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Abstract

Background & Aims—Liver sinusoidal endothelial cells (LSECs) make up a large proportion 

of the non-parenchymal cells in the liver. LSECs are involved in induction of immune tolerance, 

but little is known about their functions during hepatitis C virus (HCV) infection.

Methods—Primary human LSECs (HLSECs) and immortalized liver endothelial cells 

(TMNK-1) were exposed to various forms of HCV, including full-length transmitted/founder 

virus, sucrose-purified Japanese Fulminant Hepatitis-1 (JFH-1), a virus encoding a luciferase 

reporter, and the HCV-specific pathogen-associated molecular pattern molecules. Cells were 

analyzed by confocal immunofluorescence, immunohistochemical, and PCR assays.

Results—HLSECs internalized HCV, independent of cell–cell contacts; HCV RNA was 

translated but not replicated. Through pattern recognition receptors (TLR7 and retinoic acid 

inducible gene 1), HCV RNA induced consistent and broad transcription of multiple interferons 

(IFNs); supernatants from primary HLSECs transfected with HCV-specific pathogen-associated 

molecular pattern molecules increased induction of IFNs and IFN-stimulated genes in HLSECs. 

Recombinant type I and type III IFNs strongly up-regulated HLSEC transcription of interferon λ 3 

(IFNL3) and viperin (RSAD2), which inhibit replication of HCV. Compared to CD8+ T cells, 

HLSECs suppressed HCV replication within Huh7.5.1 cells, also inducing IFN-stimulated genes 

in co-culture. Conditioned media from IFN-stimulated HLSECs induced expression of antiviral 

genes by uninfected primary human hepatocytes. Exosomes, derived from HLSECs following 

stimulation with either type I or type III IFNs, controlled HCV replication in a dose-dependent 

manner.

Conclusions—Cultured HLSECs produce factors that mediate immunity against HCV. HLSECs 

induce self-amplifying IFN-mediated responses and release of exosomes with antiviral activity.
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Background

Hepatitis C virus (HCV) persists in up to 80% of people after acute infection, and 

approximately 180 million worldwide have chronic infection 1. HCV-related liver disease is 

a leading cause of hepatocellular carcinoma and indication for liver transplantation. 

Although hepatocytes comprise the majority of the total cell population within the liver, the 

remaining population of non-parenchymal liver cells, including liver sinusoidal endothelial 

cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs), is diverse and multi-

functional 234. The highly-organized liver architecture allows intimate contact between the 

distinct cell types.

LSECs compose ~50% of non-parenchymal cells in the liver (~1011 cells in humans) and 

have been highly conserved during evolution to clear waste molecules entering the 

circulation5. Prior work in LSECs has largely focused on Toll-like receptor (TLR)-4 and its 

ligand, lipopolysaccaride (LPS), which is constantly present in the portal venous blood 67. 

However, the precise role of LSECs in sensing other TLR ligands, such as viral products, is 
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just beginning to emerge 6, 8, 9. Moreover, in addition to the TLR system, retinoic acid 

inducible gene-I (RIG-I)-like receptors (RLRs) have been identified as cytosolic receptors 

for intracellular double-stranded RNA sensing10. The relative contribution of TLRs and 

RLRs as viral sensors varies across cell types and viruses10.

LSECs are unusual in several respects; they do not secrete an organized basement membrane 

and are perforated by numerous fenestrations, which are transcytoplasmic canals clustered 

into sieve plates11. LSECs are highly efficient scavengers that pinocytose particles less than 

0.2 μm, allowing them to uptake virus-sized particles12. The recent demonstration that 

LSECs and not KCs clear the bulk of blood-borne human adenovirus underscores their 

importance during the viremic phase of any natural viral infection12. Expression of the C-

type lectin liver/lymph node-specific ICAM-3-grabbing nonintegrin (L-SIGN) on LSECs 

has been previously shown to mediate capture of HCV-particles and transcytosis of the virus 

across the endothelial barrier, thereby concentrating infectious particles and potentially 

facilitating their direct contact with hepatocytes1314. Moreover, a recent study points to 

HLSEC-derived bone morphogenetic protein 4 (BMP4), negatively regulated by 

hepatocellular VEGF-A, in promoting hepatocyte permeability, virus particle entry, and 

HCV replication15.

