-

View metadata, citation and similar papers at core.ac.uk brought to you by ;i CORE

provided by Carolina Digital Repository

Biostatistic5(2011),12, 3, pp.506-520
doi:10.1093/biostatistics/kxq070
Advance Access publication on December 14, 2010

Partial linear inference for a 2-stage outcome-dependent
sampling design with a continuous outcome

GUOYOU QIN

Department of Biostatistics, School of Public Health and Key Laboratory of Public Health Safety,
Ministry of Education of China, Fudan University, Shanghai 200032,
People’s Republic of China
Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, USA

HAIBO ZHOU*

Department of Biostatistics, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599, USA
zhou@bios.unc.edu

SUMMARY
The outcome-dependent sampling (ODS) design, which allows observation of exposure variable to depend
on the outcome, has been shown to be cost efficient. In this article, we propose a new statistical inference
method, an estimated penalized likelihood method, for a partial linear model in the setting of a 2-stage
ODS with a continuous outcome. We develop the asymptotic properties and conduct simulation studies
to demonstrate the performance of the proposed estimator. A real environmental study data set is used to
illustrate the proposed method.
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1. INTRODUCTION

Two-stage design has been widely recognized as an efficient study design for epidemiological studies.
For the discrete outcomé&yhite (1982 proposed a 2-stage case—control design for a rare disease and
exposure scenario, where a large simple random sample (SRS) sample is drawn in the first stage, and
further subsamples with additional potential confounding variables are drawn in the second stage from
the strata identified based on the disease status and the exposure from the first-stage sample. Greater
efficiency can be obtained through the 2-stage sampling designBeeglow and Cain1988 Zhao and

Lipsitz, 1992 Langholz and Borgari995 Breslowand others2003.

For the continuous cas®/eaver and Zho(2005 considered a 2-stage outcome-dependent sampling
(ODS) design, where in the second stage, in addition to an SRS sample, some supplemental samples
were collected in the second stage via an ODS way, that is, the subsamples were drawn from the strata
identified by the outcome from the first stage. The ODS design has attracted much attention in the last
several decades since it is a cost-effective way to improve study efficiency. For example, the case—control
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study is a well-known ODS design with a binary outcome variable. One can ignore the sampling scheme
when the underlying model is logistic. However, this is not true for other link function or the nonbinary
outcomes. For inference of the data from ODS design with a continuous response, the usual methods
will be not appropriate since the ODS is a biased sampling scheme. There are several methods that are
developed to inference the data from ODS design, for example, the weighted estimating equation methods
by Horvitz and Thompso(il952), the semiparametric empirical likelihood method proposediyuand

others (2002, the pseudoscore estimation methods(hatterjeeand others(2003, and the estimated
likelihood method proposed Bifeaver and Zho(2005.

A recent epidemiological studysfayand others2005 employed the 2-stage ODS design of Weaver
and Zhou. In this study, the investigators were interested in how the children’s intelligence quotient (1Q)
at 7 years of age is related to an environmental pollutant, polychlorinated biphenyls (PCBs). The study
subjects are children who were born into the Collaborative Perinatal Project (CPP) which is a prospective
cohort designed to provide precise data for studies of a wide variety of neuropsychological outcomes and
birth defects (Niswander and Gordon, 1972). Since it is expensive to obtain the PCB measurement for
all the first-stage sample, the investigators decided to obtain the PCB measurement for a sample that was
sampled in an ODS way from the first-stage sample based on the observed 1Q &rasesn@ others
2005. Then the ODS sample with measured PCBs consists of the second-stage sample. The literature
on the ODS Zhou and others 2002 Weaver and Zhow2005 generally assumes that the effect on the
outcome of the exposure is linear, which is chosen mainly for its mathematically convenience. However,
in practice, the true relation between them is usually unknown. For this CPP data, significant relation
between the children’s 1Q and PCB was not found in the framework of linear model although the efficient
ODS design was adopted (e.ghouand others2002 Weaver 2001).

