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ABSTRACT A filopodium is a cytoplasmic projection, exquisitely built and regulated, which extends from the leading edge of
the migrating cell, exploring the cell’s neighborhood. Commonly, filopodia grow and retract after their initiation, exhibiting rich
dynamical behaviors. We model the growth of a filopodium based on a stochastic description which incorporates mechanical,
physical, and biochemical components. Our model provides a full stochastic treatment of the actin monomer diffusion and
polymerization of each individual actin filament under stress of the fluctuating membrane. We investigated the length distribution
of individual filaments in a growing filopodium and studied how it depends on various physical parameters. The distribution of
filament lengths turned out to be narrow, which we explained by the negative feedback created by the membrane load and
monomeric G-actin gradient. We also discovered that filopodial growth is strongly diminished upon increasing retrograde flow,
suggesting that regulating the retrograde flow rate would be a highly efficient way to control filopodial extension dynamics. The
filopodial length increases as the membrane fluctuations decrease, which we attributed to the unequal loading of the membrane
force among individual filaments, which, in turn, results in larger average polymerization rates. We also observed significant
diffusional noise of G-actin monomers, which leads to smaller G-actin flux along the filopodial tube compared with the prediction
using the diffusion equation. Overall, partial cancellation of these two fluctuation effects allows a simple mean field model to
rationalize most of our simulation results. However, fast fluctuations significantly renormalize the mean field model parameters.
The biological significance of our filopodial model and avenues for future development are also discussed.

INTRODUCTION

Cell migration, ubiquitous in many biological phenomena

such as embryonic development, wound healing, and cancer

metastasis, is a complex set of interacting mechanochemical

processes (1). The leading edge of motile cells project mm-

size finger-like protrusions based on parallel, bundled actin

filaments called filopodia (2–4). Filopodia play an important

role in guiding cell motility and participate in cell-cell com-

munication. For example, the migration of tissue cells in em-

bryonic development, under the guidance of external chemical

cues, is facilitated by filopodia, which constantly grow and re-

tract, exploring the complex extracellular matrix and direct-

ing the cell through the noisy environment (5–7). Filopodial

misregulation results in developmental defects and diseases.

In wound healing, fibroblast cells grow long filopodia that

touch the other side of the cut, organizing the cells on the

opposing sides and guiding smooth sealing of the opening

(8,9). In cancer development, tumor cells may spread from

their primary site to other places in the body through me-

tastasis in which filopodia also play a role (10,11). Given the

biological importance of filopodia, a number of recent works

have investigated how the filopodial growth and retraction

dynamics is regulated by various cellular structures and by

internal and external signals (1–4,9,10,12–30).

A filopodium is a cytoplasmic projection, exquisitely built

and regulated, which extends from the leading edge of the

migrating cell, exploring the cell’s neighborhood. Com-

monly, filopodia grow and retract after their initiation, ex-

hibiting rich dynamical behaviors. The filopodial structure is

supported by parallel actin filaments cross-linked into bundles

by actin-binding proteins enclosed by the cell membrane.

It has been suggested that a large protein complex at the

filopodial tip plays an important role in regulating filopodial

dynamics. Even though filopodial growth and retraction is

largely driven by the polymerization and depolymerization of

the actin filaments, the morphology and function of filopodia

are also governed by the availability of monomeric actin and

cross-linking proteins, the cell membrane, the tip complex,

and other regulatory proteins (4,15,26,29,31–33).

The growth of filopodia involves complex mechanical,

chemical, and biological processes that are intimately inter-

woven. Thus, filopodial growth modeling is both interesting

and challenging. Though the overall structure and function of

a filopodium has become quite clear, the comprehensive set

of individual players and their detailed interactions remain

to be elucidated (4,14,29). The complexity of the problem

motivates building effective mathematical models that would

allow one to gain deeper insights into filopodial dynamics

and regulation. Prior modeling efforts were mainly concen-

trated on specific aspects of filopodial dynamics, considering

a subset of participating proteins and a small part of the

regulatory reaction network (34–38). In a pioneering work,

Mogilner and Rubinstein proposed a simple deterministic

model to study the filopodial initiation and growth (19). The

mechanical properties of the actin filaments and bundles were

studied from the point of view of elasticity theory. A one-

dimensional reaction-diffusion equation was used to derive

important length-force relations (19). However, the sto-

chastic polymerization of each filament and the detailed
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membrane force on each filament were not considered. Later,

the interaction of the filopodial tip and the membrane was

investigated in detail by Sun and co-workers (23). In their

elegant work they studied how the actin polymerization pro-

cess depends on the membrane properties and external forces,

but monomeric actin diffusion from the ventral part of the cell

to the filopodial tip and the retrograde flow (4,19) were not

considered in their model. More recently, a detailed modeling

of the shape and size of stereocilia and microvilli was carried

out based on mean field equations derived from the free en-

ergy function of various interactions and a master equation

for the actin filament treadmilling (39). However, the effects

of the membrane interaction with the tip on the polymeriza-

tion were not considered, and the discrete noise due to the

actin monomer was not discussed. These processes, however,

play key roles in controlling filopodial growth and retraction,

as discussed below.