The aim of our study was to interrogate whether human LSECs (HLSECs) could directly 

uptake and sense HCV-RNA and define how the innate immune responses might control 

HCV replication. We found HLSECs express many of the receptors implicated in HCV 

attachment and entry16 and HLSEC-to-hepatocyte contact was dispensable for uptake. HCV 

encoding a Luciferase reporter demonstrated early viral RNA translation. Primary HLSECs 

and an immortalized cell line (TMNK-1) responded to various forms of HCV-RNA, 

including founder/transmitted virus, sucrose-purified JFH-1, and the HCV pathogen-

associated molecular pattern (PAMP; substrate for RIG-I), by marked up-regulation of Type 

I/III interferons (IFNs). Exogenous addition of Type I/III IFNs broadly induced IFN and 

interferon simulated genes (ISGs) ISG responses within HLSECs. Of the ISGs, RSAD2 

(encoding viperin) was the most robustly induced in HLSECs by IFN stimulation. 

Stimulation of HLSECs with either Type I/III IFNs led to secretion of exosomes that inhibit 

HCV replication. Collectively, these data support a previously unappreciated role for 

HLSECs in the innate immune response to this common disease, with potential to impact 

other liver-tropic infections.

Materials and Methods

Cells

Primary HLSECs were purchased from Sciencell Research Laboratories (Carlsbad, CA) 17. 

TMNK-1 cells were provided by A. Soto-Gutierrez (University of Pittsburgh, PA) and the 

hepatoma cell line Huh 7.5.1 was obtained from Francis Chisari (Scripps Research Institute, 

La Jolla, CA). HLSECs were maintained in Endothelial Cell medium supplemented with 5% 

fetal bovine serum (FBS), 1% endothelial cell growth supplement and 1% penicillin/

streptomycin (Sciencell). TMNK-1 were maintained in high glucose Dulbecco Modified 

Eagle Medium (DMEM) supplemented with 10% FBS and 1% penicillin/streptomycin 

(Invitrogen, Carlsbad, CA). Human microvascular endothelial cells (HMEC-1) cells were 
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maintained as previously described18. Human hepatocellular liver carcinoma cell lines Huh 

7.5.1 and HepG2 (ATCC, Manassas, VA) cells were maintained following manufacturer's 

instructions.

FACS analysis of antigen expression, western blotting, immunofluorescence, preparation 

and use of HCV-founder virus and HCV-PAMP, TLR and IFN stimulation, gene and protein 

quantitation, viral replication studies, HLSECs sorting and exosomal isolation, viral control 

assays, and statistical analyses are detailed in the Supplemental materials.

RESULTS

Human Liver Sinusoidal Endothelial Cells (HLSECs) Express Molecules Required for 
Attachment, Uptake and Sensing of HCV

To investigate the expression of receptors in HLSECs, 8 different lots of primary HLSECs 

were stained for classical endothelial markers (Figure 1A). HLSECs were positive for the 

surface markers CD31, ICAM-1, DC-SIGN, L-SIGN, and stabilin-1, but negative for the 

pan-leukocyte antigen CD45. LYVE-1 (lymphatic vessel endothelial hyaluronan receptor) is 

constitutively expressed on LSECs and reportedly absent on other hepatic cells and 

conventional endothelium 11,19. Primary HLSECs also expressed receptors implicated in 

HCV attachment and/or entry [LDL-R, the tretraspanin CD81, and scavenger receptor type 

B1 (SR-B1); Figure 1B]. We also verified expression of certain Pattern Recognition 

Receptors (PRRs) in HLSECs (Figure 1C). HLSECs express multiple Toll-like receptors 

implicated in innate antiviral immunity (TLR3/TLR7), as well as the retinoic acid inducible 

gene-I (RIG-I), whose expression is increased after 8 hours stimulation with pegylated-IFN-

[.alpha]2 (Western blot inset). The immortalized, differentiated adult human liver 

endothelial cell line TMNK-1 20 was also phenotyped (Supplemental Figure 1), sharing 

most features with primary HLSECs.