The partial linear model (PLM) for continuous outcom&gder and Diggle1994 He and others
2002, where the outcome is assumed to depend on some coVfiatsnparametrically and some other
covariatesZ parametrically, is an important inference tool and has been widely applied in many fields. It
would be a particular advantage in the studyGrfly and others(2005 to have a more flexible PLM
approach to investigate the relation of low-level PCB exposure and childrens cognitive development.
Motivated by the CPP study, in this article, we studied the inference of a PLM in a 2-stage ODS de-
sign with a continuous outcome, where the first-stage data are an SRS, but the second-stage data are
collected via an ODS design. The softwares to fit the generalized additive model (GAMpértand
others 2003 were generally developed based on methods that assume SRS design, and consequently the
likelihood composition would not handle the complex data structures of ODS design. Hence, they cannot
be directly applied to the proposed 2-stage ODS design nor a minor modification to softwares for GAM
can accomplished the task.

In our simulation study, we compared the proposed estimator, denoted by the P estimator, with 3
competing methods: the semiparametric empirical likelihood estimator incorporating the P-spline method
based on the second-stage sample denoted by the SEPLE-ODS estimator, which is an ext@hsion of
and others(2002), the penalized inverse-probability weighted estimator denoted by the IPW estimator,
which is the extension dflorvitz and Thompsoi(1952 and defined as the maximizer of the following
penalized weighted likelihood function:

K

1
2P D FYilXi0) = SNAOT O, (1.1)
k=1 i eVk

wherepx = m and the penalized maximum likelihood method based on the SRS sample with
the sample size equar to the second-stage sample, denoted by the PMLE-SRS estimator. Compared with
the SEPLE-ODS method, the proposed method incorporates the outcome information of the first-stage
sample. Compared with the PMLE-SRS method, a more efficient ODS design, than the SRS design, is
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used to sample second-stage data. Further more outcome information of the first-stage sample are also
used for inference. The proposed method is preferred to the IPW method because we utilize the actual
observation of the outcome variable, while the IPW method only uses the strata proportion.

The rest of this article is organized as follows. In Secpwe describe the 2-stage ODS design and
the PLM. The penalized likelihood is proposed. The inference method and main asymptotic results of the
proposed estimator will be given in Secti8rin Sectiord, we present simulation studies to investigate the
performance of the proposed method. In Secliowe illustrate our proposed method with the analysis of
the CPP data set. We conclude with a brief discussion in Se@tion

2. DATA STRUCTURE, MODEL, AND THE PENALIZED LOG-LIKELIHOOD
2.1 Two-stage ODS design, data structure, and model

Let Y denote a continuous outcome variable. Assume that the domafiofa union of K mutually
exclusive intervals:Cx = (ck—1,¢k], k = 1,..., K, with cx being some known constants such that
—00=0Cy <C <C < --- < Ck = o00. Thus, the collection of intervalCx, k = 1, ..., K} partition the
study population intdK strata. We consider a 2-stage ODS design as follows. In the first stage, an SRS
sample is drawn from the underlying population of interests with sampleNsideis assumed that the
outcome variable for th&l individuals is observed. In the second stage, an ODS sample is drawn from
the N individuals, which consists of an overall SRS of siggand stratified random samples from these
K strata (Supplemental samples) with sigefor the supplemental sample from tkia stratum. Both the
outcome and the covariates will be observed for the individuals who are selected in the second stage, that
is, the ODS sample, whereas the covariates will not be observed for those not selected in the second stage.

To fix notations, lehy = lej:o nk be the total size of the second-stage sample for which we observe
both the outcome and covariates, andngt= N — ny be the number of individuals in the population
for whom only the outcome variable is observed but the covariates are not observed. We refer to the
ny complete observations as the second-stage sample ang theomplete observations as the incom-
plete first-stage sample. L®t denote the index set of all observations in the second-stage samplé and
denote the index set of all observations in the incomplete first-stage sample. FurthermoreVedride
Vk denote the index sets for the observations in the second-stage sample and incomplete first-stage sample
from thekth stratum.

We denoteX as the covariates, then the data structure can be summarized as

Stage 1{Y;},fori =1,..., N;

Stage 2: SRS sampIeY., X },fori =1,.

Supplemental samplgY;, X; |Yi € Ck, k=1,...,K},fori =ng+1,...,ny.
We assume that the conditional mean of the outcome is related to covatiata®™, Z")T as

E(YIW,Z)=g(W)+Z"y, (2.1)

where g(-) is an unknown nonparametric function of the exposure vari&Blend y is a vector of
p-dimensional regression coefficients. Our goal in this article is to infergagandy in model .1).

