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SUMMARY

Motivated by the need from our on-going environmental study in the Norwegian Mother and Child Cohort
(MoBa) study, we consider an outcome-dependent sampling (ODS) scheme for failure-time data with cen-
soring. Like the case-cohort design, the ODS design enriches the observed sample by selectively including
certain failure subjects. We present an estimated maximum semiparametric empirical likelihood estimation
(EMSELE) under the proportional hazards model framework. The asymptotic properties of the proposed
estimator were derived. Simulation studies were conducted to evaluate the small-sample performance of
our proposed method. Our analyses show that the proposed estimator and design is more efficient than the
current default approach and other competing approaches. Applying the proposed approach with the data
set from the MoBa study, we found a significant effect of an environmental contaminant on fecundability.
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1. INTRODUCTION

In many epidemiologic studies and disease prevention trials, much of the cost is spent on acquiring mea-
surements of the main exposure variable. Large cohort studies with simple random sampling are too
expensive to conduct for investigators with a limited budget. Alternative cost-efficient designs and pro-
cedures are therefore desirable and may play a critical role in reaching the prespecified power level for
many studies with a limited budget. Outcome-dependent sampling (ODS) (e.g. the case–control study) is
a retrospective sampling scheme that enhances the efficiency and reduces the cost of a study by allow-
ing investigators observe the exposure with a probability that depends on the value of the outcome (e.g.
Cornfield, 1951; Weinberg and Wacholder, 1993; Whittemore, 1997). Recent work has focused on a
more general ODS design for continuous outcomes (Zhou and others, 2002; Chatterjee and others, 2003;
Weaver and Zhou, 2005). The principle idea of such a design is to concentrate resources on a segment of the
population that conveys the most information about the exposure–response relationship (Song and others,
2009; Zhou, Song and others, 2011; Zhou, Wu and others, 2011).

For the time-to-event data, the case-cohort design (Prentice, 1986) is a well-known biased-sampling
scheme for censored failure-time data. The case-cohort design measures the covariates on a simple random
sample (SRS) (subcohort) as well as on all the failures at the end of study (e.g. Sun and others, 2004;
Lu and Tsiatis, 2006; Breslow and Wellner, 2007; Tsai, 2009). When the number of failures is large, a
generalized case-cohort design has been proposed where, in addition to a random sample, the information
on covariates is assembled only for a subset of the failures instead of all the failures to reduce the cost (e.g.
Chen, 2001; Cai and Zeng, 2007; Kang and Cai, 2009). Case-cohort and generalized case-cohort designs
are especially advocated when censoring of cases is frequent.

Our research is motivated by a recent substudy of the Norwegian Mother and Child Cohort (MoBa)
about the potential health effects of perfluoroalkyl substances (PFASs) (Whitworth and others, 2012).
PFASs are man-made chemicals that are widely used as industrial surfactants and emulsifiers and in a
variety of consumer products. Two of the most widely detected and studied PFASs are perfluorooctane
sulfonate (PFOS) and perfluorooctanoic acid (PFOA). Both PFOS and PFOA have shown the potential
for toxicity in animal studies (e.g. Johansson and others, 2008). In human studies, several studies have
linked PFOS and PFOA levels to lower birth weight, increased cholesterol, increased rates of cancer (e.g.
Alexander and others, 2003), and reduced human fertility (e.g. Fei and others, 2009).

Our interests are focused on assessing the relationship between exposure to PFASs and women’s
subfecundity. Measurements to estimate fecundity were ascertained as time to pregnancy (TTP),
reported by women around gestational week 17. Because of the expense measuring the PFAS levels,
Whitworth and others (2012) chose two groups of women for measurement of PFAS levels: an overall
SRS of 550 women from the cohort and a supplemental sample of 400 women sampled from those who
delivered a child and had a TTP > 12 months. The MoBa substudy was designed to take advantage of
the ODS scheme to yield more powerful and efficient inferences. In this paper, we consider a general
failure-time ODS sampling scheme for the MoBa data.

One frequent approach in epidemiology for the above MoBa data is to dichotomize the TTP and apply
logistic regression for a binary response. The odds ratios based on this logistic regression are then com-
puted (e.g. per ng/ml of PFOA). Loss of information and bias may result. There is also the risk for misclas-
sification and the estimations may not be comparable if different cutpoints are chosen to dichotomize
the outcome. We assess the relationship between the exposure of interest and time-to-event response
by analyzing the right-censored data obtained by the above ODS scheme under the framework of the
proportional hazards model (Cox, 1972). We develop an estimated maximum semiparametric empirical
likelihood approach where we replace the baseline cumulative hazard function and survival function of
censoring time in the joint likelihood with some consistent estimators and then maximize it by an empiri-
cal approach without specifying the marginal distribution of covariates. We illustrate the proposed method
through simulations and compare it with the results from different competing methods. Software and
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practical recommendations are provided to researchers who will deal with biased-sampling failure-time
data in practice.

The layout of the remainder of this article is as follows. In Section 2, we describe the proposed failure-
time ODS design, present an estimated semiparametric empirical likelihood estimator, and develop the
asymptotic properties of the proposed estimator. In Section 3, we conduct simulation studies to compare
its efficiency with some alterative methods. In Section 4, we apply our proposed method to analyze a data
set from the MoBa study. In Section 5, we give some final remarks.