HCV Uptake by HLSECs does not Require Contact with Hepatocytes and is Clathrin-
dependent

In order to determine whether HCV is taken up by HLSECs, we utilized the hepatoma cell 

line Huh 7.5.1 infected with full-length HCV JFH-1, also known as infectious cell-culture-

derived HCV (HCVcc)21. After 5 days of infection, primary HLSECs were added to the 

culture for an additional 24 hours. Confocal microscopy was performed to localize NS5A, 

involved in the RNA replicative machinery 16, within HLSECs. Liver endothelial cells were 

distinguished from hepatocytes by the different morphology of the F-actin structure and by 

the presence of Keratin 18 filaments (Figure 2A–2C), the latter only expressed in Huh 7.5.1 

(Figure 2C). With this experimental approach, we observed infected Huh 7.5.1 in direct 

contact with HLSEC and both cell types expressed HCV-NS5A protein within the 

cytoplasm (Figure 2D). For the first time, we were therefore able to show HCV-specific 

protein within HLSECs. To further address if the HCV uptake was cell-contact dependent, 

we cultured primary HLSECs for 24 hours with cell-free supernatant from Huh 7.5.1/JFH-1 

cultures. Confocal microscopy (Figure 2E) and western blot analysis (Supplemental 
Figure 2) demonstrated the presence of HCV-proteins within HLECs. Thus, uptake of virus/

viral proteins occurs independently of direct hepatocyte contact. Indeed, the vast majority 
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(>80%) of TMNK-1 demonstrated HCV-protein after 24 hours (Figure 2F), which was non-

detectable in TMNK-1 cultured with non-HCV-infected supernatants (Supplemental 
Figure 3). Liver endothelial cells are known to be avid and efficient scavengers able to take 

up virus-sized-particles12. To determine if clathrin-dependent endocytosis22 was involved, 

primary HLSECs were pre-treated for 15 minutes with 30 μM of Pitstop2 (inhibitor of 

clathrin-dependent endocytosis 23) or for 1 hour with 80 μM of Dynasore hydrate (inhibitor 

of the GTPase activity of dynamin24). After pre-treatment, cells cultured with supernatant of 

JFH-1-infected Huh 7.5.1 showed significant reduction of NS5A internalization compared to 

control cells (determined by confocal microscopy), suggesting a clathrin-dependent uptake 

by primary HLSECs (data not shown). In contrast to the Huh7 hepatocyte model system, 

addition of HCVcc to primary HLSECs or TMNK-1 did not result in increased HCV copy 

number at 24, 48 or72 hours (data not shown), indicating that HLSECs do not sustain 

replication.

HLSECs are Permissive for HCV-RNA Infection and Translation: Insights from Direct-
Acting Antivirals (DAAs)

In order to examine different steps in the viral life cycle within HLSECs, we used several 

approaches. A cell-culture adapted JFH-1 virus expressing Gaussia princeps luciferase 

(GLuc) in frame was infected into TMNK-1 cells and the activity of secreted GLuc in 

culture supernatants25 was measured at multiple intervals (2, 8, 16 and 24 hours post-

infection). GLuc activity was detected within 8 hours of infection suggesting that TMNK-1 

cells are permissive for HCV viral entry and genome translation. After 8 hours of infection, 

we could only detect background levels of GLuc activity. When sofosbuvir, an inhibitor of 

the viral NS5B RNA-dependent RNA polymerase, was added to the culture (30 μM)26, we 

did not observe any difference in the GLuc activity. These data suggest absence of active 

replication in TMNK-1 cells (Supplemental Figure 4A). TMNK-1 cells pre-treated with 

the same concentration of sofosbuvir were also cultured with supernatant from Huh 7.5.1/

JFH-1 cultures. The presence of DAA in culture did not affect the detection level of HCV-

NS5A within TMNK-1 cells by confocal microscopy (Supplemental Figure 4B-C). Taken 

together, these data indicate that HLSECs/TMNK-1 cells may be permissive for HCV entry 

and translation of the viral genome but do not sustain productive replication.