To further introduce additional notations: Iex denote the distribution function of, f (Y|X; ) and
fy (Y|6) denote the conditional and marginal density function¥ of

2.2 Penalized log-likelihood function

Several nonparametric smoothing methods can be adopted to estimate the nonparametrigfinction
incomplete list of publications includé&in and Carroll(2001), Yu and Rupper(2002, Huangand others
(2007, andZhu and otherq2008. As in Yu and Rupper{2002 who studied the estimation of partially
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linear single-index model, we adopt penalized splines (P-spline) to estimate the nonparametric function
g(-). P-spline is an extension of smoothing spline allowing more flexible choice of knots and penalty. The
penalty is used to achieve a smooth fit of the nonparametric function. Followirand Rupper{2002),
under the working assumption thg¢:) is arth degree spline function with fixed knotst, ..., tt , we
then haveg(w) = 7 T (w)a, wherer (w) = (L, w, w2, ..., 0", (W—1), ..., (w—1tr)})T is ar-degree
truncated power spline basis with kn({)tsiTzl, (w)!, = w"1,>0anda is ar + T + 1-dimensional vector.
Thus, we have

gW) + 2y =z (Wh)a + 2y = D, (22)

whereD; = (z T (W), Z7)T andd = (aT,y T)T.
For the second-stage sample, the likelihood is
L@, Fx) = [Miev f (Yi1Xi; D[ i ev dFx (XD TR 7k (@, Fx)~™], (2.3)

wherezk (0, Fx) = [ wk(x; 0)dFx (X), wk(x; 0) = [c, T (yIx; 0)dy.
The likelihood for the incomplete first-stage sample is

fy (Yj; 0)
K _ J
Hk:lnjevk 7r|<(0, FX) ' (24)

Finally, note that the stratum size for the incomplete first-stage sanr\}glez Nk — nox — Nk, k =
1, ..., K follows a multinomial law such that

(N —ng)!
ITE (N — nok)!
whereng k is a random variable representing the number of observation in the SRS that belongtto the
stratum.

As noted byWeaver and Zho(R005, by combining 2.3-2.5), the full information likelihood of both
the first- and the second-stage samples is shown proportional to

L@, Fx) = [H fm|xi;6)} {H fY(Y,-;e)} : (2.6)

ieV jev

Pr({ng ) = TR [k (0, Fx)]Ne—Mok, (2.5)

To achieve a smooth fit, we introduce a penalized term into the log-likelihood, and our penalized
log-likelihood is expressed as follows:

1
pl(@, Fx; 2) = .Zv: log[ f (Yi|Xi: 0)] + ZV log fy (Yj;0) — ENwTw, (2.7)
je

where¥ = diag{(O(T,+1)X1, A ngl)T}, 0T W¥6 is a common quadratic penalty function ahds the
smoothing parameter. Some discussion on the selection of knots and smoothing parameter are provided
in Section2 of the supplementary material availableBibstatisticsonline.

3. MAXIMUM ESTIMATED PENALIZED LIKELIHOOD ESTIMATION

The penalized log-likelihood2(7) involves an unspecified marginal distribution functionxpfFx (x).
Inference of will depend on how one handlds( (x). A commonly used idea is to replace thg(x) in
the likelihood with a consistent estimator and this will lead to an estimated likelihood. Such idea has been
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widely used in the statistical literature, for examghepe and Flemin@l991), Reilly and Pep&1995
1997, Lawlessand otherg1999, Zhou and Pep€l995; Zhou and Wan@2000, andWeaver and Zhou
(2009.

We adopt the following estimator, which is proposedggaver and Zho(2005 to specially accom-
modate the ODS sampling nature in the second stage, as our estimasoixof

K
~ Nk ~
Fx(0 = 3 ). (3.1)
k=1
where X < x)
Eoy=S A SA 3.2
K(X) ZV - (3.2)

is the empirical cumulative distribution function for the covariates based on all sampled observations from
thekth stratum. Note that th¥; is a vector representing the covariat®4, Z;}. The value ofl {X; < x}
in (3.2) is equal to 1 if each component Xf is less than or equal to the corresponding componert of
otherwisel {X; < x} =0

Using (3.1), we can obtain a consistent estimate of the marginal distributidhasf

B (Yi50) = / fy (Y} 1X; 0)dEx (X)

€ Ni
=D > f(YjIXi; 0), (3.3)

— N(nk + Nok) =y

assuming thaty +ngx > Oforallk =1, ..., K.
Substituting 8.3) into (2.7), we obtain the following estimated penalized log-likelihood function
for 9:

K
~ Nk
pl©; 2) =D logf (Yi|Xi; 0) + > |09‘§ —N(nk+n0k) E F(Yj1Xi;0)

ieV jev
1T
—5NaoTwo. (3.4)

We define the maximum estimated penalized likelihood estinfatoibe the maximizer for the estimated
penalized likelihood functions, and it can be obtained by invoking the Newton—Raphson procedure.