2. DESIGN AND ESTIMATION

2.1 ODS design and notations

Suppose that there exists a large, but finite, study population of N independent individuals. Let T̃i denote
the failure time and Ci denote the censoring time for subject i (i = 1, . . . , N ). The observed time is
Ti = min(T̃i , Ci ). Let �i = I (T̃i � Ci ) denote the right-censoring indicator for subject i , Yi (t) = I (Ti � t)
denote the at-risk process, and Ni (t) = �i I (Ti � t) denote the counting process, where I (·) is an indicator
function. We confine our attention to non-time-dependent covariates. Let Zi be a p-dimensional covariate
for subject i . Assume that T̃i and Ci are conditionally independent given Zi . Let τ denote the end time for
the study.

Suppose that the failure-time T̃i follows the following proportional hazards model (Cox, 1972):

λ(t |Zi ) = λ0(t) exp(β ′ Zi ), i = 1, . . . , N , (2.1)

where λ0(t) is the unspecified baseline hazard function, and β is a p-dimensional regression coefficient
of primary interest. We assume that the range of observed failure time of all the cases is partitioned
into K mutually exclusive and exhaustive strata: Ak = (ak−1, ak], k = 1, . . . , K , by some known con-
stants {ai , i = 1, . . . , K } which satisfy 0 = a0 < a1 < · · · < ak−1 < ak = τ . We consider the following ODS
design where Z is observed: First, a random sample of size n0 from the full cohort, denoted by the SRS
sample, is selected. In addition, we select a supplemental sample of size nk from each of the above kth
stratum of cases. The samples from these two components constitute the ODS sample. We suppose that
nk is fixed by design for k = 1, . . . , K . We denote n =∑K

k=0 nk to be the total size of the ODS sample.
Let V , S0, and Sk be the index set of the total ODS sample, the SRS sample, and the supplemental sample
from the kth stratum, respectively. Hence, the observed data for our ODS design can be summarized as

The SRS sample: (Ti ,�i , Zi ), i ∈ S0;
The supplemental sample: (Ti ,�i , Zi |�i = 1, Ti ∈ Ak), i ∈ Sk, k = 1, . . . , K .

(2.2)

The likelihood function corresponding to the observed data described in (2.2) is

L(β, QZ ) =
[∏

i∈S0

f (Ti ,�i |Zi )qZ (Zi )

]
·
[

K∏
k=1

∏
i∈Sk

f (Ti ,�i , Zi |�i = 1, Ti ∈ Ak)

]
, (2.3)

where QZ (·) and qZ (·) denote the cumulative distribution and density function of Z , respectively,
f (Ti ,�i |Zi ) denotes the conditional distribution function of (Ti ,�i ) given Zi , and f (Ti ,�i , Zi |�i =
1, Ti ∈ Ak) denotes the joint density function of (Ti ,�i , Zi ), conditional on the censoring indicator �i

being 1, and the failure-time Ti being in interval Ak . By applying Bayes’ Law to the supplemental samples



Estimating effect of environmental contaminants with an ODS scheme 639

in the second bracket of (2.3), we can rewrite (2.3) as

L(β, Q Z ) =
[∏

i∈S0

f (Ti ,�i |Zi )qZ (Zi )

]
·
[

K∏
k=1

∏
i∈Sk

f (Ti ,�i |Zi )qZ (Zi )I (�i = 1, Ti ∈ Ak)

P(�i = 1, Ti ∈ Ak)

]
. (2.4)

Under random censorship, f (Ti ,�i |Zi ) = fβ,�0(Ti |Zi )SC(Ti ) when �i = 1 and f (Ti ,�i |Zi ) =
F̄β,�0(Ti |Zi )sC(Ti ) when �i = 0, where fβ,�0(t |Z) and F̄β,�0(t |Z) are the conditional density function
and survival function of T̃ given Z with the baseline cumulative hazard function �0(t), respectively,
and sC(t) and SC(t) are the density function and survival function of the censoring time C , respec-
tively. We assume that SC(t) is independent on the covariate Z . Thus, we have P(�i = 1, Ti ∈ Ak) =∫
Z
∫

Ak
fβ,�0(t |Z)SC(t) dt dQ Z (Z). The likelihood function in (2.4) is proportional to

L(β, QZ ,�0, SC ) =
[∏

i∈S0

( fβ,�0(Ti |Zi ))
�i (F̄β,�0(Ti |Zi ))

1−�i

]
·
[

K∏
k=1

∏
i∈Sk

fβ,�0(Ti |Zi )

]

·
[

K∏
k=0

∏
i∈Sk

qZ (Zi )

]
·
[

K∏
k=1

(∫
Z

∫
Ak

fβ,�0(t |Z)SC(t) dt dQ Z (Z)

)−nk
]

. (2.5)

Note that the non-parametric portion (QZ ,�0, SC ) cannot be separated from the above likelihood func-
tion that combines both the conditional parametric likelihood and the marginal semiparametric likelihood.
Clearly, the inference for the underlying parameters requires methods to deal with (QZ ,�0, SC ), which
are effectively infinite-dimensional nuisance functions. For all these challenges, we develop next an esti-
mated maximum semiparametric empirical likelihood approach, in which we replace (�0, SC ) in the joint
likelihood L(β, QZ ,�0, SC) with their estimators to get an estimated likelihood function L̂(β, Q Z ), and
then maximize L̂(β, Q Z ) with respect to (β, Q Z ) by a semiparametric empirical approach without speci-
fying Q Z .

