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ABSTRACT Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual
screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities
of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and
some important drug targets have proven especially challenging. In these targets, scoring functions cannot accurately identify
the native or near-native binding pose of the ligand from among decoy poses, which affects both the accuracy of the binding
affinity prediction and the ability of virtual screening to identify true binders in chemical libraries. Here, we present an approach
to discriminating native poses from decoys in difficult targets for which several scoring functions failed to correctly identify the
native pose. Our approach employs Discrete Molecular Dynamics simulations to incorporate protein-ligand dynamics and
the entropic effects of binding. We analyze a collection of poses generated by docking and find that the residence time of the
ligand in the native and nativelike binding poses is distinctly longer than that in decoy poses. This finding suggests that molecular
simulations offer a unique approach to distinguishing the native (or nativelike) binding pose from decoy poses that cannot be
distinguished using scoring functions that evaluate static structures. The success of our method emphasizes the importance
of protein-ligand dynamics in the accurate determination of the binding pose, an aspect that is not addressed in typical docking
and scoring protocols.
INTRODUCTION
High-throughput screening has become a fundamental tool
in the field of modern drug discovery. Despite technological
advances, this technique is still very expensive and requires
a large dedication of time and labor. In structure-based
virtual screening methods, novel lead scaffolds are identi-
fied by docking a library of small molecules into a specific
binding pocket in three-dimensional protein structures
characterized by x-ray crystallography or NMR. Virtual
screening is a fast and relatively inexpensive method of
identifying lead drug candidates for a specific target from
chemical libraries including millions of compounds, as
compared to the libraries of hundreds of thousands used in
high-throughput experimental screening (1). With the
rapidly increasing availability of protein structures (2,3),
virtual screening has become an indispensable tool for
drug discovery.

Virtual drug screening is limited by the accuracy of the
scoring function used to evaluate ligand binding, which
must compromise between full physical accuracy and com-
putational efficiency. The accuracy and completeness of the
scoring function have been identified as a bottleneck in the
virtual screening procedure (4,5). For some difficult targets,
the docking algorithm generates nativelike binding poses,
but the scoring functions cannot distinguish these poses
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from decoy poses. We hypothesize that scoring functions
fail in difficult cases because they do not account for the
entropic effects of binding or for protein-ligand dynamics.
An ideal scoring function should be able to calculate the
binding free energy of the ligand, which is a thermodynamic
quantity that takes into account both entropic and enthalpic
factors (6). In practice, however, only static structures are
scored, and therefore, entropy and dynamics are not explic-
itly incorporated (7).

Recently, various methods have been explored for incor-
porating entropic effects into virtual drug screening. Struc-
tural ensembles created using simulation techniques can
be used to explore multiple conformations of both the target
and the ligands. Some docking methods attempt to incorpo-
rate the dynamic nature of protein-ligand binding by using
multiple static target and ligand conformations (8–12) or
accounting for coupled ligand and target flexibility
(13–16). However, despite the increased sampling and
expanded conformational space explored using these inno-
vations, these scoring functions are still based on static
structural snapshots and cannot account for the coupled
dynamics of protein-ligand interactions.

Alternatively, simulations of the target-ligand pair can be
used to directly account for entropy and dynamics. Okimoto
et al. performed molecular dynamics simulations of docked
poses of ligands and found that their protocol of docking
followed by molecular mechanics/Poisson Boltzmann
surface area binding free energy estimation had enrichment
of true binders superior to that of a protocol using docking
doi: 10.1016/j.bpj.2011.11.4008
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FIGURE 1 Native pose ranks poorly in scoring of 1000 decoy poses.

MedusaScore of each of the 1000 poses generated for pantothenate synthe-

tase, according to their RMSD from the native pose. The large open circle

and the dashed line indicate the MedusaScore of the native pose.
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alone (17). However, their method requires the use of a
specialized computer built exclusively for molecular
dynamics simulations, and it is therefore not available to
most researchers. Colizzi et al. conducted single-molecule
pulling simulations to compare the binding characteristics
of ligand analogs in an antimalaria target (18), and found
that they could differentiate binders from nonbinders by
the profile of the potential of mean force. However, their
method in its current form is not appropriate for large-scale
screening because of the large amount of simulation time
required for each ligand.