3.1 Asymptotic properties df

Under some regularity conditions, the asymptotic properj isfsummarized in the following theorem.

THEOREM 3.1 (i) If the smoothing parametédr = o(1), HAAconverges t@y with probability one. (ii)
If the smoothingA parameter = o(1/+/N), the maximizer is asymptotically distributed as a normal
distributionv/N(@ — 6g) — N(O, ¥), where

2

£0) = 1740 + Z pkpv-:-[ml “0)2k(0)1 71(0),
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with 7k = [ wi(x; 0)dFx (x) and i (x; 0) = [, f(yIx; O)dy,

2logf (YIX:0) ] < a2logf(Y|X: )
1(0) =— E|l —— — "> 7| — E | — "7
(@) = —popv |: 0007 k§=1 PKPV k|: 20007 ]

a2logfy(Y; 0)
00007

+[7k (1 = popv) — pkpv]Ex [

with Ex denote expectation conditional &he Cy, and

K
Zk(0) = var)yec, [Z[m (1= popv) — pkpv]Eviyec [Mx(Y; 9)]]
=1

with

f(Y|X;0)  ofy(Y;0)
fy(Y;0)  [fv(Y;0)]?
All the quantities involved are evaluated at the true parameter ¥glue

Mx(Y;0) = f(Y|X;6).

The regularity conditions and a brief proof for Theoré&n is provided in Sectiori of the supple-
mentary material available Biostatisticsonline. A consistent estimata of the covariance matrix is

& (N/N)?
S =170, IO 10; )+ > ———_172@; )Ek(@)72@; 1), 3.5
)1 ) Zi(nwmwm )2k(@) ) (35)
where ((0;7) = —1ZPCA [@g) = L0 gy — pi@; 1) + IN6TWO and £(0) =
_ K Nl LS of (Y IXi30)/00  (YjIXi:0)0 fy (Y}:0)/00
TRl { Zia Mo @)} with Mxi,|(9)=2,-e\7|[ T (] EL

REMARK 3.2 One can make inference on the nonparametric function and the regression coefficients using
Theorem3.1 In particular, one can construct joint confidence region and test hypotheses. For example, if
we want to test the null hypothesi$y: By — so = O whereBisad; x d(d =T +r + 1+ p) matrix

with full rank d; < d, then the test can be implemented by using the Wald test, with the test statistic
U = (B — )T (BEBT) (B — 5), that has an asymptotic chi-square distribution wittdegree of
freedom.

REMARK 3.3 Particular interest of the Wald test is that one can use it to test if the nonparametric function
describing the relation between an exposure varidbbnd a responsé is linear, that is, whether a linear
model is enough to model the relation betw&eandW. To do so, we repress tiie+r + 1-dimensional
vectora as(a{ , a]), wherea; = (a11, a12)" is a 2D vector and; is aT +r — 1-dimensional vector. We

are interested in testing the following null hypothesis:= ag = (0, ...,0)T. Under this null hypothesis,

we haveg(W) = a11+a12W, that is, the exposure variablg is related to responséin a linear fashion.

4. SMULATION STUDIES

In this section, we use simulated data to evaluate the performance of our proposed estimator. We compare
the proposed estimator, denoted by the P estimator, with 3 competing methods: the semiparametric em-
pirical likelihood estimator incorporating the P-spline method based on the second-stage sample denoted
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by the SEPLE-ODS estimator, the penalized inverse-probability weighted estimator denoted by the IPW
estimator,which is the extension of thervitz and Thompso(i1952 and defined as the maximizer of the
following penalized weighted likelihood function:

K

1
2P D F(YilXi;0) = SNOT YO,
k=1 ieVk

wherepy = no/Tlnk/Nk and the penalized maximum likelihood method based on the SRS sample with the
sample size equal to the second-stage sample, denoted by the PMLE-SRS estimator. For all simulations,
we generate 1000 simulated data sets. We consider 2 PLMs with different nonparametric functions. One
is a monotonic function, while the other is a unimode function in threshold regions. We adopt a 3-degree

truncated power spline basis and choose 10 fixed knots selected as the sample quantiles.