2.2 An estimated maximum semiparametric empirical likelihood approach

First, we estimate the baseline cumulative hazard function �0(t) by the Breslow–Aalen estimator

�̂0(t, β̂
(0)) =

∑
Tj �t, j∈S0

� j∑
l∈S0

Yl(Tj ) eβ̂(0)′ Zl
,

and the survival function SC(t) of censoring time C by the Nelson–Aalen estimator

ŜC(t) = exp

⎛
⎝−

∑
Tj �t, j∈S0

1 − � j

ñ j

⎞
⎠ ,

where ñ j denotes the number of subjects at risk at a time prior to Tj (for j ∈ S0) and β̂(0) is the estimate of
β based only on the SRS portion. Replacing (�0, SC ) in the likelihood function (2.5) with (�̂0, ŜC ), we
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obtain the estimated log-likelihood function:

l̂(β, Q Z ) = l(β, Q Z , �̂0, ŜC ) ∝
∑
i∈S0

log hβ(Ti ,�i , Zi ) +
K∑

k=1

∑
i∈Sk

log fβ,�̂0
(Ti |Zi )

+
K∑

k=0

∑
i∈Sk

log qZ (Zi ) −
K∑

k=1

nk log πk, (2.6)

where

hβ(Ti ,�i , Zi ) =
(

eβ ′ Zi∑
l∈S0

Yl(Ti ) eβ ′ Zl

)�i

,

which is obtained by an extension of the result of Johansen (1983) for the Cox model, and

πk ≡
∫
Z

Pk(Z;β)dQZ (Z) ≡
∫
Z

(∫
Ak

fβ,�̂0
(t |Z)ŜC(t) dt

)
dQ Z (Z), k = 1, . . . , K ,

which are the stratum-specific estimated probabilities of the failure time across all cases.
Maximizing l̂(β, QZ ) with respect to β without specifying QZ is not straightforward. We first profile

the likelihood function in (2.6) by fixing β and replacing Q Z with the empirical likelihood function (Vardi,
1982, 1985). To maximize l̂(β, Q Z ) over all distributions whose support contains the observed Z values,
we only need to consider the discrete conditional distribution of Z with jumps at each of the observed
points (Owen, 1990). Denote

pi = qZ (Zi ) = dQ Z (Zi ), i = 1, . . . , n.

For a fixed β, we have

l̂(β, {pi }) =
∑
i∈S0

log hβ(Ti ,�i , Zi ) +
K∑

k=1

∑
i∈Sk

log fβ,�̂0
(Ti |Zi )

+
∑
i∈V

log pi −
K∑

k=1

nk log

(∑
i∈V

Pk(Zi ;β)pi

)
. (2.7)

We use the Lagrange multiplier argument to search for { p̂i } that maximize (2.7) under the constraints
{pi � 0, for i ∈ V,

∑
i∈V pi = 1}. The Lagrange function can be written as

H(β, {pi }, ρ) =
∑
i∈S0

log hβ(Ti ,�i , Zi ) +
K∑

k=1

∑
i∈Sk

log fβ,�̂0
(Ti |Zi ) +

∑
i∈V

log pi

−
K∑

k=1

nk log

(∑
i∈V

Pk(Zi ;β)pi

)
+ ρ

(
1 −

∑
i∈V

pi

)
,
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where ρ denotes the Lagrange multipliers. It can be shown that the solutions to the score equation of H
with respect to {pi } have the form:

p̂i =
[

n0

(
1 +

K∑
k=1

nk

n0πk
Pk(Zi ;β)

)]−1

, i = 1, . . . , n.

By plugging p̂i back into l̂(β, {pi }) in (2.7), we have the resulting profile likelihood function

l̂(β, π) =
∑
i∈S0

log hβ(Ti ,�i , Zi ) +
K∑

k=1

∑
i∈Sk

log fβ,�̂0
(Ti |Zi )

−
∑
i∈V

log

(
n0

(
1 +

K∑
k=1

nk

n0πk
Pk(Zi ;β)

))
−

K∑
k=1

nk log πk, (2.8)

where π ′ = (π1, . . . , πK ). The proposed estimated maximum semiparametric empirical likelihood estima-
tor (EMSELE) is the β that maximizes (2.8). Define ξ ′ = (β ′, π ′), and denote the EMSELE for ξ to be ξ̂

and the EMSELE for parameter β to be β̂P , the corresponding portion of ξ̂ . A Newton–Raphson algorithm
can be used to obtain ξ̂ .

2.3 Asymptotic properties of EMSELE

To present the large-sample result, we introduce the following notations:

S(d)
0 (β, t) =

∑
l∈S0

Yl(t)Z⊗d eβ ′ Zl , s(d)
0 (β, t) = E(S(d)

0 (β, t)), d = 0, 1, 2,

v0(β, t) = s(2)
0 (β, t)

s(0)
0 (β, t)

−
(

s(1)
0 (β, t)

s(0)
0 (β, t)

)⊗2

and A0(β) =
∫ τ

0
v0(β, t)s(0)

0 (β, t)λ0(t) dt.

Here, for a vector a, a⊗0 = 1, a⊗1 = a, a⊗2 = aa′. We indicate the true values of a parameter by superscript
“0”. Let Ek denote expectation conditional on T̃ ∈ Ak , so that, for any function γ (T, Z),

Ek(γ (T, Z)) = 1

π0
k

∫
Z

∫
Ak

γ (t, Z) fβ0,�0
(t |Z) dt dQZ (Z). (2.9)

Under some general regularity conditions (see Appendix of supplementary material available at Biostatis-
tics online) and assuming that n0/n → ρ0 > 0 and nk/n → ρk � 0 for k = 1, . . . , K , the following theorem
establishes the asymptotic properties of the EMSELE ξ̂ as well as a consistent estimator for the asymptotic
variance matrix.