To conduct large-scale low-cost virtual screening studies
that take into account entropic and dynamic conformational
sampling information, we construct a streamlined protocol
by performing discrete molecular dynamics (DMD) simula-
tions on docking poses to extract the essential dynamic
parameters. DMD uses discretized energy potentials and
fast event-sorting techniques to speed up molecular
dynamics simulation, which allows us to perform multiple
molecular dynamics simulations to sample the conforma-
tional space of each pose. We apply the protocol on a test
set that contains decoy poses that cannot be distinguished
from native poses using conventional scoring functions.
We extract the ligand residence time from the multiple
simulation trajectories and find that the residence time of
the ligand in its respective pose in the binding pocket is a dis-
tinguishing factor between native and decoy poses. Using
this protocol, we successfully identify the native pose within
the top 0.5% of poses for six out of eight cases in which
static scoring functions fail. In addition, we observe that
poses within the 2-Å root mean-squared deviation
(RMSD) of the crystallographic pose also exhibit extended
residence times in comparison to decoy poses, demon-
strating that near-native poses sampled by docking pro-
grams will also be identified by measuring residence time.
The success of our method confirms that explicitly incorpo-
rating protein-ligand dynamics into the analysis of docking
poses should afford substantial improvement in virtual
screening accuracy over current scoring functions that rely
on static conformations of protein ligand complexes.
METHODS

Selection of targets

We take all 85 targets from the Astex diverse docking benchmark set (19)

and use MedusaDock (13) with the MedusaScore scoring function (20) to

generate 1000 poses of each ligand with its target protein. For most targets,

MedusaScore alone is able to distinguish the nativelike pose (the RMSD of

the lowest-scoring pose is within 2 Å of the native ligand pose). However,

for some targets, a number of decoy poses are scored more favorably than

nativelike poses. We choose for testing those targets where the Medusa-

Score scoring function fails to rank the native (x-ray crystallographic)

pose in the top 1% of generated poses (Fig. 1, Fig. S7, Fig. S8, Fig. S9,

Fig. S10, Fig. S11, Fig. S12, and Fig. S13). We identify eight targets: acetyl-

choline esterase (AChE, Protein Data Bank (PDB) ID 1GPK), pantothenate

synthetase (PDB ID 1N2J), C-Jun N-terminal kinase 3 (JNK3, PDB ID
1PMN), tuberculosis thymidylate kinase (PDB ID 1W2G), MAP kinase

14 (PDB ID 1YWR), colonic H(þ)-K(þ)-ATPase 1 (CHK1, PDB ID

2BR1), Pim-1 kinase (PDB ID 3BGQ), and LmrR (PDB ID 3F8C). To

verify the difficulty of the chosen targets, we also generate and score

docked poses using AutoDock (21) and Glide (22), with similar results

(Fig. S1 and Fig. S2). We perform AutoDock scoring using the preparation

and score computation scripts included in the AutoDockTools 4.1 package.

We perform Glide scoring using the XGlide script provided by Schrodinger

for preparation and optimization with the nativeonly (no cross-docking)

scoring option.
Docking and creation of decoy poses

We employ the MedusaDock software (13) with the MedusaScore energy

function (20) to dock and score the native ligands with their respective

targets. Briefly, MedusaDock samples both ligand conformations and target

side-chain rotamers simultaneously in a rapid flexible docking protocol.