A more realistic model of filopodial growth should simul-

taneously consider all the effects discussed above, since they

are all important and together constitute the basis for the

filopodial dynamical behaviors. Our model, reported in this

work, provides a full stochastic treatment of the actin mono-

mer diffusion and polymerization of each individual actin

filament under stress of the fluctuating membrane. In princi-

ple, the randomness of the reaction and transport processes is

expected to be important near the filopodial tip, since the actin

monomer number density turns out to be very small at the tip

(see below), necessitating that a continuous description be

replaced by a discrete one (40–57). In this work, we investi-

gated the length distribution of individual filaments in a

growing filopodium and studied how it depends on various

physical parameters. Our study identifies the key physical and

chemical parameters that control filopodial growth. In par-

ticular, we discovered that retrograde flow rate plays a critical

role in controlling filopodial extension. In addition, we found

that membrane fluctuations significantly renormalize the po-

lymerization rate, where stronger membrane fluctuations lead

to shorter filopodia. Finally, our fully stochastic treatment of

the filopodial growth process, which is based on only the

minimal set of chemical and physical processes implicated in

filopodial dynamics, produces only small amplitude steady-

state fluctuations. In some experiments, filopodia undergo

large amplitude fluctuations (1,14,26,58), suggesting that ad-

ditional levels of regulation by signaling protein networks

need to be incorporated into the computational models of

filopodial dynamics.

The work is organized as follows. In the Model Devel-

opment section, we discuss a number of determinants of

filopodial growth dynamics: the monomeric actin diffusion,

the actin filament polymerization and depolymerization, the

membrane force, and the retrograde flow. Accordingly, we

propose our physicochemical models for the corresponding

processes. The model parameters and their typical values are

also listed and discussed. Using mean field arguments, we

provide in the Mean field solution at the steady state section a

simple analytical solution of our filopodial model in the long

time limit. The results of our more detailed stochastic simu-

lations are discussed and rationalized in Stochastic simula-

tions section. In the Discussion section, we point out the

biological significance of our model and suggest avenues for

future development and possible extensions.

MODEL DEVELOPMENT

After initiation from its precursor, a filopodium is charac-

terized by bundled actin filaments enclosed by the cell

membrane with a protein complex at the tip, which forms a

stable and universal structure (30). Fig. 1 shows a schematic

cartoon of the filopodial structure and dynamics. Filopodia

commonly grow out of the underlying dense web-like actin

filament network (usually lamellipodia) (30). In addition to

the rod-like stiff filaments and the floppy enclosing mem-

brane, the filopodial structure includes cross-linking proteins

which fasten the filament bundle and a possible surface

protein complex which regulates the growth process (Fig. 1).

FIGURE 1 Schematic diagram of a matured filopodium. Only the most fun-

damental physicochemical components are shown; for example, the putative

filopodial tip complex is not drawn. The following processes are included in

our computational model: 1), monomeric G-actin diffusion along the filopodial

tube; 2), polymerization and depolymerization of individual actin filaments;

3), fluctuating membrane under load which slows down the individual

filament polymerization rate; and 4), a constant velocity retrograde flow,

where actin filaments are continuously pulled into the cell body. Actin

diffusion is modeled as a stochastic hopping process between compartments

of size 50 nm along the filopodial tube. Rapid mixing is assumed in the

transverse direction.
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However, these latter structures were not in our model here.

Their role will be reported in future work.

In cell migration or development, a filopodium usually

grows or retracts at a speed of 0.1–0.2 mm/s up to lengths of

1–2 mm (1). In special cases, it may grow up to nearly 100

microns (6). Short filopodia are often straight, whereas long

ones may become easily bent and tilted. Here, for simplicity,

we assume straight filopodia. Filament bending in the context

of our model is a subject of ongoing research. We use h to

denote the average membrane position at the filopodial tip

and hn to denote the length of the nth filament. It is reasonable

to define h as

h ¼ maxnðhnÞ; (1)

since the membrane is supported by the filaments. The

filopodial diameter varies between d ¼ 100 nm and 300 nm

depending on the number of filaments inside and the lateral

interaction with the membrane. We take d ¼ 150 nm in our

model, which is derived from minimizing the membrane free

energy and is reasonable if the number of filaments is not

large (23). The number of actin filaments in one filopodium

varies from 10 to 30 (19). For microvilli, it has been discussed

in terms of the fluctuation of the membrane protein density

(59). For filopodia, this number is determined in the initiation

stage and will not change in a matured filopodium. Through-

out the discussion, we considered a filopodium to consist of a

fixed number N ¼ 16 of filaments.