Intracellular HCV-RNA Induces Type I and Type III Interferons in HLSECs

The fact input virus was translated but GLuc activity was rapidly reduced to background 

level suggested the possibility of a robust innate immune response limiting replication with 

HLSECs. To investigate the responses elicited by intracellular sensing of HCV-viral RNA 

without potential contaminants from HCVcc supernatants, we used four different 

approaches. First, viral-RNA (vRNA) of a full-length infectious molecular clone of HCV 

known to efficiently transmit infection, transmitted founder (T/F) virus identified by single 

genome sequencing and phylogenetic inference2728, was added to cultured TMNK-1. The 

T/F vRNA (genotype 1a) induced significant up-regulation of Type I/III IFNs (black bars) 

that was reduced by chloroquine (white bars), a lysosomotropic agent that prevents 

endosomal acidification, thus inhibiting TLR signaling (Figure 3A). We found that sucrose-

purified HCV-virus29 induced significant transcription of multiple IFNs in TMNK-1 cells 
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(Figure 3B). These data indicate that HCV-RNA is taken up directly by HLSECs and 

induces innate immune responses.

Next, we in vitro transfected full-length JFH-1 into TMNK-1 cells in the absence or 

presence of a specific TLR7 antagonist, IRS66130. JFH-1 induced highly robust IFNB, and 

IFNLs transcription (Figure 3C), and TLR7 inhibition decreased but did not totally abrogate 

their expression (Figure 3D), suggesting other antiviral signalling pathways might be 

involved. Accordingly, we transfected primary HLSECs with the HCV-genome 3′ non-

translated poly-U/UC tract, previously shown to function as the HCV-PAMP substrate of 

RIG-I, the cytosolic PRR for HCV31, 32 HCV-PAMP induced strong up-regulation of IFNB 

and IFNL genes (Figure 4A) and significantly higher secretion of IFN-β, IFN-λ, and IP-10 

(CXCL10, marker of HCV infection33) compared to control (Figure 4B). To further confirm 

the contribution of RIG-I to the transcriptional up-regulation of IFNs within HLSECs, we 

pre-treated TMNK-1 cells with Antarctic phosphatases to remove 5’-triphosphate groups 

required for RIG-I signaling34,35. Phosphatase pre-treatment significantly decreased PAMP-

induced IFN transcription (Supplemental Figure 5).

To determine specificity of innate immune response profiles, the primary HLSECs were also 

stimulated with a synthetic TLR3 ligand (poly I:C) or with a TLR4 ligand (LPS). Poly I:C, 

an analogue of viral dsRNA, induced only modest IFNA1 up-regulation (Figure 4C). LPS 

exclusively induced up-regulation of TNFA and IL6 (Figure 4D). From these experiments, 

we conclude that the robust up-regulation of Type I/III IFNs observed in HLSECs with 

HCV transfection is distinct from TLR3 or TLR4 stimulation.

IFNs Induce Robust IFNL3 and ISGs from HLSECs

IFNs are known to induce the expression of hundreds of antiviral genes, a process termed 

cell-autonomous immunity36 that results in a “feed-forward” self-amplifying loop37. 

Considering the reported antiviral potency of Type III IFNs against HCV replication33, we 

investigated the expression at the gene level of IFNL receptor components (IL28RA and 

IL10RB) in primary HLSECs. The ratio of the receptor components was higher in primary 

HLSECs relative to the HepG2 cell line (Supplemental Figure 6).

Given the robust induction of IFNs within HLSECs after HCV-RNA sensing, we tested 

IFNs downstream effects by treating primary HLSECs with pegylated-IFN-α2 (used in 

standard antiviral therapy), IL-28A (IFNL2), IL-28B (IFNL3), or IL-29 (IFNL1). As shown 

in Figure 5A, IFNL3 was the most consistently-induced IFN mRNA in primary HLSECs. 

Interestingly, among the Type III IFNs, IFNL3 has demonstrated the greatest in vitro 

antiviral potency against HCV replication33,38. Only one of the primary HLSECs came from 

a patient with the IL-28B CC genotype, precluding statistical comparison of IFN induction 

across genotypes.

Notably, at 8 hours, only Type I IFN induced remarkably high transcription of prototypical 

ISGs (Figure 5B and C), in particular, RSAD2 394041. At 24 hours, Type I IFN maintained 

broad induction of ISGs, whereas, of the genes examined, only RSAD2 was significantly up-

regulated by Type III IFNs (Figure 5D and E). The distinct set of ISGs with different 

kinetics of induction supports divergent signaling pathways following receptor 
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engagement33. In order to further explore autocrine/paracrine effects specifically following 

HCV-RNA sensing, we added supernatants from HCV-PAMP-transfected primary HLSECs 

to newly-cultured HLSECs; this resulted in induction of IFNB, IFNLs and ISG mRNAs 

within HLSECs (Supplemental Figure 7). Thus, our data support the roles of HLSECs in 

the amplification of IFN effects; addition of exogenous Type I/III IFNs broadly induced 

IFNs, particularly IFNL3, and ISG responses, contrasting with the recent observation that 

IFNs are not induced in either primary nor immortalized human hepatocytes following the 

same stimulation 33.

