribution to the stromal
framework of neoplastic tissue. This perspective is supported by clinical evidence that
sedentary and/or obese individuals are more susceptible to cancer [60, 61], indicating that
the absence of mechanical signals is permissive to the formation of adipose and neoplastic
tissues. Perhaps, in the absence of the regulatory signals commanded by mechanical stimuli,
the ability of progenitor populations to proliferate and spread in an undirected manner
remains unheeded and unchallenged.

There are a number of limitations in this study, including that the model itself does not
approach 100% onset of tumorigenesis for all animals within 15 months of age (i.e., 66% of
AC suffered from pathology). As the goal of the study was to determine if the mechanical
signals promoted appearance of the disease, this uncertainty was considered an attribute of
the model, allowing us to compare not only effects on longevity, but on incidence.
Importantly, this study reports only the bone loss which occurs with 15 months of aging,
rather than the bone loss which may be compounded by chemical or irradiation treatment for
cancer, interventions which are certain to accelerate this loss [62]. Nor was the bone lost
with age compared to that which might have occurred in a WT control. Nevertheless, the
LIV signal did help protect bone quantity and quality in the skeleton, relative to the
untreated age-matched controls.

Given the bone morphology measures that were made, we are not able to conclude if this
mechanical protection of the skeleton was realized by an increase in bone formation, a
suppression of bone resorption, or a change in levels of bone turnover. As this is an ovarian
cancer, however, fluctuating hormone levels, such as that of estrogen, derived from
dysplasia might contribute to variances in normal trabecular bone remodeling, a point of
consideration for future work in elucidating the underlying mechanism-of-action. Severe
osteolysis that is observed in occult prostate and breast skeletal metastases and primary
lesions of multiple myeloma, do not appear in this model.

Follow-up studies will examine the ability of mechanical signals to suppress bone loss and
cancer progression in induced models of the disease, with a continued focus on the lineage
selection of the mesenchymal progenitor. It should also be pointed out that the lineage
selection (FACS) data were only compared at the endpoint, with no comparison to baseline
measures. While this would have provided a strong index of change, confidence in the
measures is typically derived only from measures made at the same sacrifice date, using the
same reagents; something that was not possible given the difficulty of breeding these mice.
As importantly, in vitro studies must be used to determine if, and how, hyperplasia in cancer
cells can be suppressed by mechanical signals, perhaps through pathways already identified
as mechano-responsive in MSC [63].

5. Conclusion
In summary, using a mouse model of spontaneous granulosa cell ovarian cancer, low
magnitude mechanical signals, induced non-invasively using low intensity vibration,
mitigated the long-term loss of bone relative to age-matched controls. This skeletal endpoint
was achieved without compromising survival. Further, the decreased tumor burden,
considered in concert with significantly lower mesenchymal stem cell populations measured
in the LIV mice, suggest both the skeletal and disease benefits of mechanical-based
interventions, including exercise, may involve biasing these progenitors towards higher-
order connective tissues such as bone. Considering the brief exposure and low magnitude of
these mechanical signals, these preliminary data support the potential of low intensity
vibration for the suppression of bone loss in cancer patients, particularly those that are
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infirm or are inactive, safely achieved without the use of drugs which might otherwise
complicate treatments for the disease itself.
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Highlights

• LIV effects on bone were examined in mice prone to granulosa cell
tumorigenesis.

• Exposure to LIV did not compromise longevity following 1y of treatment.

• Bone preservation was evident in tibiae and vertebrae of LIV compared to
controls.

• MSCs were significantly lower in LIV-treated animals and in those lacking
pathology.

• Overall tumor incidence was lower in LIV involving fewer organs when disease
was evident.
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Figure 1.
Survivability curve for LIV (n=30) and AC (n=30) mice, with the experimental protocol
beginning at 3 months of age. Both AC and LIV groups followed similar declines over the
course of the 1 year period (p=0.62), indicating that exposure to the mechanical signal did
not compromise life expectancy.
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Figure 2.
Reconstructions of cortical (gray) and trabecular (pink) bone in the tibial metaphysis,
assayed by μCT, are shown for baseline control (Left: 3mo of age), age-matchedcontrol
(Center: 15mo), and low intensity vibration mice (Right: 15mo). While bone quantity (BV/
TV) dropped relative to baseline (BC) in both age-matched control (AC) and the
mechanically stimulated (LIV) mice, the loss was mitigated in LIV by daily exposure to the
mechanical signals (AC & LIV both different than BC at p<0.01, shown by *; AC different
from LIV at p<0.02, shown by **).

Pagnotti et al. Page 15

Bone. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Reconstructions of trabecular bone volume as derived from μCT scans of L5. A cylinder,
0.8mm in diameter and 0.4mm high, was fit into the center of the vertebral body (top left;
Region of Interest represented by dashed line), such that a defined volume was taken for
each specimen. The 3D reconstruction of the LIV mice (top right), revealed a bone volume
fraction, Tb.BV/TV, to be +16% higher than that of the age matched controls (bottom left;
p<0.02). The SMI, 40% different between groups (bottom right; p<0.01), indicated the
trabecular morphology of the mechanically stimulated mice to be more plate-like in
structure, rather than the rod-like struts measured in the age-matched controls. Scale is 1mm;
* = p<0.02.
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Figure 4.
A: Sheets of tumor cells forming Call-Exner bodies (40x). B: Sinus histiocytosis observed
in enlarged lymph nodes both along the abdominal aorta as well as in the peripheral
subcutaneous tissue (40x). C: The histologic diagnosis of granulosa cell tumor was
confirmed calretinin staining (1:100; 60x). D: Immunoreactivity of tumor infiltrating
lymphocytes but not tumor cells for CD45 (1:20; 40x).
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Figure 5.
MSC-enriched populations estimated from pooled hind limb bone marrow. MSC numbers
were 52% lower in LIV mice as compared to age matched control (left; p<0.01), suggesting
these signals either suppress MSC proliferation or promote lineage commitment towards
higher-order musculoskeletal tissues. This perspective was supported when the MSC
populations from diseased mice were 31% greater than those with no evidence of pathology
(right; p=0.08).
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Figure 6.
When considering only those animals that had visible evidence of pathology, there were
-61% fewer MSC in the bone marrow of the LIV as compared to the AC mice (left; p<0.04).
The BV/TV of the tibia (middle) and L5 vertebrae (right) of LIV mice with pathology
showed a trend towards being higher than age-matched controls (17%, p=0.12 and 13%,
p=0.29, respectively). These data indicate that the mechanical signals served to suppress
MSC proliferation within the bone marrow even in mice with a tumor burden, and suggest
some benefit in preserving bone quality despite carrying the disease.
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