The following four major processes are the key compo-

nents of our model: 1), the actin diffusion from the filopodial

base to the tip; 2), the force applied by the membrane on

individual filaments; 3), the actin filament polymerization

and depolymerization at the barbed end; and 4), the depoly-

merization at the pointed end and the induced retrograde

flow, vretr, of the filopodium as a whole. Below, we discuss all

these aspects in detail and propose a modeling strategy for

each of these processes.

Actin filaments and actin monomer diffusion to
the filopodium tip

Filopodial protrusion and retraction is realized by the po-

lymerization and depolymerization of the individual actin

filaments. Because of dissimilar chemical affinities at the two

ends of a filament, actin monomers usually add to the fila-

ment barbed end and dissociate from the pointed end. As a

result, the filament as a whole marches in the direction of the

barbed end, which is called ‘‘treadmilling’’ and constitutes

the biochemical basis for the cytoskeletal dynamics (33,60).

Free monomeric actin, called G-actin, is a globular protein

that is 5.4 nm in diameter. When G-actin binds to an actin

filament, the resulting polymeric species is called an F-actin.

In our calculations, described below, each filament protrudes

by d¼ 2.7 nm upon a single G-actin addition, since two actin

monomers are needed to protrude the filament by one step.

Each actin filament consists of two protofilaments, which

form a right-handed double helix with a pitch distance of 37

nm. The resulting structure is very robust, with a persistence

length, Lp ; 10 mm. Under a force, F, the critical length at

which one filament buckles is

Lb �
p

2

ffiffiffiffiffiffiffiffiffiffiffiffi
kBTLp

F

r
; (2)

where kB is the Boltzmann constant and kBT ¼ 4.1 pN nm at

room temperature (19). For a force F ¼ 10 pN, the buckling

length Lb ¼ 101 nm. For weakly cross-linked bundles of N
actin filaments, the buckling length of the bundle is

ffiffiffiffi
N
p

Lb;
whereas it is NLb=

ffiffiffi
2
p

for tightly linked bundles (19).

G-Actin monomers diffuse in cytoplasm with a diffusion

constant of approximately D ¼ 5 mm2/s (19). The crowded

environment of filopodia possibly slows down the diffusion,

but there are no experimental measurements to address this

point. As the size of actin monomer is still much smaller than

the filopodium size, we use the bulk diffusion constant. In the

simulations, we examined the effect of the smaller values of

the diffusion constant. As the diameter of a typical filopo-

dium (150 nm) is much smaller than its length (several mi-

crons), we consider here only the diffusion of the actin

monomer in the longitudinal direction (assuming quick

mixing in the transverse direction). Although G-actin mono-

mers are present at the high concentration of r0 ¼ 10 mM in

the bulk of a typical cell, the number of G-actin monomers at

the filopodial tip may drop to essentially zero, due to the

filament polymerization processes that consume G-actin.

Therefore, we model G-actin diffusion along the filopodium

as a random walk on a one-dimensional lattice. As shown in

Fig. 1, the filopodium is divided into compartments, with a

compartment height of ld ¼ 50 nm, starting from the tip. We

define the number of actin monomers in a compartment with

index l as al. The transition rate for one particle moving be-

tween neighboring compartments is

Ptransðl/l 1 1Þ ¼ Ptransðl/l� 1Þ ¼ Cd; (3)

where Cd is related to the diffusion constant, D, by Cd ¼
D=l2d: At the tip, we imposed the reflection boundary condi-

tion Ptrans(1 / 0) ¼ 0, since the monomers cannot penetrate

the cell membrane (the compartment index starts from the tip

and runs down to the base). At the filopodial base, the G-actin

concentration was kept at the constant bulk value, r0 ¼
10 mM.

Our discretization of space assumes that the reaction pro-

cesses are confined to a small enough spatial region, having a

linear dimension of z (the so-called Kuramoto length (61)),

such that particles diffuse across the region faster than the

typical reaction times. We estimated z to be ;150 nm at the

tip of the filopodium. We chose a somewhat more conser-

vative compartment size of 50 nm. The numerical results are

not sensitive to small changes in the compartment size.
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Polymerization and depolymerization

G-actin, when bound to ATP, exhibits a stronger propensity

to polymerize than when bound to ADP. When G-actin turns

into F-actin upon polymerization, an ‘‘aging’’ process starts

(35), where ATP molecules are hydrolyzed into ADP. This,

in turn, leads to enhanced dissociation rates at the pointed

end. ADP in the resulting free G-actin monomer exchanges

with ATP in the cytosol. Thus, the entire treadmilling process

is energy driven, requiring participation and consumption of

cells’ universal energy currency, ATP.