LSECs Demonstrate Enhanced Antiviral Pathways Compared to other Vascular Endothelial 
Cells (ECs), Control HCV Replication and Induce an Antiviral State in Primary Human 
Hepatocytes

To further elucidate the antiviral potential of HLSECs compared to other ECs, we performed 

a microarray analysis on TMNK-1 cells versus human microvascular endothelial cells 

(HMEC-1)18. Of the 703 differentially expressed transcripts (false discovery rate 0.01), 100 

were associated with viral infection and were differentially regulated to yield a global 

decrease in viral infection (activation z-score=-1.374, p-value=4.71×10−7) (Supplemental 
Table 1). Pathway analysis of upstream regulators revealed significant activation of Type 

I/III interferon signaling (Figure 6A; Supplemental Table 1) suggesting TMNK-1 cells are 

constitutively primed for an anti-viral response. Microarray results were confirmed by qPCR 

for relevant ISGs (Figure 6B). Similar transcriptional trends were observed in our primary 

HLSECs (data not shown).

In order to be effective, most IFN-induced proteins need to be dispatched to the site of 

pathogen replication36. Considering the close proximity of LSECs to hepatocytes, we tested 

their ability to control infection by co-culturing HCV-infected Huh7.5.1 cells with either 

TMNK-1 cells or purified CD8+ T cells transduced with a tyrosinase receptor. TMNK-1 

cells induce significant greater antiviral control (Figure 6A) and increased transcription of 

ISGs (Figure 6B). As a complementary approach, supernatants from primary HCV-PAMP-

transfected HLSECs also induced control of HCV replication (Supplemental Figure 8A). 

Next, using mechanical digestion and sort purification, we found that CD31+CD45− cells 

from whole livers of HCV-positive patients demonstrated increased ex vivo expression of 

IFNB and ISGs (Figure 6E) compared to healthy donor livers.

Because of the remarkable expression of IFNs by HLSECs in the current study, we sought to 

elucidate additional mechanisms whereby IFNs might confer replicative control. The 

addition of supernatants from IFN-α (washed after 6 hours) or IFNLs-stimulated TMNK-1 

cells (washed after 24 hours) to Huh7.5.1 cells markedly inhibited HCV replication after 5 

days of infection (Supplemental Figure 8B). Type I IFN-stimulated liver non-parenchymal 

cells are known to secrete exosomes containing ISG products with broad antiviral 

properties17. Supernatants derived from IFN-α-stimulated TMNK-1 cells treated with the 

exosomal release inhibitor nSMase2-inhibitor spiroepoxide (5μM)17 throughout duration of 

culture were harvested, pre-incubated with the type I IFN blocking antibody B18R and 

cultured with JFH-1 infected Huh7.5.1 cells for 5 days. Blocking exosomal release 

significantly increased HCV replication (Supplemental Figure 8C) within infected 
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hepatocytes. To further elucidate the contribution of exosomes in control of HCV viral 

replication We stimulated TMNK-1 cells with IFN-α or a cocktail of IFNLs, isolated 

exosomes (Supplemental Figure 8D), and tested their ability to control HCV replication in 

Huh 7.5.1 cells. Exosomes derived from Type I/III IFNs-treated TMNK-1 cells 

demonstrated viral control in a dose-dependent manner (Figure 6F).

Although the cell line Huh 7.5.1 produces workable titers of culture-derived virus, these 

cells are defective in RIG-I and do not express TLR3 42, thus lack the innate immune 

signaling of primary human hepatocytes (PHH) 4333. We isolated PHH and established a 

micro-patterned culture as described previously44; PHHs were subjected to supernatants 

from either resting or IFN-α-treated TMNK-1 cells (IFN-α was washed 6 hours after 

stimulation, and the supernatants collected at 6 and 24 hours). RSAD2 and ISG56 were 

significantly up-regulated in the PHH (Supplemental Figure 8E). Collectively, these data 

indicate HLSECs confer antiviral responses in neighboring hepatocytes that restrict HCV 

infection.