THEOREM 2.1 Under general regularity conditions, ξ̂ converges in probability to ξ 0, while
√

n(ξ̂ − ξ 0)

has an asymptotic normal distribution with mean zero and with a variance matrix in the form �(ξ 0) =
J−1(ξ 0)(�1(ξ

0) + �2(ξ
0) + �3(ξ

0))J−1(ξ 0), where J (ξ) is the limiting Hessian matrix of the profile
likelihood l̂(ξ), and

�1(ξ) =
(

ρ0 A0(β) 0
0 0

)
, �2(ξ) =

⎛
⎜⎝

K∑
k=1

ρk Vark (e(β)) 0

0 0

⎞
⎟⎠ , �3(ξ) =

K∑
k=0

ρk Vark(g(ξ)),
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where e(β) = ∇β fβ,�̂0
(T |Z)/ fβ,�̂0

(T |Z), and

g(ξ) =
(

−
∑K

l=1((ρl/ρ0)/πl)∇β Pl(Z;β)

1 +∑K
l=1((ρl/ρ0)/πl)Pl(Z;β)

,
((ρ1/ρ0)/π

2
1 )P1(Z;β)

1 +∑K
l=1((ρl/ρ0)/πl)Pl(Z;β)

− ρ1

π1
, . . . ,

((ρK /ρ0)/π
2
K )PK (Z;β)

1 +∑K
l=1((ρl/ρ0)/πl)Pl(Z;β)

− ρK

πK

)′
.

A consistent estimator for the asymptotic covariance matrix �(ξ 0) is Ĵ−1(ξ̂ )(�̂1(ξ̂ ) + �̂2(ξ̂ ) +
�̂3(ξ̂ )) Ĵ−1(ξ̂ ), where Ĵ , �̂1, �̂2, and �̂3 are obtained by replacing the large-sample quantities in J , �1,
�2, and �3 with their corresponding small-sample quantities.

The proof for Theorem 2.1 is given in Appendix (see supplementary material available at Biostatistics
online).

3. SIMULATION STUDIES

We conducted simulation studies to assess the finite sample properties of our proposed method. We con-
sider the following Cox’s proportional hazards model:

λ(t |X, Z) = λ0(t) eβ1 X+β2 Z . (3.1)

We took the marginal distribution of failure-time T̃ to be exponential with failure rate λ0(t) eβ1 X+β2 Z . The
baseline hazard function λ0(t) was set to be 1. The covariate X was generated from a standard normal
distribution and Z was generated from a Bernoulli distribution with P(Z = 1) = 0.5. We set β1 = log(2)

and β2 = −0.5. The censoring time C was generated from a uniform distribution [0, c] with c chosen to
depend on the desired percentage of censoring. We considered censoring rates of approximately 60% and
90% with the corresponding c values 1.35 and 0.22.

For our ODS design, we first generated the SRS sample of n0. We then partitioned all the cases into
three strata, separated by quantiles q1 and q2 of failure times in the cases. We sampled the supplemental
sample of n1 and n3 subjects from the low stratum and the high stratum, respectively. In addition to various
configurations for the parameter values, we also chose two pairs of the cutpoints (0.30 and 0.70 quantiles,
and 0.15 and 0.85 quantiles, respectively), to investigate the impact of different cutpoints for our ODS
design for creating the supplemental samples.

Under each configuration, we compared the proposed estimator, β̂P , with three competing estimators:
the maximum likelihood estimator based on a SRS of the same size as the ODS sample (β̂R); the weighted
estimator under generalized case-cohort design developed by Kang and Cai (2009) (β̂G); the estimator
under the case-cohort design developed by Prentice (1986) (β̂C ). For calculating β̂G , we first selected a
subcohort of n0 by simple random sampling. We then selected a SRS of cases of nc in the remaining cases,
which we set to be the same size as the supplemental samples in ODS design, i.e. nc = n1 + n3. We used
the weighed estimating equation provided in Kang and Cai (2009) with the time-invariant weight function
to obtain β̂G . For calculating β̂C , we randomly sampled a subcohort of n0 and took all the remaining cases.
In order to obtain an approximate sample size with the ODS samples, we adjusted the size of the full cohort
according to different subcohort sizes and different censoring rates. For example, we set the full cohort
size to be 1300 when the subcohort size n0 was 800 and the censoring rate was 60%, and the mean of
sample sizes for case-cohort design under 2000 simulations was 1000.2.
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Table 1. Results are based on the model λ(t |X, Z) = eβ1 X+β2 Z , where X ∼ N (0, 1) and Z ∼ B(0.5)

β1 = log(2) β2 = −0.5

(n0, n1, n3) Cutpoints ρ Mean SD SE CP Mean SD SE CP

(900, 50, 50) (0.30, 0.70) 0.60 β̂R 0.696 0.054 0.054 0.952 −0.500 0.101 0.102 0.949
β̂G 0.694 0.090 0.104 0.981 −0.497 0.161 0.195 0.982
β̂C 0.696 0.057 0.051 0.920 −0.498 0.103 0.095 0.932
β̂P 0.695 0.053 0.053 0.946 −0.503 0.101 0.100 0.944

0.90 β̂R 0.694 0.105 0.103 0.948 −0.501 0.213 0.208 0.947
β̂G 0.698 0.101 0.099 0.932 −0.508 0.201 0.198 0.950
β̂C 0.698 0.089 0.075 0.904 −0.503 0.171 0.150 0.914
β̂P 0.693 0.085 0.087 0.953 −0.498 0.162 0.169 0.957

(0.15, 0.85) 0.60 β̂R 0.696 0.055 0.055 0.956 −0.502 0.103 0.102 0.943
β̂G 0.695 0.091 0.104 0.976 −0.503 0.160 0.195 0.976
β̂C 0.695 0.057 0.051 0.919 −0.493 0.102 0.095 0.935
β̂P 0.696 0.052 0.053 0.949 −0.495 0.101 0.100 0.943