In our model when a G-actin molecule diffuses to the fi-

lopodial tip, it has a certain probability, given by the rate k0,

of being added to one of the filament ends. On the other

hand, the probability of dissociation at the barbed end is

small, determined by the dissociation rate of kd. These po-

lymerization and depolymerization processes were stochas-

tically modeled in our work. In prior experiments (62), it was

shown that the polymerization rate sensitively depends on

the membrane force, which was theoretically rationalized

(19,36,37). In particular, in the Brownian ratchet model, the

membrane fluctuations at the tip of the filopodium are con-

sidered (36,38). If the created space between the membrane

and the filament tip is large enough for a G-actin monomer to

fit sterically, a subsequent polymerization could happen with

the rate k0. Thus, the effective polymerization rate, kn, on the

nth filament equals the ‘‘bare’’ rate k0 times the probability of

the gap opening at the tip of the nth filament. Because the

membrane force suppresses the amplitude of the likely mem-

brane fluctuations, a larger membrane force implies smaller

kn. A convenient relation between the loading force fn and the

polymerization rate was derived earlier (38),

kn ¼ k0 exp � fnd

kBT

� �
: (4)

Thus, to compute the effective polymerization rate, the mem-

brane force on each individual filament has to be estimated,

which is discussed next. In our model, the depolymerization

rate is independent of the membrane fluctuations.

Membrane fluctuations and filament forces

Cell membranes consist of a double layer of phospholipids

and may be thought of as a soft viscoelastic medium. Due to

the osmotic pressure (63), electrostatic interactions (64),

mechanical interactions, and exchange of lipids with internal

reservoirs (65,66), the cells maintain a finite membrane ten-

sion, which in turn regulates the cytoskeletal dynamics in a

variety of ways (67–69). Thus, enclosed by the cell mem-

brane, filopodial filament growth is counteracted by the

membrane force. In practice, depending on the membrane

composition and mechanochemical conditions, the mem-

brane force varies with the filopodium length and environ-

mental cues. However, under quite general conditions and in a

large range of parameter values, this variation is rather small

(69,70). Therefore, for simplicity, the total membrane force

acting on all filaments is a constant in our model. We used a

typical value of f ¼ 10 pN for some of our computations.

Prior studies indicated that submicron linear size mem-

brane sheet fluctuations relax on the microsecond to milli-

second timescale (71–74). Consequently, the membrane

fluctuations may be assumed to be equilibrated on the time-

scale of the filament growth dynamics (subsecond). Each

filament experiences an individual membrane force, fn, that

is determined by the closeness of the filament end to the

tip membrane average position. Thus, the total membrane

force f is partitioned among the individual filaments, f ¼
+

n
fn: Here we propose a new scheme to calculate individual

fns. The filopodial tip membrane fluctuates around some time-

dependent average position and exerts a force when it makes

contact with a specific filament (Fig. 2). It is reasonable to

assume that on average the force on a filament is proportional

to the membrane-filament contact dwelling probability,

which is the probability that the membrane touches that fila-

ment. This interaction, in turn, critically depends on the am-

plitude of the membrane fluctuation near the filament and the

filament length. Longer filaments are more likely to be in

contact with a membrane and feel stronger membrane force. If

the membrane fluctuations are assumed to be described by a

Gaussian distribution around the membrane average position,

the dwelling probability pn for the nth filament to be in contact

with the membrane is proportional to the probability that the

membrane height is found below the filament end (Fig. 2)

pn }

Z N

h�hn

expð�z
2
=s

2

dÞ dz; (5)

where sd is the average membrane fluctuation amplitude

(discussed next). Once pn is obtained, the force fn on each

filament may be computed

fn ¼
pn

p
f ; (6)

where p ¼ +
n
pn is a normalization factor. Substituting fn into

Eq. 4, the time-dependent polymerization rate, kn, is com-

puted for each filament under the membrane force.