MedusaDock generates poses using the structural information in a supplied

PDB file of the target and MOL2 file of the ligand. The program utilizes the

atomic coordinates to identify rotatable bonds and build a stochastic library

of ligand poses during docking simulations, but the initially supplied ligand

conformer is not necessarily one of the output states. A benchmark of

MedusaDock found substantial sampling of ligand conformational space,

and the software was shown to perform well in both self-docking and

cross-docking scenarios (13).
Selection of decoys for DMD simulation

For each target, we select those decoy poses that score better than the native

pose for DMD simulation. Because most scoring functions compute only

the enthalpic contribution to binding free energy, it is likely that the entropic

factor, which is not explicitly accounted for by scoring functions applied to

static structures, plays a critical role in the accurate prediction of the native

ligand binding pose in these targets. These cases of top-ranking decoys are

the most interesting for our study; we are not concerned with decoy poses

that can be distinguished using enthalpic contributions alone, since fast and

efficient methods already exist for determining these poses. Therefore, we

eliminate from consideration those decoy poses whose scores are less favor-

able than the native pose.

We rank poses according to their MedusaScore without van der Waals

repulsion (VDWR) energy to initially allow small steric clashes for

sampling purposes. However, many of these 1000 poses can be clustered

with multiple poses within 2 Å RMSD of one another. We observe in

preliminary DMD simulations that once the RMSD of the ligand from its
Biophysical Journal 102(1) 144–151
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original pose exceeds 2 Å, the RMSD continues to increase rapidly, sug-

gesting that an RMSD of >2 Å indicates pose exit. Conversely, poses could

fluctuate within 2 Å RMSD from the original pose for an extended period of

time, suggesting that they can be viewed as dynamically indistinguishable.

To avoid simulation of dynamically indistinguishable poses and generate an

unbiased representation of the poses, we cluster the poses using means-

linkage hierarchical clustering in the OC suite (23). In means-linkage clus-

tering, the distance between two clusters is defined as the average distance

between all of their members. We include the native crystallographic pose

in the clustering procedure to identify the near-native cluster. We employ

a conservative intercluster distance cutoff of 2.5 Å, and select the pose

with the most favorable MedusaScore (20) in each cluster as the represen-

tative of that cluster. We also eliminate those poses that score less favorably

than the native pose when including the VDWR energy (indicating the exis-

tence of atomic clashes). In the end, we obtain a diverse set of decoy poses

for DMD simulation.

We perform DMD simulations of the remaining structurally diverse

ligand poses in complex with the target (Fig. 2, Fig. S7, Fig. S8, Fig. S9,

Fig. S10, Fig. S11, Fig. S12, and Fig. S13) as well as the native crystallo-

graphic pose. In addition, we perform simulations of the poses in the native

cluster that are within 2 Å RMSD of the crystallographic pose (near-native

poses) to test the ability of our method to pick not only the crystallographic

pose, but also near-native poses sampled by MedusaDock.
FIGURE 2 Representative decoy poses for pantothenate synthetase. (A)

Decoy poses remaining after the application of the dual MedusaScore filter

and clustering, in complex with the target. (B) MedusaScore of the remain-

ing poses, according to their RMSD from the native pose. The dashed line

indicates the MedusaScore of the native pose. We find that the poses are

structurally diverse and have varied RMSD from the native pose.
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Because in a real-world application of virtual screening we would not

know in advance the score of the native pose, we also conduct a blind

test of our method, removing the filtering steps that rely on this knowledge

(Fig. S14, FILTER 1 and FILTER 2). We find that although the number of

decoy poses that we test drastically increases from 29 to 118, the ranking of

the native pose only changes from 1 to 4, whereas the significant separation

of the native binding pose from the majority of decoy poses is maintained

(see Fig. 6).
DMD simulation

DMD uses discrete step function potentials to govern interatomic interac-

tions, instead of the continuous potentials used in traditional MD simulation

(24,25). As a consequence, interactions can be described as collisions,

where the velocities of the colliding atoms change instantaneously accord-

ing to the laws of conservation of energy, momentum, and angular

momentum. Having fewer and faster calculations without integration over

Newton’s equations allows DMD to achieve a significant increase in

sampling over traditional MD.