Study 1The data were generated according to the following partial linear mixed model,
Y=q(W)+2Zy +¢,

whereg; (W) = 3®(3.2W) is a standard normal distribution function, denotes a continuous exposure
variable of interest and ~ N(0, o2). We assumed that/ ~ N(0, 0.25) andZ ~ N(0, 0.3%). We fixed

y =1 andag = 0.4. In all the simulation presented here, we allowed be observed for the entire study
population but assumed that bath and Z were observed only for the second-stage sample. The size of
the first-stage sample was set tolde= 2000, and the second-stage sample fraction was ge®.20,

that is, the size of the second-stage sample is=4@D00x 0.20.

The second-stage sample consists of an SRS samp)lsypplemented with additional samples from
individuals withY values in the upper and lower tails of the marginal distribution (h¢.= nz and
ny = 0) with cut-pointsuy + asy, whereuy andoy represent the mean and standard deviatiovi ahd
a is taken to be 0.7 and 1.0, respectively. We considered 2 cases of the allocation of the sample sizes as
no = 300, N1 = n3 = 50, andng = 200, n; = n3 = 100.

We computed the averages of the mean square error (MSE), the absolute value of the bias and the
Monte Carlo variance of the estimated nonparametric fundigr) over 401 equal spaced grid points in
[—0.75 0.75] (the mean oK minus and plus 3 times the standard deviatioXpbver 1000 replications.

The relative efficiency (REF) of the P estimator of nonparametric function over the the other 2 estimators

is also calculated. The REF is defined by AM8k)/AMSE(§p) where M denote P, SEPLE-ODS,

IPW, and PMLE-SRS estimators. Moreover, we calculated mean, Monte Carlo standard error, estimated
standard error using large sample properties and coverage probability of 95% nominal confidence interval
for the estimator of regression coefficient

The results are summarized in TaldleFrom Tablel, we can find that the proposed estimator of
nonparametric function is most efficient with the smallest average mean square error (AMSE over 401
grid points) among all the estimators compared. For the estimation of the regression coeffidieat
proposed estimators are generally more efficient than the other 2 estimators with smaller variance. It
was also found that the nominal 95% confidence intervals based on the proposed standard errors for the
regression coefficient provide good coverage. The proposed estimator is more efficient than the SEPLE-
ODS estimator, which indicates that efficiency gain can be achieved by incorporating actual observation of
the outcome from the first stage. Moreover, the SEPLE-ODS estimator is more efficient than the PMLE-
SRS one, which means that the ODS design can achieve smaller standard errors of the interested estimates
using the same sample size as the SRS design. Therefore, the ODS design is a cost-effective way to
improve the study efficiency.

Figure 1 presents curves of the true function and the average P-spline estimaebyP, SEPLE-

ODS, IPW, and PMLE-SRS estimators over 1000 simulation and gives the confidence bands obtained by
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Table 1. Simulation results ovet00Oreplications in Studyl

a g1 14
Methods AMSE ABIAS AVAR EF MEAN SE SE Cl
ng=200n1=n3=100n, =0

0.7 P 0.015 0.033 0.013 1.000 0.994 0.095 0.099 0.969
ODS 0.019 0.032 0.017 1.267 0.998 0.098 0.101 0.965
IPW 0.021 0.033 0.020 1.400 1.005 0.109 0.111 0.964
SRS 0.022 0.032 0.020 1.467 1.007 0.107 0.105 0.957

1.0 P 0.016 0.033 0.014 1.000 0.994 0.096 0.099 0.960
ODS 0.019 0.032 0.017 1.188 0.993 0.099 0.100 0.952
IPW 0.022 0.034 0.020 1.375 1.000 0.111 0.116 0.959
SRS 0.022 0.032 0.020 1.375 1.009 0.108 0.105 0.947

np=300n; =n3=50,n, =0

0.7 P 0.017 0.033 0.014 1.000 0.996 0.099 0.099 0.956
ODS 0.021 0.032 0.019 1.235 1.003 0.104 0.102 0.951
IPW 0.021 0.033 0.019 1.235 1.006 0.106 0.104 0.948
SRS 0.021 0.032 0.019 1.235 1.003 0.106 0.105 0.958