Discussion

Despite the fact LSECs are the first cells in contact with blood flow in hepatic sinusoids and 

account for the largest proportion of non-parenchymal cells in the liver45, little is known 

about how these cells recognize hepatitis C. Given their strategic anatomic location46 we 

reasoned that human LSECs (HLSECs) could play a central antiviral role. We show that 

HLSECs express many of the requisite receptors for antiviral recognition, including TLRs 

and retinoic acid inducible gene-I (RIG-I), the cytoplasmic sensor of HCV. HLSECs are 

permissive for HCV entry and viral translation; moreover, intracellular HCV-RNA sensing 

triggers robust antiviral pathways that regulate HCV infection in hepatocytes. Transmission 

of highly diverse viruses such as HCV or HIV across mucosal barriers can be inefficient and 

is most likely mediated by a single founder (T/F) virus47; we found that exogenous addition 

of an HCV-specific T/F vRNA to cultured HLSECs induced Type I/III IFN responses. 

Chloroquine, which inhibits endocytic TLR signaling, significantly attenuated T/F vRNA-

induced responses within an HLSECs cell line (TMNK-1). Our results point to both TLR7 

(endosomal receptor known to recognize single-stranded RNA and signal through 

MyD88 48) and RIG-I pathways49 as critical to mediating IFN messages following HCV 

sensing by HLSECs. The fact that HLSECs demonstrate distinct transcriptional responses to 

HCV-RNA, Poly I:C, and LPS indicate they have evolved the ability to differentiate 

between different types of TLR and RLR stimulation.

Although Type I/III IFNs utilize different receptor complexes, they signal through 

overlapping JAK-STAT intracellular pathways and up-regulate the transcription of ISGs 

required to control viral infection 50. Stimulation of HLSECs with Type I/III IFNs 

consistently induced transcription of IFNL3, known to have the greatest in vitro antiviral 

potency against HCV replication among the IFNLs3338. Type I IFN induces immediate and 

vigorous transcription of prototypical ISGs within HLSECs. In hepatocytes, IFNLs have 

been shown to induce prolonged STAT1 activation and ISG expression compared to Type I 

IFNs whose effects peak early and decline rapidly 3851. Our kinetics analyses indicate that 

Type I IFN affects HLSECs by rapidly inducing ISG15, OAS1, and RIGI (DDX58) with a 
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decrease over time, whereas RSAD2 is further increased at 24 hours. HLSECs exposed to 

IFNLs demonstrated an ISG expression profile that is relatively delayed and narrow (limited 

to RSAD2 or Viperin). Viperin has broad-spectrum antiviral effects52 and is particularly 

interesting because it can restrict HCV replication by physically associating with the HCV-

NS5A protein 39. As further corroboration, supernatants from IFN-α-stimulated HLSECs 

increased ISGs in PHHs to a greater extent than supernatants from resting HLSECs 

(Supplemental Figure 8C) suggesting that HLSECs might “prime” adjacent hepatocytes to 

combat HCV infection. The strong antiviral effector responses by HLSECs provide a 

plausible mechanism to limit HCV replication, extending the concept of “viral repulsion”53 

to the liver microenvironment. Accordingly, we found that HLECs pre-treated with IFN-α 

and then exposed to HCVcc express less HCV-NS5A protein (Supplemental Figure 9), 

suggesting that antiviral responses might prevent uptake and sensing of HCV by adjacent 

HLSECs. Moreover, we found that HLSEC-derived supernatants also up-regulated 

hepatocyte transcription of suppressor of cytokine signaling-1 (SOCS1) (Supplemental 
Figure 10), known to bind to the JAKs and inhibit catalytic activity. This might prove 

negative regulation of IFNs 54.

Several limitations of our study are worth addressing. We used isolated primary liver 

endothelial cells described recently 17, ex vivo purified LSECs, as well as an immortalized 

HLSEC line, TMNK-1 205556. Prior reports indicate that CD31+LYVE-1+ liver endothelial 

cells lose their fenestrae in culture 57, but nonetheless, when transplanted into mice, exhibit 

fenestrae in vivo, suggesting that in the appropriate liver microenvironment, these cells 

resemble true LESCs 45. We considered using VEGF-A in order to induce fenestrations5859, 

but decided against that approach because it could potentially complicate analyses on HCV 

replication1560.