0.90 β̂R 0.695 0.104 0.104 0.954 −0.507 0.213 0.208 0.942
β̂G 0.696 0.105 0.099 0.932 −0.504 0.199 0.198 0.950
β̂C 0.697 0.084 0.075 0.922 −0.501 0.167 0.150 0.928
β̂P 0.692 0.081 0.086 0.961 −0.516 0.162 0.168 0.954

(800, 100, 100) (0.30, 0.70) 0.60 β̂R 0.696 0.055 0.054 0.950 −0.503 0.102 0.102 0.954
β̂G 0.699 0.069 0.074 0.967 −0.500 0.131 0.138 0.965
β̂C 0.695 0.060 0.048 0.876 −0.503 0.111 0.089 0.883
β̂P 0.696 0.052 0.053 0.950 −0.500 0.103 0.102 0.943

0.90 β̂R 0.693 0.103 0.103 0.949 −0.507 0.207 0.208 0.953
β̂G 0.695 0.082 0.070 0.904 −0.500 0.156 0.141 0.918
β̂C 0.696 0.084 0.062 0.860 −0.509 0.147 0.123 0.901
β̂P 0.694 0.075 0.085 0.974 −0.504 0.138 0.164 0.982

(0.15, 0.85) 0.60 β̂R 0.694 0.055 0.054 0.940 −0.502 0.104 0.102 0.948
β̂G 0.696 0.068 0.074 0.968 −0.504 0.126 0.138 0.969
β̂C 0.695 0.060 0.048 0.894 −0.500 0.112 0.089 0.881
β̂P 0.695 0.050 0.052 0.956 −0.502 0.100 0.100 0.955

0.90 β̂R 0.697 0.103 0.103 0.948 −0.509 0.214 0.208 0.946
β̂G 0.696 0.082 0.071 0.908 −0.509 0.165 0.141 0.902
β̂C 0.698 0.082 0.062 0.865 −0.504 0.155 0.123 0.884
β̂P 0.690 0.073 0.084 0.975 −0.503 0.146 0.164 0.965

The cutpoints for the ODS design were 0.30 and 0.70 sample quantiles and 0.15 and 0.85 sample quantiles, respectively;
β̂R denotes the estimator from a simple random sample of the same size as the ODS sample; β̂G denotes the generalized case-
cohort estimator developed by Kang and Cai (2009); β̂C denotes the case-cohort estimator developed by Prentice (1986), and
the average sample size is 1000 by adjusting the full cohort sample size to different censoring rate ρ; β̂P denotes the proposed
EMSELE estimator. Simulation results are based on 2000 simulations with the total ODS sample size n = 1000.

The estimated means (Means), standard deviations (SDs), mean of the variance estimates (SEs), and
95% nominal confidence intervals coverages (CPs) for each estimator were obtained from 2000 indepen-
dently generated data sets. The results are summarized in Table 1. Under all of the cases considered here,
the four estimators for β1 and β2 are all unbiased. Our proposed variance estimator provides a good esti-
mation for the sample standard errors and the confidence intervals attain coverage close to the nominal
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Table 2. Results are based on the model λ(t |X, Z) = eβ1 X+β2 Z , where X ∼ N (0, 1) and Z ∼ B(0.5)

β1 = log(2) β2 = −0.5

(n0, n1, n3) ρ Mean SD SE CP Mean SD SE CP

Ci ∼ U [0, c]

(900, 50, 50) 0.60 β̂P 0.695 0.053 0.053 0.946 −0.503 0.101 0.100 0.944
(900, 20, 80) β̂P 0.695 0.053 0.053 0.947 −0.505 0.105 0.101 0.939
(900, 80, 20) β̂P 0.695 0.054 0.053 0.946 −0.496 0.101 0.100 0.947
(800, 100, 100) β̂P 0.696 0.052 0.053 0.950 −0.500 0.103 0.102 0.943
(800, 50, 150) β̂P 0.694 0.053 0.053 0.951 −0.506 0.104 0.103 0.948
(800, 150, 50) β̂P 0.694 0.054 0.054 0.953 −0.499 0.099 0.102 0.952

Censoring Scenario I: Ci ∼ U [0, c1]I (Zi = 0) + U [0, c2]I (Zi = 1)

(900, 50, 50) 0.60 β̂P 0.696 0.053 0.053 0.953 −0.472 0.106 0.097 0.921
0.90 β̂P 0.687 0.081 0.368 0.971 0.056 0.203 2.213 0.345

Censoring Scenario II: Ci ∼ E(1/c1)I (Zi = 0) + E(1/c2|Xi |)I (Zi = 1)

(900, 50, 50) 0.60 β̂P 0.679 0.050 0.049 0.931 −0.524 0.103 0.106 0.949
0.90 β̂P 0.715 0.079 0.078 0.941 −0.803 0.181 0.184 0.649

The cutpoints for the ODS design were 0.30 and 0.70 sample quantiles. Censoring Scenario I: Ci was generated from
the distribution U [0, c1]I (Zi = 0) + U [0, c2]I (Zi = 1); Censoring Scenario II: Ci was generated from the distribution
E(1/c1)I (Zi = 0) + E(1/c2|Xi |)I (Zi = 1). The results are based on 1000 replicates for each setting. Simulation results
are based on the total ODS sample size n = 1000.