1.0 P 0.015 0.033 0.013 1.000 0.998 0.099 0.098 0.950
ODS 0.020 0.031 0.018 1.333 1.000 0.104 0.100 0.937
IPW 0.020 0.032 0.018 1.333 1.003 0.107 0.105 0.946
SRS 0.023 0.033 0.021 1.533 1.003 0.102 0.105 0.969

Note: P: proposed estimator; ODS: the semiparametric empirical penalized likelihood estimator based on the second-stage sample
(SEPLE-ODS estimator); IPW: inverse-probability weighted metl®®&;S penalized maximum likelihood estimator based on the

SRS sample with the sample size equal to the second stage sample; AMSE: average of the mean square error (MSE) of the estimator
g over 451 grid points; ABIAS: average of the absolute bia§ ofer 451 grid points; AVAR: average of variancefpdver 451 grid

points ;EF: ratio of AMSESs over those of P estimators; MEAN: meafi; @E: standard error of; SE: estimated standard error of

7; Cl: coverage probability of 95% nominal confidence interval.

the P, SEPLE-ODS, IPW, and PMLE-SRS estimators for comparison. The confidence bands are based on
a normal approximation using the Monte Carlo standard error and the cut-point equal to 0.7 and 1.0. In
Figure 1, we can find that the confidence bands by the SEPLE-ODS, IPW, and PMLE-SRS estimators
are obviously wider than those by the P estimator, specially obvious in the tail of the distributian of
The reason is that the actual observation of the outcome from the first stage can provide more useful
information in efficiency improvement.

In addition, it appears that there exists some finite-sample bias (see E)gWe conducted addi-
tional simulation with larger sample size and found that the bias will be reduced when the sample size
is increased. The additional simulation suggests that while the method delivers consistent estimates (as
n approaches infinity), there is a potential for appreciable finite-sample bias. The additional simulation
results are presented in Sectibof the supplementary material availableBadstatisticsonline.

Study 2The data were generated according to the following PLM,

Y=0MW)+2Zy +¢e,

wheregy(W) = 1.5sin1.5W), W denotes a continuous exposure variable of integest.N (0, ag). We
assumed thatV ~ N(1,0.5%) andZ ~ N(0, 0.3%). Then we fixedy ands@ the same value as those in
Study 1.

The averages of the MSE, the absolute value of the bias and the Monte Carlo variance of the estimated
nonparametric functiog,(x) were also calculated over 401 equal spaced grid points g, 2.5] (the
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(no = 200,”1 = N3 = 100, Ng = 0) (TL() = 300,711 = N3 = 50,77,2 = O)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
w w

Fig. 1. Confidence band comparison in Study 1. The plots from the first and second lines correspond to cut point
a = 0.7 and 1.0, respectively. In each plot, the thicker dotted curve in the middle is the true function. The solid, dashed,
dot-dashed, and dotted curves in the middle are the average P-spline fits over 1000 simulation, respectively, by the
proposed estimator (P), the semiparametric empirical penalized likelihood estimator based on the second-stage sample
(SEPLE-ODS), the inverse-probability weighted estimator (IPW), and the penalized maximum likelihood estimator
based on the SRS sample with sample size equal to the second-stage sample (PMLE-SRS). For the confidence bands,
the solid, dashed, dot-dashed, and dotted curves are the confidence bands obtained by P, SEPLE-ODS, IPW, and
PMLE-SRS estimators, respectively.

mean ofX minus and plus 3 times the standard deviatioXpbver 1000 replications. We also plotted the
average P-spline estimate@fby P, SEPLE-ODS, IPW, and PMLE-SRS estimators over 1000 replicates,
and the confidence bands obtained by these estimators. The corresponding results including the table and
figure are presented in Secti@rof the supplementary material availableBavstatisticsonline, and the
conclusions are similar to Study 1.

5. ANALYSIS OF THE COLLABORATIVE PERINATAL PROJECT DATA SET

The proposed method is applied to CPP data set to assess the relationship between maternal pregnancy
serum level of PCBs and children’s subsequent IQ test performance. We use the Weschler Intelligence
Scales for children at 7 years of age (IQ) as outcome variable and the PCBs level as the exposure variable.
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We are mainly interested in the effect of PCB on IQ measurement. In addition to PCB, other covariates
include socioeconomic status of the child’s family (SES), the gender (SEX) and race (RACE) of the child,
and the parents eduction (EDU).