The biological membrane fluctuations could be driven

both by thermal noise and by additional nonequilibrium

processes (65,67,68,74–88). To roughly estimate the ampli-

tude of thermal height fluctuations, the membrane may be

modeled with the following free energy functional (89,90):

F ¼
Z

dS
1

2
sðDhÞ2 1

1

2
kðD2

hÞ2
� �

; (7)

where h indicates membrane height displacement at position

x, y (Monge representation), s represents membrane surface

tension, and k is the bending modulus. The fluctuation

amplitude for a mode with wave vector q is (74,79)

Æh2

qæ ¼ kBT

sq
2
1 kq

4: (8)
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Finally, the height fluctuations in real space may be com-

puted using the definition of hðr~Þ’s Fourier transform (89)

Æh2ðr~Þæ ¼ 1

4p
2

Z
dq~

kBT

sq
2
1 kq

4: (9)

For the surface tension coefficient in the physiological range

of 10�6–10�4 N/m and the bending modulus between 10�20–

10�19 J (65,74,86), the amplitude of thermal membrane

fluctuations for a membrane sheet with submicron linear

dimensions may be estimated to be a few nanometers using

Eq. 9. However, a number of nonthermal, energy driven

processes (73,82,85,87,91,92) may additionally increase

severalfold the plasma membrane height fluctuations. Fluc-

tuations on the order of tens of nanometers have been

measured in red blood cell membranes (75,93). In this

work, we found a noticeable dependence of the average

filopodial length on the membrane fluctuation amplitude,

when sd was varied between 0 nm and 60 nm (discussed

below). For other calculations where the membrane fluctu-

ation amplitude was kept constant, we take sd ; 10 nm,

which is the likely upper bound to the filopodial membrane

height fluctuations.

Retrograde flow and equation of motion

Prior experiments indicated that the depolymerization rate at

the pointed end of a filament changes much less than the

polymerization rate at the barbed end, whereas the depoly-

merization at the barbed end is almost negligible. The po-

lymerization rate is very high when a filopodium is growing

and near zero when shrinking. Thus, filopodial dynamics are

strongly controlled by the polymerization at its tip (15,26).

Both polymerization at the tip and depolymerization at the

base result in a steady backward motion of the whole actin

filament bundle, called the retrograde flow. In some cells, it is

believed that specific myosin motors participate in creating

the retrograde flow (17), which is then subject to the regu-

lation by the signaling proteins. In our computations here, we

neglect the fine regulation of the retrograde flow process and

assume a constant average retrograde flow speed, vretr. The

influence of retrograde flow rate fluctuations will be ad-

dressed in future work.

The above discussion of the barbed end dynamics and the

retrograde flow process motivates us to write the following

equation of motion for each filament length, hn,

Dhn ¼ �vretrDt 1 jðan; kn;DtÞd� hðan; kn;DtÞd; (10)

where Dhn denotes the change of hn in a time interval Dt and

j, h are two random variables that take discrete values f0, 1g.
When there is one polymerization event on the nth filament

during Dt, j ¼ 1 and h ¼ 0, and when there is one

depolymerization event during Dt, h ¼ 1 and j ¼ 0.

Otherwise, if some other stochastic events occur (for exam-

ple, G-actin hopping between compartments), then h¼ 0 and

j¼ 0. The probability that one polymerization event happens

depends on the polymerization rate kn, the monomer number

an in the compartment where the filament tip is located, and

the time interval Dt itself. As discussed above, d ¼ 2.7 nm,

which is half the actin monomer size.

In our computations, based on the Gillespie algorithm (94),

the following steps are taken iteratively at each step: 1), Dt is

FIGURE 2 Each filamental tip experiences some mem-

brane force due to height fluctuations of the filopodial

membrane. The sum of these individual filamental forces is

equal to the overall average membrane load. The membrane

fluctuations around an average height are modeled with a

Gaussian distribution, having an average fluctuation am-

plitude of sd. The probability that a membrane is in contact

with a particular filament (the dwelling probability, i.e., the

probability of the local membrane height being found

below the particular filament’s tip) is proportional to the

shaded area under the curve in the right-hand panel.
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determined by considering all possible chemical and diffu-

sional events; and 2), one of the following events is chosen:

a), G-actin monomer hopping between filopodial compart-

ments, b), individual filament polymerization events, or c),

depolymerization events. Subsequently, after learning Dt and

the event type, we update the compartment monomer number

am and the filament length hn. Then, upon incorporation of

the retrograde flow (see Eq. 10), we compute hn, an, kn, where

kn is modulated by membrane fluctuations and continue with

the next iteration. The retrograde flow speed vretr is around

20 ; 200 nm/s (3,26,58,95,96), and we take vretr ¼ 70 nm/s

as the default value in our simulations.

Initial conditions

Our modeling starts with an already mature short filopodium.

How this filopodium is initiated is a very interesting question,

which is, however, outside the scope of this work. In a recent

work, initiation of membrane protrusions was modeled based

on membrane proteins with a convex spontaneous curvature

that activates actin polymerization (97). We chose an initial

filopodial length of 81 nm. This value only has some effect on

the transient growth phase but does not influence the steady-

state filopodial lengths. In addition, we used a bulk G-actin

concentration of 10 mM as an initial concentration in the

protrusion. Because of a relatively fast G-actin diffusion

constant, this is a reasonable approximation for the short

initial protrusion.