95% level. We note that the estimation of the sample SDs become less stable at the very high censoring rate
(e.g. 90%), which indicates a higher sample size may be needed. Further, the efficiency gains are higher
when the cutpoint is further out ((0.15, 0.85) vs. (0.30, 0.70)). We also note that the proposed estimator
β̂P is the most efficient among all the estimators compared under all the different censoring rates. β̂C is
more efficient than β̂R when the censoring rate is 90%. β̂G is more efficient than β̂R when the censoring
rate is 90%. β̂G and β̂C are comparable under censoring rate of 90%. The fact that β̂P is more efficient than
β̂C and β̂G indicates that our ODS design for the survival analysis can be a more efficient alternative to
the case-cohort design and the generalized case-cohort design. Further, comparing the results in Table 1,
we note that, for a given total ODS sample size (n = 1000), the efficiency improves as we allocate more
individuals in the supplemental samples (e.g. n0 = 800, n1 = n3 = 100 vs. n0 = 900, n1 = n3 = 50).

Table 2 provides additional simulation results on the sensitivity analysis and the unbalanced pattern of
ODS supplemental samples allocations. We investigated the performance of the proposed estimator under
unbalanced values of n1 and n3 by choosing (n0, n1, n3) = (900, 20, 80), (900, 80, 20), (800, 50, 150), and
(800, 150, 50), respectively. The results reported in Table 2 indicate that, overall, the observed properties
of β̂P under Table 1 is consistent for the balanced and unbalanced values of n1 and n3.

The second component in Table 2 was conducted to evaluate the performance of β̂P when the censoring
time depends on the covariates. We considered the following two scenarios: Scenario I: Ci was generated
from the distribution U [0, c1]I (Zi = 0) + U [0, c2]I (Zi = 1), and (c1, c2) was chosen to be (1, 1.8) and
(0.1, 0.4); Scenario II: Ci was generated from the distribution E(1/c1)I (Zi = 0) + E(1/c2|Xi |)I (Zi = 1),
and (c1, c2) was chosen to be (1, 1) and (0.15, 0.1). The results in Table 2 indicate that the dependence of
censoring time on the covariates will lead to biased estimates of β1 and β2. This suggests there is a need
to check for censoring dependence on covariates before using the estimator in real analysis.
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4. ANALYSIS OF THE MOBA STUDY DATA

The MoBa study is an ongoing pregnancy cohort study conducted by the Norwegian Institute of Pub-
lic Health. Pregnant women in Norway were enrolled from 1999 to 2008 and completed questionnaires
regarding demographic and lifestyle factors, and medical and reproductive history. Women were asked if
their pregnancy was planned and reported TTP. Subfecundity was defined as having a TTP > 12 months.
Our data set was based on women enrolled from 2003 to 2004 who delivered a live born child. Five hun-
dred and fifty subjects were randomly sampled from the cohort who reported a TTP with 11 subjects
excluded. Four hundred subjects were supplementally sampled from women whose TTP was > 12 months
(Whitworth and others, 2012). In this data set, there was no censoring. Hence, there is no need to check
the independence of censoring on covariates here.

Among these 939 eligible women, blood samples were collected around gestational week 17. Concen-
trations of PFOS and PFOA were measured from the maternal blood samples by high performance liquid

Table 3. Demographics and characteristics of the MoBa study

All individuals TTP � 12 months TTP >12 months

PFOS, mean ± SD 14.05 ± 6.22 13.70 ± 5.38 14.46 ± 7.07
PFOA, mean ± SD 2.45 ± 1.17 2.34 ± 1.09 2.58 ± 1.24
BMI, mean ± SD 24.88 ± 4.83 24.39 ± 4.27 25.47 ± 5.36
FatherAge mean ± SD 33.65 ± 5.25 32.90 ± 5.03 34.55 ± 5.37
Alb, mean ± SD 3.90 ± 0.22 3.90 ± 0.22 3.90 ± 0.21
Oilyfish, mean ± SD 11.66 ± 13.86 12.50 ± 14.39 10.64 ± 13.14
Leanfish, mean ± SD 24.49 ± 15.68 24.86 ± 15.79 24.05 ± 15.56

MotherAge (%)
<25 17.36 (163/939) 13.95 (71/509) 21.40 (92/430)
25–29 41.21 (387/939) 41.45 (211/509) 40.93 (176/430)
30–34 31.63 (297/939) 34.18 (174/509) 28.60 (123/430)
�35 9.80 (92/939) 10.41 (53/509) 9.07 (39/430)

MotherEdu (%)
<High school 8.86 (83/937) 6.69 (34/508) 11.42 (49/429)
High school and other 31.70 (297/937) 30.51 (155/508) 33.10 (142/429)
Some college 41.73 (391/937) 43.90 (223/508) 39.16 (168/429)
>College 17.72 (166/937) 18.90 (96/508) 16.32 (70/429)

FatherEdu (%)
<High school 12.29 (112/911) 10.44 (52/498) 14.53 (60/413)
High school and other 44.13 (402/911) 44.18 (220/498) 44.07 (182/413)
Some college 26.89 (245/911) 27.71 (138/498) 25.91 (107/413)
>College 16.68 (152/911) 17.67 (88/498) 15.50 (64/413)

Smoke3 (%)
None 69.86 (656/939) 73.48 (374/509) 65.58 (282/430)
Sometimes 10.12 (95/939) 9.63 (49/509) 10.70 (46/430)
Daily 20.02 (188/939) 16.90 (86/509) 23.72 (102/430)

Smoke17 (%)
None 76.25 (716/939) 79.57 (405/509) 72.33 (311/430)
Stopped 15.76 (148/939) 14.73 (75/509) 16.98 (73/430)
Sometimes 1.28 (12/939) 1.38 (7/509) 1.16 (5/430)
Daily 6.71 (63/939) 4.32 (22/509) 9.53 (41/430)

Continued
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Table 3. Continued