We perform all simulations using the all-atommodel for DMD developed

by Ding et al. (26). We impose harmonic constraints on each atom of the

target backbone, using a harmonic constant of 1.0 kcal/mol$Å2. A stiff

harmonic constraint, while allowing limited adjustments of the backbone,

more efficiently samples the protein conformations near the native structure

and decreases the probability that a nonnative conformational sampling

will dislodge the ligand. All side chains, as well as the ligand, are

allowed to move freely. We use a simulation temperature of 0.6 kcal/mol$kB
(~300 K) and a heat-exchange coefficient of 1.

We perform 100 replica simulations of each pose in complex with the

target. Each replica simulation has an identical starting structure, but the

atoms have different randomly seeded starting velocities, thereby producing

varying initial conditions for each replica simulation and allowing for

a statistical description of each pose system.
Calculation of residence time

We write a snapshot of the system every 100 time steps, which corresponds

to approximately every 5 ps of simulation time. For each snapshot, we

calculate the RMSD of the ligand from its original pose. We find that,

initially, ligands fluctuate in the binding pocket by <2 Å RMSD from their

starting coordinates. Once a ligand crosses this 2 Å threshold, it begins

a gradual increase in RMSD away from its initial position. Therefore, we

consider a ligand as having exited its pose as soon as it deviates by >2 Å

RMSD from its starting coordinates. We check simulations for pose exit

every 104 time steps and terminate the simulation if the pose has exited.

We record the frame at which the ligand exits its pose for each replica simu-

lation of each decoy or native case and use the corresponding number of

time steps as the residence time.
RESULTS

Generation and evaluation of decoy poses

We start with 1000 ligand poses generated with Medusa-
Dock (see Methods) and one native x-ray crystallographic
pose (1001 poses total) for each target. All poses that score
less favorably than the native pose are rapidly filtered using
the MedusaScore static scoring function. For example, in
pantothenate synthetase, MedusaScore ranks the native
pose at position 741 out of 1001 poses (Fig. 1). We therefore
discard the poses at ranks 742–1001, leaving 741 more
favorably scoring poses for further filtering. After we apply
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the criteria of RMSD clustering and VDWR energy, only 29
poses remain for testing in DMD simulations. These poses
have diverse geometry in the binding pocket (Fig. 2 A),
being separated by at least 2.5 Å RMSD. The MedusaScores
of the poses do not differentiate native and near-native poses
from decoy poses (Fig. 2 B), emphasizing that a static
scoring function is not effective in the case of this target-
ligand system. For example, the MedusaScore of the native
pose is �10.97 kcal/mol, whereas the MedusaScore for the
best-scoring decoy pose, which is displaced by 4.5 Å from
the native pose, is �16.66 kcal/mol, much better than the
native pose. Notably, alternative scoring functions such as
AutoDOCK and Glide also fail to discriminate native
from decoy poses (Fig. S1 and Fig. S2).
Residence time metric

Direct calculation of the entropic and dynamic contribution
to binding free energy is a formidable task (27). Likewise,
simulation of the actual binding events is prohibitively
time-consuming, involving exhaustive sampling to accu-
rately measure the binding free energy. However, we can
efficiently measure the time that the ligand stays in its
respective pose in the binding pocket during simulation,
which is directly related to the rate of dissociation from
the enzyme, koff. We measure the residence time of the
ligand pose as the number of DMD time steps (1 time
step ¼ ~50 fs) that the ligand stays within 2 Å of the initial
pose. We create a statistical description of each target-pose
system by designing 100 replica simulations of each pose in
complex with the target. For each replica simulation, parti-
cles in the system have different randomly seeded initial
velocities (following Maxwell distribution (28,29)), but
identical initial spatial coordinates.