RESULTS

Mean field solution at the steady state

In the steady state, if we ignore all the fluctuations, take the

deterministic continuum approximation, and use some rea-

sonable assumptions, then an analytical approximation of the

average filopodial length can be derived. Our stochastic

simulations indicate that the individual filament lengths are

narrowly distributed (discussed below). Thus, in the mean

field approximation, we assume equal filamental lengths.

This, in turn, implies that every filament is subject to the same

force,

fn ¼ f =N; (11)

where N¼ 16 is the total number of actin filaments. Next, we

compute the flux of G-actin monomers in the filopodial tube

in the long time limit. One expects that the diffusion equation

would adequately characterize how the spatial profile of the

average actin concentration evolves in time (the accuracy of

this assumption is examined below),

@c

@t
¼ D

@
2
c

@z
2 : (12)

In the steady state, ð@c=@tÞ ¼ 0 implies a linear G-actin

concentration profile, c ¼ az 1 b, where a and b are con-

stants. Another way to represent this solution is to define the

actin monomer concentration gradient, g,

g ¼ ðc0 � cnÞ=h; (13)

where c0 and cn are the bulk and the tip actin monomer con-

centration, respectively, and h is the filopodial length.

In the steady state, the actin monomers consumed by the

retrograde flow (the left-hand side in Eq. 14) are compensated

by the net polymerization at the filopodial tip (the right-hand

side in Eq. 14), which is sustained by the average actin dif-

fusion flow (the right-hand side in Eq. 15), that is

Nvretr

d
¼ Nðkncn � kdÞ; (14)

Nðkncn � kdÞ ¼ Cdldg; (15)

where ld ¼ 50 nm and Cd ¼ 2000 s�1 are the size of our

discretization compartments and the hopping rate between

them, respectively. From the first equality, Eq. 14, we have

cn ¼
vretr

dkn

1
kd

kn

: (16)

Combining Eqs. 4 and 13–15, we obtain the steady-state

filopodial length, h, as a function of the actin filament poly-

merization and depolymerization rates, k0 and kd, the retro-

grade flow rate, vretr, the monomeric actin concentration at the

filopodial base, c0, and the membrane force, f,

h ¼ Cdld

N

d

vretr

c0 �
kd

kn

� �
� 1

k0

e
fd=NkBT

� �
: (17)

We compare the mean field prediction of Eq. 17 with the

numerical results from stochastic simulations, where from

100 to 1000 trajectories are averaged to produce Æhæ in the

long time limit. In general, Eq. 17 agrees quite well with the

stochastic simulation results; however, significant deviations

show up in certain parameter regimes due to 1), the fluctu-

ations considered in the numerical model but not in the mean

field approximation; and 2), the discretization in the space

coordinate along the filopodium in the numerical computa-

tion. We find that one of the main effects of fluctuations is to

renormalize the parameters that enter the mean field solution

(Eq. 17). More detailed discussion of the reasons for the

observed discrepancies is given below.

Stochastic simulations

One of the main goals of this work is to observe and ratio-

nalize the temporal evolution of the filament lengths as

physical parameters in the model are varied. We show below

that the asymptotic average length of the filaments is a good

observable to characterize the efficiency of the filopodial growth.

All the calculations were carried out with the Gillespie al-

gorithm (94). From 100 to 1000 trajectories were generated

for each set of parameter values to achieve statistical con-

vergence of trajectory analysis. The corresponding trajectory
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averages and variances are marked as circles in the reported

plots. The parameter values and initial conditions are listed

in Table 1. In the following calculations, when one of the

parameters is varied, other parameters are kept at the values

shown (Table 1). Spatially resolved stochastic simulations

are computationally intensive—we ran our program in par-

allel on 128 processors (2.3 GHz Intel EM64T) for 10 days to

generate all the necessary data, reported below.

Individual stochastic trajectories, along with the ensemble

averaged trajectory, are shown in Fig. 3 a. A filopodium

grows very quickly in the beginning then monotonically

reaches a limiting value in a long time limit where the fila-

ment growth due to the polymerization at the barbed end is

balanced against the retrograde flow. In a prior deterministic

approach (19), filopodial average length was predicted to

grow linearly with time at short times followed by Æhæ ¼
Lmaxð1� expð�jtÞÞ growth in the asymptotically long time

limit. In this work, in contrast, we did not observe a linear

time dependence at the initial phase or a subsequent inter-

mediate growth phase. Instead, we find that the whole growth

curve, from the initial segment onward, is nearly exactly

described by the following expression:

Æhæ ¼ Lin 1 ðLmax � LinÞð1� e
�jtÞ; (18)

where Lin ¼ 112 nm, Lmax ¼ 612 nm, and j ¼ 0.08 s�1. Lin

corresponds to our first recording of the stochastic trajectory

at t¼ 0.5 s, which starts from an initial protrusion of 81 nm at

t¼ 0 s. The filopodial growth speed, v� e�jt, which quickly

diminishes at timescales above 12 s, may be thought of as

having been derived from the following effective differential

equation dv/dt � �jv. Thus, filopodial growth is analogous

to the motion of a particle having a certain initial impulse in a

viscous medium where the particle eventually comes to rest,

indicating that j plays the role of an effective friction constant

for the growth process.