MotherDrink (%)
>1 per week 7.22 (67/928) 7.17 (36/502) 7.28 (31/426)
1 per week 15.41 (143/928) 18.73 (94/502) 11.50 (49/426)
1–3 per month 32.87 (305/928) 34.86 (175/502) 30.52 (130/426)
<1 per month or never 44.50 (413/928) 39.24 (197/502) 50.70 (216/426)

SexFreq (%)
<1 per week 18.45 (171/927) 17.33 (87/502) 19.76 (84/425)
1–2 per week 37.97 (352/927) 33.67 (169/502) 43.06 (183/425)
>2 per week 43.58 (404/927) 49.00 (246/502) 37.18 (158/425)

Endo (%)
Yes 3.09 (29/939) 0.59 (3/509) 6.05 (26/430)
No 96.91 (910/939) 99.41 (506/509) 93.95 (404/430)

Ovary (%)
Yes 2.66 (25/939) 2.36 (12/509) 3.02 (13/430)
No 97.34 (914/939) 97.64 (497/509) 96.98 (417/430)

Std (%)
Yes 12.57 (118/939) 12.38 (63/509) 12.79 (55/430)
No 87.43 (821/939) 87.62 (446/509) 87.21 (375/430)

Diabete (%)
Yes 1.60 (15/939) 0.39 (2/509) 3.02 (13/430)
No 98.40 (924/939) 99.61 (507/509) 96.98 (417/430)

YearDraw (%)
2003 49.52 (465/939) 50.10 (255/509) 48.84 (210/430)
2004 50.48 (474/939) 49.90 (254/509) 51.16 (220/430)

chromatography/tandem mass spectrometry based on 150 μl of plasma. In the analysis, we included the
following variables as potential confounders: pre-pregnancy body mass index (BMI), maternal plasma
albumin concentration (Alb), maternal consumption of lean fish and oily fish (Leanfish, Oilyfish), mater-
nal age (MotherAge), paternal age (FatherAge), maternal education (MotherEdu), paternal education
(FatherEdu), maternal smoking (Smoke3 for smoking 3 months before pregnancy, Smoke17 for smoking
at gestational week 17), maternal self-reported alcohol intake 3 months before pregnancy (MotherDrink),
frequency of sexual intercourse 1 month before pregnancy (SexFreq), maternal diseases (endometriosis
(Endo), ovary/fallopian tube infection (Ovary), sexually transmitted disease (Std), diabetes), and calendar
year of blood draw (Yeardraw). Table 3 provides the demographic characteristics for all 939 women.
Odds ratio approach. We first implemented a standard epidemiologic approach by dichotomizing the sub-
fecundity measurement as binary response, i.e. 0 for TTP � 12 months and 1 for TTP > 12 months, and
used logistic regression to model the association between PFOA and subfecundity odds ratio adjusted for
the confounders listed above. The result for this approach is summarized in the first column in Table 4.
Due to missing values for covariates, the final sample size for the analysis included 910 women, 491 with
TTP � 12 months, and 419 with TTP > 12 months. We note that the odds of subfecundity increases by
e0.2303 = 1.26 times when PFOA level increases one unit. The second and third columns of Table 4 show
results for the cutpoints 3 and 24 months. Comparing across the columns, we note that different choices
of the cutpoints result in different inferences. The odds ratios for TTP > 3, TTP > 12, and TTP > 24
are e0.2646 = 1.30, e0.2303 = 1.26, and e0.114 = 1.12, respectively. Further, the effect of PFOA becomes not
significant when the cutpoint changes from 12 to 24 months (p = 0.1527).
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Table 4. Logistic regression analyses for covariate effects on subfecundity in the MoBa study with
different cutpoints

TTP > 12 TTP > 3 TTP > 24
(n = 910) (n = 910) (n = 910)

Est. SE p-value Est. SE p-value Est. SE p-value

Intercept −7.2631 1.0236 <0.0001∗ −5.1018 1.0265 <0.0001∗ −9.0628 1.2646 <0.0001∗
PFOA 0.2303 0.0652 0.0004∗ 0.2646 0.0694 0.0001∗ 0.1114 0.0779 0.1527
BMI 0.0563 0.0153 0.0002∗ 0.0418 0.0158 0.0081∗ 0.0402 0.0182 0.0271∗
MotherAge 0.7001 0.1078 <0.0001∗ 0.5182 0.1068 <0.0001∗ 0.9220 0.1404 <0.0001∗
MotherEdu −0.1428 0.0853 0.0939 −0.2258 0.0864 0.0090∗ −0.3258 0.1124 0.0037∗
FatherAge 0.1293 0.0183 <0.0001∗ 0.1123 0.0188 <0.0001∗ 0.1421 0.0209 <0.0001∗
SexFreq −0.3372 0.0983 0.0006∗ −0.3080 0.0996 0.0020∗ −0.1915 0.1274 0.1328
Endo 2.4183 0.6341 0.0001∗ 2.8997 1.0290 0.0048∗ 2.2673 0.4307 <0.0001∗
∗Parameter estimate is significant at 5% level.
Subfecundity = I (TTP > given month).