The distribution of replica residence times for each pose,
regardless of the target, is Poissonian, despite differences in
peak value and breadth of the distributions, so that the prob-
ability of the ligand exiting with a residence time t is

Pðt;mÞ ¼ mt

t!
e�m, where the constant m is the average resi-

dence time for that pose. Obtaining a Poissonian distribution
of residence times for each decoy confirms sufficient
sampling, since exit from ligand pose should follow the
law of rare events, with each event discrete and independent.
Early pose exits occur far more frequently than do late pose
exits, with the standard deviation in general increasing with
increasing mean. For each target, we average the residence
times over all 100 replica simulations to report a mean resi-
dence time for each pose. We therefore examine the mean
residence time of the ligand in its pose as the metric for dis-
tinguishing native and near-native from decoy poses, a task
that cannot be accomplished with conventional static
scoring functions. For most targets, all simulations finish
within 10,000 DMD time steps, which with these system
sizes equates to <3 h of CPU time per target.
Distinguishing the native binding pose

Upon performing simulations of the selected target-ligand
complexes, we find that the native pose has a significantly
longer residence time than all decoy poses (Fig. 3). For
example, in the pantothenate synthetase system, the mean
residence time for the native pose is 1100 time units. In
contrast, the mean residence time of the best-scoring decoy
pose is only 700 time units, even though the binding energy
for that static pose (as measured using MedusaScore) is
much stronger (Fig. 4). In fact, residence time and calcu-
lated binding energy do not appear to correlate. This obser-
vation is in agreement with the finding by Reynolds and
Holloway (6) that binding free energy and binding enthalpy
(the value calculated by most static scoring functions) are
not correlated, and it highlights the importance of dynamics
in properly evaluating the stability of protein-ligand
binding. Using the average residence time of the ligand in
its pose as a metric, we successfully identify the native
binding pose from among 1000 decoys for the difficult
target of pantothenate synthetase. We further observe that
near-native binding poses (those within 2 Å of the crystallo-
graphic pose) exhibit a distribution of residence times that is
approximately Gaussian-like and significantly higher than
the distribution of decoy pose residence times. The distribu-
tions of residence times for decoy poses and near-native
poses exhibit an overlap of <5% and separation in their
mean values of ~3 standard deviations (Fig. 5). The resi-
dence time for the native crystallographic pose is within
the near-native distribution. Notably, the longest residence
time observed is in a near-native pose, suggesting that our
method could identify both the native and near-native poses
from a collection of diverse poses generated by docking.

We count a case as successful when the average residence
time of the native pose is in the top five out of all poses.
The native pose is within the top five poses with the longest
residence times in six of the eight targets tested (Fig. 3),
placing the native pose in the top 0.5% of poses. We rank
the native pose in the top two poses for three out of eight
targets (acetylcholine esterase (AChE), pantothenate syn-
thetase, and c-Jun N-terminal kinase (JNK3)), and in the
top four poses for an additional three targets (tuberculosis
thymidylate kinase, MAP kinase 14, and LmrR) (Fig. 3).
In two cases, CHK1 and pim-1 kinase, we do not succeed
in placing the native pose in the top 0.5% of poses. The
native poses are ranked in the ninth and seventh positions,
respectively, but these rankings still fall within the top 1%
of all poses. Both of these targets are kinases, which are
notorious for flexibility and allosteric conformational
changes in the backbone upon ligand binding (30). It is
possible that the harmonic constraints that we place on the
backbone in our method overconstrain the dynamics of
these targets for ligand binding. In the future, a smaller
harmonic constant, or removal of the constraint, may be
needed for targets with significant allostery.
Biophysical Journal 102(1) 144–151



FIGURE 3 Residence times of ligand in the binding pocket. Average residence time for each decoy of each target tested, in units of 100 time steps. Each

point represents the average residence time of the ligand in each pose over the 100 replica simulations for each pose. Error bars represent the standard error in

residence time over the 100 replica simulations; in most cases, error is small enough that points and error bars cannot be distinguished. The native pose is

circled, and the dashed line indicates the average residence time of the native pose.
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Removing the native pose scoring criteria gives similar
results, despite testing many more decoys (Fig. 6). Although
only 259 decoys score less favorably than the native pose
for pantothenate synthetase, including these decoys in the
clustering analysis creates an additional 89 clusters (118
clusters from 1000 poses versus 29 clusters when only
742 poses were included). From these results, we conclude
that, as expected, the region of conformational space occu-
FIGURE 4 Residence time does not correlate with static energy scoring.