We next discuss the distribution of filament lengths in the

long time limit, i.e., the asymptotic distribution. For the pa-

rameter values we used, at times longer than t¼ 300 s (600 s
for longer filopodia), the system has already reached the

steady state. If the filaments were to grow in the absence of

the membrane and under constant G-actin concentration, the

variance of the filament length distribution could grow large

(35). However, membrane load preferentially diminishes the

growth of longest filaments, decreasing the filament length

variance. Similarly, tips of longer filaments are surrounded

by a decreased number of G-actin monomers (Fig. 4 a),

which also diminishes their polymerization rates compared

with shorter filaments. Both of these effects act as negative

feedback loops, resulting in a narrow filament length as-

ymptotic distribution centered around 612 nm (Fig. 3 a). The

distribution is slightly asymmetric; when the distribution

mean and the variance are used to define a Gaussian, an ap-

preciable deviation from the Gaussian behavior is observed

(dashed line in Fig. 3 a). The asymmetry is attributed to the

discrete noise and nonlinearity in the model.

TABLE 1 Default parameter values used in this work

Half actin monomer size d ¼ 2.7 nm

Number of filaments nf ¼ 16

Bulk concentration 10 mM (five actin monomers/

per compartment)

Diffusion rate 5 mm2s�1(2000 s�1)

Thermal energy kBT ¼ 4.1 pN 3 nm

Membrane force f ¼ 10 pN

Polymerization rate k0 ¼ 10 mM�1s�1(21.8 s�1)

Depolymerization rate 1.4 s�1

Membrane fluctuation sd ¼ 10 nm

Retrograde flow speed vretr ¼ 70 nm/s

Initial length 81 nm

The grid size and the compartment volume were fixed in our computations;

thus, the corresponding reaction rates and the protein diffusion rates are also

given in ‘‘second’’ units in parenthesis.

FIGURE 3 (a) Time evolution of the filopodial lengths obtained from

individual trajectories. The trajectory average is shown with a thick solid

line. The fit of Eq. 18 (solid line) to the ensemble-averaged filopodial growth

curve (circles) is shown in the inset. (b) The probability distribution of

filopodial lengths in the long time limit.
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Without the membrane force and the decreasing concen-

tration of actin monomer along the filopodium, the length

distribution of long filament is exponential (98), but the in-

terfilament attractions could narrow the length distribution

considerably (99). This is probably a mechanism for the

filopodial precursor initiation in the cytosol (30). Although

the prior deterministic approach, where only the average

length of the filament bundle was considered (19), is consis-

tent with the narrow filament length distribution obtained in

this work, the exact values of the average filopodial length

differ between the stochastic and the deterministic calculations

because of coupling between model nonlinearity and fluctua-

tions. In particular, the average number of G-action molecules

at the filopodial tip compartment is found between 0.3 and 2;

thus, discrete noise is fundamentally present at the microscopic

level. The observed narrowness of the length distribution, on

the other hand, motivates us to focus mainly on the filopodial

average length as a function of various physical parameters.

Next, we examine the way the average steady-state length

Æhæ depends on the G-actin diffusion constant (Fig. 5). As one

would expect, Æhæ increases with the G-actin diffusion rate cdiff

(Fig. 5 a). The dashed line in the figure is from the mean field

approximation (Eq. 17). The major linear dependence of Æhæ
on Cd is certainly captured. In addition, given the small copy

number of actin molecules in filopodial compartments, one

might expect significant fluctuations in monomeric G-actin in

the filopodial tube. Indeed, whereas the G-actin ensemble

average shows the expected behavior (an almost linear

G-actin concentration profile, Fig. 4 a), individual simulation

runs indicate significant diffusional noise (Fig. 4 b). For in-

stance, near the filopodial tip, the number of G-actin mono-

mers frequently drops to exactly zero when steady state is

reached (Fig. 4 b). We anticipate that when significant sto-

chastic noise is injected into filopodial dynamics by including

important signaling regulators, such as capping proteins or

formins, some nontrivial stochastic correlations may result

between these noise sources and the monomeric G-actin dif-

fusional noise.