There are 38 709 subjects consisting of the first-stage sample with completely observed variables I1Q,
SES, SEX, RACE, and EDU. In the second stage, an ODS design was conducted based on the first-
stage sample with the sample size of 1038. The samples obtained by the ODS design are the completely
observed samples with additional measured exposure variable of interest PCB. The second-stage sample
consists of an SRS of 849 subjects and 2 supplemental subgroups which are defined by children’s IQ
scores that are one standard deviation (14) above and below the mean (96) of the population IQ scores,
with 81 subjects in the low-1Q group and 108 subjects in the high-1Q groupY ldenote QW denote
PCB, andZ denote (SES, SEX, RACE, and EDU). Then the CPP data structure can be summarized as

Stage 11Yi, Z;}, N = 38 709;

Stage 2: SRS sampléY;, Xi, Z;}, np = 849;

Supplemental sample:
DY, Xi, Zi|Y; < 96.06— 14.29, n; = 81;
2) ny, =0;
3){Yi, Xi, Zi|Y; > 96.06+ 14.29, n3 = 108.

A statistical description for the study variables is presented in Table

Zhou and others(2002 analyzed the validation sample of the CPP data in the framework of linear
model. We consider a PLM using a nonparametric function to describe the relation between PCB and IQ as

IQ = g(PCB) + S1EDU + B,SES+ S3RACE + B4SEX + €,

wheree is a normal error with zero mean. To estimate the nonparametric fungtipnve here adopt a
2-degree truncated power function basis with 10 fixed knots. Then the above model can be rewritten as
IQ = 7T (PCB)a + f1EDU+ S2SES+ 3RACE+ S4SEX+ €, wherea = (ay, ..., a13) . We first made

the lack of fit test for the considered PLM using the SRS sample and found thHRwtdae of the test is

0.29 which indicates that the PLM is suitable. Then we adopt our proposed method to fit this model. The
estimates of the regression coefficient is given in Ta&land the estimate of nonparametric function is
presented in Figurg.

Table 2. Description of the variables in CP&ata

MEAN STD 25% 75% MIN MAX
Population (N= 38709)
1Q 96.06 14.29 86.00 106.00 56.00 153.00
EDU 10.67 2.45 9.00 12.00 0.00 18.00
SES 4.67 2.16 3.00 6.30 0.00 9.50
RACE 0.50 0.50 0.00 1.00 0.00 1.00
SEX 0.50 0.50 0.00 1.00 0.00 1.00
ODS (y = 1038)
1Q 96.23 16.09 84.00 108.00 56.00 145.00
EDU 10.86 2.44 9.00 12.00 1.00 18.00
SES 4.84 2.20 3.30 6.30 0.30 9.30
RACE 0.49 0.50 0.00 1.00 0.00 1.00
SEX 0.50 0.50 0.00 1.00 0.00 1.00
PCB 3.16 1.93 1.88 3.86 0.25 17.61

Note: MEAN = mean of the variable; STE standard deviation of the variable; 25%25% percentile of the variable; 75% 75%
percentile of the variable; MIN= minimum value of the variable; MAX maximum value of the variable.
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90

g(PCB)

0 2 4 6 7.32 8 10 12 14 16 18
PCB

Fig. 2. The estimated functiogm on PCB for CPP data. Thicker solid, dashed, and dot-dashed curves correspond to
estimates obtained by the Proposed, SEPLE-ODS, and IPW methods, respectively. And the solid dashed and dot-
dashed curves correspond to estimated confidence bands obtained by the Proposed, SEPLE-ODS, and IPW methods,
respectively.

We further conduct the proposed the Wald test to test whether the nonparametric function is a linear
function or a quadratic function as follows:

Testt Hp:az =a4=--- = a13=0vsH;j: atleast am; # O for some > 3.

The Hp can be also written ag(PCB) = a1 + a2PCB. The Wald test statistie?v = 30.85 >
Xg_os(ll) = 19.68, P-value = 0.0012. Therefore, the linear relatiohl() is rejected at the 5% level
of significance.