Table 5. Cox regression analyses for covariate effects on TTP in the MoBa study

ODS design Naive design SRS design
(n0 = 520, n3 = 390) (nv = n0 + n3 = 910) (n0 = 520)

Est. SE p-value Est. SE p-value Est. SE p-value

PFOA −0.0567 0.0253 0.0251∗ −0.0479 0.0331 0.1473 −0.0633 0.0419 0.1304
BMI −0.0148 0.0056 0.0090∗ −0.0222 0.0063 0.0004∗ −0.0110 0.0091 0.2282
MotherAge −0.2155 0.0342 <0.0001∗ −0.4066 0.0467 <0.0001∗ −0.1662 0.0674 0.0137∗
MotherEdu 0.0968 0.0333 0.0037∗ 0.1179 0.0396 0.0029∗ 0.0730 0.0523 0.1630
FatherAge −0.0470 0.0059 <0.0001∗ −0.0801 0.0087 <0.0001∗ −0.0415 0.0117 0.0004∗
SexFreq 0.1089 0.0396 0.0060∗ 0.1133 0.0488 0.0203∗ 0.0968 0.0649 0.1359
Endo −1.2153 0.2906 <0.0001∗ −0.7830 0.1879 <0.0001∗ −0.8424 0.5027 0.0938

∗Parameter estimate is significant at 5% level.

Proposed ODS design and analysis. Using the 539 women sampled randomly as the SRS portion and 400
women sampled additionally from those with TTP > 12 months as a supplemental sample, we implemented
our EMSELE method adjusted for all potential confounders. Due to missing values of covariates, the
sample sizes of SRS and supplemental samples for the final fitted model were 520 and 390, respectively.
The result of the final fitted model is listed in the first column in Table 5.

We note that the estimate for PFOA is negative suggesting that PFOA level increases the risk of subfe-
cundity (i.e. TTP > 12). Women with a higher PFOA level tend to have a longer TTP, and per unit increment
in PFOA, the risk of subfecundity increases with hazard ratio e0.0567 = 1.06. Unsurprisingly, older mothers
and fathers are more likely to have a longer TTP. Women who had endometriosis before pregnancy have
a higher risk, hazard ratio e1.2153 = 3.37. One advantage of our proposed method is that, given covariates,
we can predict the risk probability of TTP > T0 for any TTP time T0. In contrast, only one risk probability
(i.e. only for TTP > 12) in the logistic method.

The analysis results using only the SRS portion of the ODS sample and treating the ODS sample as a
SRS (Naive) are given in columns 3 and 2 of Table 5, respectively. Among the three estimation methods
compared, the estimators are consistent and our proposed method is the most efficient one. However, the
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significant impact of PFOA level shows in neither Naive Design nor SRS Design. The proposed estimator
is unbiased and more efficient.

Following another standard epidemiologic approach, we used the discrete-time analog of the Cox model
to estimate the fecundability odds ratio (FOR). The analyses were adjusted by the same confounders used
in Tables 4 and 5. The resulted FOR is 0.83 with SE = 0.04, 95% CI = (0.75, 0.91) and p = 0.0001. Note
the FOR reflects the fecundability odds ratio for 1 month, which is different from the hazard ratio from
the Cox model.

In summary, the proposed method provides an efficient and consistent estimate, utilizes fully the avail-
able survival data and takes advantage of the nature of the ODS design. It does not have the inconsistent
issue of the existing odds ratio approach used by epidemiologists.

5. DISCUSSION

In this paper, motivated by the need to assess the relationship between the PFASs on women’s subfecund-
ability on our study of the MoBa study, we designed a general ODS sampling scheme for survival studies
with a failure-time outcome. To reap in the benefit of such a survival ODS design, we developed a new
inferential method and provide an EMSELE for the parameters of primary interest. Our proposed ODS
method is an improvement over the current odds ratio approach used in epidemiology as well as improve-
ment over the case-cohort and the generalized case-cohort designs. Because we allow the sample selection
of cases to depend on the timing of disease endpoints, i.e. by oversampling subjects from the most infor-
mative regions, the proposed ODS design for survival data can enhance study efficiency and reduce study
cost.

Simulation studies suggest that the small-sample performance of the proposed method approximates
the asymptotic properties well. Our proposed estimator is the most efficient one among the four competing
estimators: the maximum likelihood estimator based on the Cox’s likelihood from a sample random sample
of same size as the ODS sample, the estimator under case-cohort design developed by Prentice (1986), and
the weighted estimator under generalized case-cohort design developed by Kang and Cai (2009). The effi-
ciency gain shows that our proposed method is a cost-efficient alternative to case-cohort and generalized
case-cohort designs.

A few comments on the behavior of the proposed design/estimator and some cautionary points on
practical applications of the proposed method are presented. First, we note that the proposed ODS design
and our estimator is more efficient than the SRS design when censoring rate is high. This is due to the fact
that at high censoring cases, the SRS design will have substantial fewer failures than the ODS design. This
suggests that ODS design is particularly useful when censoring is high. Secondly, we caution users that
when censoring is extremely high (e.g. at 90% and 95%), our variance estimator based on the asymptotic
properties could overestimate the true variance. One would need to either increase the sample size or
employ some alternative variance estimator, such as the bootstrap estimator, in the small-sample situations.
Thirdly, our estimator from (2.6) is based on assuming censoring is independent of covariates. Biases in
effect estimation could result if this is violated (Table 2). A good practice is to check this assumption in
real data analysis using the SRS sample. Finally, we estimated �0(t) with a simple consistent estimator
from the SRS sample. Alternative estimators that use more available data could be used.

Application of the proposed ODS method to analyze the MoBa data suggested that women with higher
PFOA levels tend to have a longer TTP. On the other hand, the default epidemiologic approach for the
odds ratio under different TTP cutpoints yields inconsistent results. Comparing with competing designs,
our proposed ODS method provides a feasible design and efficient estimates. Future study includes devel-
oping models and estimation procedures appropriate for studies with multiple disease outcomes. In some
studies, researchers may need to consider several diseases or several subtypes of disease (Lu and Shih,
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2006; Kang and Cai, 2009). For example, in the Busselton Health Study (Cullen, 1972), it was of interest
to study the relationship between serum ferritin and coronary heart disease and stroke events.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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