Taken together, our compelling data lead to conceptual insights and a novel paradigm 

identifying HLSECs as central to HCV recognition and immunity (Figure 7). These results 

raise a number of intriguing questions, for example, how the use of exogenous IFN to treat 

viral hepatitis could be expected to induce additional, previously unrecognized antiviral 

mechanisms involving HLSECs. Further work is warranted to understand why despite these 

innate immune responses, HCV is able to establish persistence and fail eradication with 

IFN-based antiviral therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

HCV hepatitis C virus

HSC hepatic stellate cells

JFH-1 Japanese Fulminant Hepatitis

KC kupffer cell

IFN interferon

ISG interferon-stimulated genes

LSEC liver sinusoidal endothelial cell

PAMP pathogen-associated molecular pattern

PHH primary human hepatocytes

RIG-I retinoic acid inducible gene-I

TLR toll-like receptor
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Figure 1. Characterization of primary HLSECs
FACS analysis demonstrates that primary HLSECs are negative for the pan-leukocyte 

antigen CD45 but do express classic endothelial-associated antigens (A). Several receptors, 

involved in HCV binding and entry, are also expressed (B). HLSECs are positive for certain 

Toll-like receptors (TLRs) and RIG-I (further induced by IFN-α stimulation Western 

blotting) (C). Shaded histograms represent isotype controls.
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Figure 2. HCV is taken up by HLECs
Primary HLSECs (A), TMNK-1 (B) and Huh7.5.1 cells (C) were plated for 24 hours and 

stained for Keratin 18 (K18, green) and F-actin (red). Endothelial cells contrary to 

hepatocytes do not express K18 (magnification 40X). Co-culture experiment with primary 

HLECs and Huh7.5.1 was performed as described in the Methods. Cells were stained for 

NS5A (blue), F-actin (red), K18 (green) and DAPI. HCV-NS5A is detected in both cell 

types, confirming that HLSECs can uptake HCV (magnification 40X) (D). Primary HLSECs 

were plated for 24 hours with supernatant of JFH-1-infected Huh7.5.1. Cells were stained 

for F-actin (red) and core or NS5A (blue) (magnification 40X) (E). The vast majority of 

TMNK-1 cells exposed to cell-free supernatant from JFH-1-infected Huh7.5.1 cells 

demonstrated HCV-NS5A protein (F) (magnification 25X). Cells were visualized using 

confocal microscopy as described in the Methods. Bar represents 10 μm.
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Figure 3. HLSECs respond to various forms of HCV full-length virus
Full-length genotype 1a HCV T/F vRNA was added exogenously to TMNK-1 cells for 24 

hours (normalized to mock) in presence (white bars) or absence of (black bars) chloroquine 

(100 μM) (n=3). Chloroquine significantly inhibits up-regulation of Type I/III IFN genes in 

response to exogenous T/F vRNA. Mann-Whitney test, two-tailed (A). TMNK-1 cells were 

treated with sucrose-purified JFH-1 virus for 48 hours at MOI=0.08 (n=3, normalized to 

non-infected). Wilcoxon Signed rank Test (B). Full length JFH-1-RNA was transfected into 

TMNK-1 cells for 24 hours (normalized to non-infected) (n=5). Wilcoxon signed-rank test 

(C). Full length JFH-1-RNA was transfected into TMNK-1 cells for 24 hours in the presence 

of the IRS661 (TLR7 specific antagonist) or the control (IRS-Ctrl) (n=3). Fold increase of 

the mRNA was normalized to the IRS-Ctrl considered 100%. IFNA1 and IFNA2 were not 

included because they were not up-regulated by transfected JFH-1. Wilcoxon signed-rank 

test (D). For every experiment gene up-regulation was assessed by real-time RT-PCR. Bars 

represent mean plus SEM, * p<0.05, ** p<0.01, ***p< 0.001, ****p< 0.0001.
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Figure 4. HLSECs sense HCV-RNA and demonstrate differential response to TLR3 and TLR4 
ligation
Primary HLSECs were transfected with the HCV-PAMP for 8 hours (normalized to X-

region control) 31 (n=8) (A). Protein secretion was higher in supernatants of HCV-PAMP-

transfected primary HLSECs compared to control as assessed by ELISA (representing 3 to 7 

experiments) (B). Primary HLSECs stimulated with Poly I:C (TLR3) (C) or LPS (TLR4) 