The average residence times for each decoy of pantothenate synthetase, in

units of 100 time steps, and their respective MedusaScores. The native pose

is circled. The residence time does not correlate with the MedusaScore;

similar results are obtained for other targets.
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pied by less favorably scoring poses is more sparsely
sampled by the MedusaDock algorithm, highlighting the
efficiency of the docking protocol. Inclusion of these decoys
results in the ranking of the native pose falling from 1/29 to
4/118, but a clear demarcation remains between the average
residence time of the native pose and the majority of decoy
poses (Fig. 6).
FIGURE 5 Near-native poses are distinguished from decoy poses by resi-

dence time. The distribution of near-native pose residence times (solid line)

is significantly shifted toward longer times as compared to the distribution

of decoy pose residence times (dashed line). The residence time of the

native pose is indicated by an open circle on the distribution of near-native

poses.



FIGURE 7 Average residence times for cross-docked system. We find

that cross-docking of pantoate into pantothenate synthetase using the

enzyme coordinates taken from its complex with a different ligand, the

bulky AMPCPP molecule, causes the ranking of the native pose (red circle)

to fall to 12/62. However, the average residence time of the native pose

(dashed line) is within error of most of the higher-ranking decoys (error de-

noted by dotted lines), and a near-native pose (arrow) ranks 4/62, with error

bars overlapping with the highest-scoring decoys.

FIGURE 6 Average residence times for decoys with no imposed scoring

criteria. We show that removal of the score-filtering steps has small effect

on distinguishing the native pose. The average residence time of the native

pose (in units of 100 time steps) is clearly separated from the majority of

decoy poses in the target system of pantothenate synthetase. The native

pose is circled, and the dashed line indicates the average residence time

of the native pose.
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To further test the robustness of the method, we perform
the same analysis with a different starting conformation of
the target. We identify a structure of the same target, panto-
thenate synthetase, in complex with a different ligand in the
same binding pocket. In this structure (PDB ID 1N2G),
pantothenate synthetase is in complex with AMPCPP, a
very bulky molecule in comparison to pantoate. Our decoy
selection protocol identifies 60 decoy poses, the native pose,
and one near-native pose for testing in DMD simulations.
Because our protocol imposes harmonic constraints on the
backbone of the target, we expect the native and near-native
poses to decrease in ranking in a cross-docked system.
However, we find that, while the native pose is ranked at
12/62, most of the higher-ranking decoy poses have resi-
dence times falling within error of that of the native pose
(Fig. 7). In addition, the near-native pose is ranked 4/62,
with error bars overlapping those of the top-ranked decoy
pose. In this case, it is likely that the near-native pose repre-
sents a fine-tuning of the crystallographic pose for the cross-
docked structure.
DISCUSSION

We demonstrate that we successfully distinguish the native
pose from decoys using the average residence time of the
ligand in the pose in the course of molecular simulations.
In addition, poses within 2 Å RMSD of the native crystallo-
graphic pose also have significantly longer residence times
than decoy poses, demonstrating that even if the native
pose were unknown in this study, we would succeed in iden-
tifying a near-native pose. The latter observation is critical
for practical application of our approach in those cases
when the true binding pose is unknown, e.g., for new
ligands. We conclude from these results that the entropic
effects of binding and protein-ligand dynamics are crucial
to the determination of the correct binding pose of the ligand
in some difficult targets. In our method, we combine static
scoring and molecular simulation, using traditional virtual
screening methods as an initial filter to determine the most
likely ligand poses, and then applying DMD simulation to
identify the native or near-native (within 2 Å RMSD,
dynamically indistinguishable) pose. In this way, our simu-
lation method can be applied to the results of any traditional
virtual screening protocol to incorporate the entropic and
dynamic effects of binding into the ranking of binding
poses. From among a set of poses generated by traditional
docking procedures, we show that the most dynamically
stable poses are the most nativelike.