Test2 Hp: a4 = a5 =--- = a13 = 0 vsHj: atleast one; # O for some > 4.

TheHg can be also written a(PCB) = a1+ asPCB+a3PCR. The Wald test statisti&V = 21.83>
X§_05(10) = 18.31,P-value= 0.0160. Therefore, the quadratic relatidy] is rejected at the 5% level of
significance, and we can conclude that a simple quadratic function is not enough to describe the relation
between the IQ and the PCB.

The estimated curve in FiguBdetects the nonlinear relation between the 1Q score and the PCB level.

At first, the IQ score increases with the increased PCB level but when the PCB level is higher than 7.32
(according to the nonparametric estimate by the proposed estimator), the IQ score begins to decrease. In
addition, it can be found that the proposed estimator (P estimator) provides more precise confidence bands
than those obtained by the SEPLE-ODS and IPW estimators.

While the results in Figure 3 may suggest a positive relation of IQ and PCB intake in lower PCB
level. We caution not to overinterpret this result as this is likely due to that the effect of low level of
PCBs may reflect beneficial aspects of lifestyle not captured by other covariates. For example, fish intake
during pregnancy is related to both higher IQ in offspribgielsand others2004 and to higher levels
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of serum PCBsHalldorssonand others 2008. Thus, finding the positive slope at the lower range of
exposure alerts us to the possibility of confounding of the PCB coefficient.

From Table3, the P, SEPLE-ODS, and IPW estimates are similar and the variance estimates for
the proposed P estimators are the smallest. All the estimates confirm that the socioeconomic status and
education of the parents have a positive impact on the 1Q of the children, while there is no evidence that
the gender has any effect on the 1Q.

6. DISCUSSION

In this article, we considered a PLM in the setting of a 2-stage ODS design with a continuous outcome.
Compared withZhou and others(2002 in which only the ODS sample (the second-stage sample in
this article) is used to make inference, the first-stage sample is incorporated into the proposed method
for efficiency improvement. The inference of the PLM is different from the usual method because the
ODS is a biased sampling scheme. We proposed an estimated penalized likelihood method to achieve the
inference of PLM. Our simulation results demonstrate the efficiency improvement of the proposed method
over some alternative methods can be used in these situations, such as the SEPLE-DOS method and the
traditional PMLE-SRS method.

The IPW method is built on the completely observed data (those jthX;) observed, see for-
mula (1.1)). For those observation with missiXg they are reflected in the IPW method through a
weight that is proportional to the missing proportion. The real valu¥ ébr those with missingX is
not used, while our proposed method utilizes the actual observatiodhwafiatever its corresponding
X is observed or not. Therefore, the proposed method performs better than the IPW method as more
information of the data is used. Our method do rely on the specificatidri{ofX) to be known. Choos-
ing the error distribution as normal is a common practice in linear model analysis. Generally speak-
ing, IPW method and empirical likelihood (EL) method do not requi®’| X) to be known but only
need to specify the conditional expectatigigY|X). However, the IPW estimator compared in our pa-
per relies on the specification df(Y|X) because it is really a weighted likelihood estimator and not
the usual semiparametric IPW estimator. Likewise, the semiparametric EL estimator compared in our
paper requires (Y| X) to be known because it is also based on the likelihood and the semiparametric
EL inference procedure is used to deal with the unknown distribution of the covariates involved in the
likelihood, which is treated as a nuisance parameter. The efficiency gain of the proposed method over
SEPLE-ODS is due to the inclusion of individuals in the nonvalidation set (those with mix3iimgthe
inference.

All the covariates were completely unobserved for the individuals of the incomplete first-stage
sample through the article. However, in practice, some important covariates are easy and cheap to
measure, so they can be observed for every individual of the population. How to incorporate the in-
formation into the inference is interesting. More details about this issue are refeidshteer and Zhou
(2005.

Some issues on the design of ODS such as the optimal size for the second-stage ODS sample, the
optimal allocation of the cut points, and the optimal allocation of the second-stage ODS sample across
different strata are deserved further investigation in the future study. Moreover, there are several interesting
topics on the PLM for the ODS design that deserve further study in the future. For example, how to apply
the doubly robust estimation method to our case and how to conduct the lack of fit test for the PLM in the
ODS design.

SUPPLEMENTARY MATERIAL

Supplementary material is availablehdtp://www.biostatistics.oxfordjournals.arg
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