(D) (normalized to mock) showed different transcriptional profiles (n=4). Gene up-

regulation was assessed by real-time RT-PCR. Bars represent mean plus SEM, Wilcoxon 

signed-rank test, * p<0.05, ** p<0.01, ****p< 0.0001.
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Figure 5. IFN stimulation of HLSECs induces IFN and ISG responses
Primary HLSECs were stimulated with pegylated-IFN-α2 (n=3) or Type III IFNs (n=4) for 8 

hours. Pegylated-IFN-α2, IFNL2, IFNL3 and IFNL1 stimulation induced significant up-

regulation of IFNL3 (normalized to mock) (A). Primary HLSECs stimulated with pegylated-

IFN-α2 (n=3) for 8 hours induced up-regulation of multiple ISGs (B) not observed in 

primary HLSECs simulated with Type III IFNs (n=4) (C). Stimulation with pegylated-IFN-

α2 for 24 hours (n=3) up-regulated ISGs, particularly RSAD2 (confirmed by Western blot 

analysis as shown in the inset) (D). All of the Type III IFNs induced significant up-

regulation of RSAD2 after 24 hours stimulation (E). Gene up-regulation was assessed by 

real-time RT-PCR. Bars represent mean plus SEM, Wilcoxon signed-rank test, * p<0.05, ** 

p<0.01, ***p< 0.001.
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Figure 6. HLSECs demonstrate increased antiviral potential compared to non-liver vascular 
ECs, up-regulate antiviral genes in HCV-infected livers, and control HCV replication in vitro
Pathway analysis demonstrating over-representation of Type I (IFNA2, activation z-score 

4.459, p-value=2.89×10−15) and Type III (IFNL1, activation z-score 3.973, p-

value=4.30×10−11) interferon upstream regulators in TMNK-1 cells (A). Quantitative PCR 

confirmed relevant ISGs (B), fold changes relative to mock HMEC. Wilcoxon sign-ranked 

test used to determine significance (**p<0.005). On day 4, CD8+ T (white bar) or TMNK-1 

cells (black bar), were added to infected Huh7.5.1 for 24 hours (n=3). HCV viral copy 

number (C), and gene up-regulation (D) were assessed as described in the Methods. Results 

were normalized to CD8+ T cells/Huh7.5.1 co-culture considered 100%. Mann-Whitney 

test, two-tailed. Liver sinusoidal endothelial cells (CD45-CD31+) isolated form HCV-

infected individuals significantly up-regulate IFNB, ISG15 and OAS1 compared to healthy 

controls (n=3) (E). Exosomes derived from mock or IFN-treated TMNK-1 cells were added 

to Huh7.5.1 at the time of infection in increasing doses (5-10-25 μg/ml) for 5 days (F). 
Exosomes from Peg-IFNα2-treated TMNK-1 were isolated after 24 hours (n=1) and 48 

hours (n=1) with pooled data displayed. Exosomes from IFN-λ1/2/3-treated TMNK were 

isolated after 48 hours (n=3). Results were normalized to Huh7.5.1/mock-treated exosomes 

culture considered 100%. One-sample t test. Bars represent mean plus SEM, *p<0.05** 

p<0.01, ***p< 0.001, ****p< 0.0001.
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Figure 7. Paradigm for roles of HLSECs in HCV entry, uptake, recognition, and replication
HCV is pinocytosed and viral RNA is translated within HLSECs. HLSECs respond with 

production of Type I/III IFNs and ISGs activation. This enhanced antiviral state contributes 

to prevention of new infection within HLSECs, i.e., “viral repulsion” and inhibition of viral 

replication within hepatocytes. HLSECs supernatants, in addition to stimulating STAT1 

induce up-regulation of SOCS1 that may counter-regulate the antiviral response in 

hepatocytes. Exosomes produced by HLSECs following stimulation with either Type I/III 

IFNs have antiviral properties.
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