Although simulation-based methods have the advantage
of directly incorporating entropic and dynamic factors,
they are significantly more computationally expensive
than the enthalpic scoring of a static structure. Because of
the cost in computer time, it would be beneficial to deter-
mine which targets and ligand types are routinely difficult
to accurately identify with a traditional scoring function
before applying this method in the screen of a large library.
In this work, each target has on average ~15 poses to be
tested, with each pose having 100 replica simulations.
Each replica simulation typically takes from 2 to 10 h of
computer time on a single processor. Simulation time could
be decreased in almost all target cases by changing the
frequency of the pose exit verification step in our protocol
from every 10,000 time steps to every 1000, since most
targets have poses exiting between 2000 and 8000 time steps
(Fig. 3).

As noted in the Results section, the two test cases in
which our method failed are both kinases (31), which are
known for their flexibility and allosteric conformational
change upon ligand binding. The inclusion of harmonic
constraints on the backbone of the target protein in our
Biophysical Journal 102(1) 144–151
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method may cause problems in some kinase cases where
correlated motions between the binding pocket and the
rest of the protein are necessary for native binding
dynamics. We hypothesize that the failure of our method
in these cases is due to the allostery of the kinase family,
but when we examine unconstrained simulations of these
targets compared with the success cases, we find that back-
bone RMSD over time, pairwise RMSD of the backbone and
the binding pocket residues, number of ligand-target
contacts, and various measures of correlated motion
between the binding pocket and other sites in the protein,
including the average minimal path, did not illuminate the
differences between success and nonsuccess cases (Supple-
mentary Protocols, Fig. S3, Fig. S4, Fig. S5, Fig. S6,
Table S1, Table S2, Table S3, and Table S4). It is possible
that we do not succeed in these two kinase cases because
of additional complexities in ligand-protein interactions
not yet accounted for in our force field. Further tuning of
force-field parameters or adjustment of the protocol may
be necessary for certain types of targets, and is an area for
future improvement.

In addition to identification of the native binding pose,
our method may also be applied to the screening of diverse
chemical libraries. In a large-scale virtual screening proce-
dure, active compounds may be missed if entropic contribu-
tions are ignored in the scoring and ranking of ligands. In
target-ligand systems where entropy and dynamics make
significant contributions to the binding energy, a scoring
function based solely on enthalpic terms may over- or
underestimate the binding affinity of any given pose or
ligand, and as a result, native binding poses are not selected
and decoy ligands may be ranked more favorably than
native ligands. Using our method, we can take protein-
ligand dynamics into account when selecting the most
favorable pose of a potential ligand in the binding pocket.
A traditional virtual screening protocol can be used as a filter
for the individual ligands, and the top 1000 ligands selected
for simulation. For each ligand, 100 replica simulations can
be performed, and the average residence times evaluated.
Using our method, one can conceivably screen a large
library in a few weeks using computing resources available
to most researchers. We plan to explore and optimize this
two-step virtual screening protocol in future studies.
CONCLUSION

By conducting DMD simulations of the target-ligand
system, we are able to account for the entropic effects of
binding as well as dynamic interactions not observed in
the static structures used in traditional scoring functions.
We find that we can distinguish the native pose from decoys
using the average residence time of the ligand in the pose;
the ligand on average spends more time in the native pose
than in other, decoy poses. From these results, we can
conclude that small-scale protein dynamics play a significant
Biophysical Journal 102(1) 144–151
role in protein-ligand binding. Using our method, we can
identify the most stable poses among a collection of those
generated by docking as the most nativelike, and we are
able to correctly identify the nativelike pose in target-ligand
systems where traditional methods fail.
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