Generally, filopodial length decreases with increasing

membrane force, as shown in Fig. 6. In the neighborhood of

the zero force, however, the decrease is relatively slow,

which indicates that within a certain range of small forces, Æhæ
depends weakly on the membrane force. This is clearly seen

from the mean field approximation (Eq. 17). Since the

membrane load is shared among 16 filaments, small forces

perturb filament polymerization rates only weakly. A similar

point has also been made in prior works (19,23,62).

The dependence of the filopodial average length on

the polymerization rate is shown in Fig. 7 a. Æhæ initially in-

creases quickly with increasing bare polymerization rate

k0 (see Eq. 4). However, when k0 reaches between 20 s�1 and
FIGURE 4 (a) G-actin monomer numbers along the filopodium at t¼ 300 s

averaged over 1000 trajectories. Error bars indicate the amplitude of typical

fluctuations. (b) 100 individual trajectories are shown. Filopodial tip is

positioned at z¼ 0 nm, and the base is positioned near 625 nm (at t¼ 300 s).

FIGURE 5 Dependence of the average filopodial equilibrium length, Æhæ,
on the monomeric G-actin diffusion constant, Cd. Circles represent the

ensemble average obtained from 100 Gillespie trajectories, and the dashed

line represents the mean field solution (Eq. 17).
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40 s�1, the Æhæ curve starts to approach a limiting value (Fig.

7 a). Thus, after this critical k0 value, the increase of k0 has

little effect on Æhæ. At this point, the polymerization at the tip

becomes diffusion limited. Interestingly, the cell works near

k0 ; 20 s�1, a value just below the point where the Æhæ(k0)

curve bends, perhaps to maximize the growth rate without

sacrificing efficiency. The dashed line indicates the mean

field prediction using Eq. 7. Although lifted as a whole from

the Gillespie simulation, it correctly gives the general tendency.

Next, we examine the effect of the retrograde flow. We

found that Æhæ quickly increases with decreasing the speed

of the retrograde flow rate (Fig. 8 a). This sensitive depen-

dence suggests that regulating the retrograde flow rate may be

a very effective strategy to control the filopodia growth and

retraction. Again, the dashed line plots the analytical solution

(Eq. 17). In terms of absolute error in Æhæ, Eq. 17 matches well

with the Gillespie trajectory averages for large vretrs but de-

viates significantly for small vretrs (Fig. 8 b). The absolute

error in length is between 100 nm and 700 nm. When the

relative error is plotted, Dh/h (Fig. 8 c), it is apparent that in

shorter filopodia that the average lengths are overestimated

from 30–50% when using the mean field (Eq. 17). Our de-

tailed analysis of stochastic trajectories (data not shown)

indicated that Eqs. 14 and 15 agree with stochastically ob-

tained averages to high degree of accuracy, when cn and kn

used in these equations were computed by ensemble aver-

aging of stochastic trajectories. The main discrepancy arises

because of the inadequacy of the diffusion equation (Eq. 12)

to describe noisy G-actin transport from the filopodial base to

the tip, in shorter filopodia. In particular, when actin flux is

computed from the mean field (Eq. 13), it is significantly

overestimated compared with the flux computed numerically

(Fig. 8 d).

The effect of changing the membrane stiffness, sd, is

shown in Fig. 9 a. In the whole computed parameter range,

the filopodial length, Æhæ, significantly increases as the mem-

brane stiffness increases. The following line of reasoning

explains this observation. When the amplitude of membrane

fluctuations is small, forces acting on different filaments are

unequal, resulting in unequal tip polymerization rates. On

the other hand, when membrane fluctuations are large, the

loading force is distributed nearly equally among filaments,

resulting in very similar polymerization rates. Since the po-

lymerization rate is a convex function of the force (Fig. 9, b
and Eq. 4), the second scenario (large sd) leads to smaller

average growth rates, resulting in shorter filopodia. To test

this hypothesis, we computed the ensemble average of indi-

vidual filament polymerization rates as a function of mem-

brane stiffness from stochastic simulations. Indeed, Æknæ
decreases as sd increases (Fig. 9 c). The inset shows that force

fluctuations among individual filaments also decrease with

increasing sd, as expected (Fig. 9 c). When force distribution

among filaments is compared between sd¼ 60 nm and sd¼
1 nm simulations, it is apparent that in the former case fila-

ments nearly equally bear the membrane load, and in the latter

case only a few filaments are under stress; the large majority

are stress free, and thus grow quickly (Fig. 9 d). Therefore, this

analysis confirms that because of the convex nature of the

polymerization rate curve as a function of membrane force,

small amplitude fluctuations can significantly speed up filo-

podial growth rates compared with the mean field result.

Here we considered only the growth of a matured filopo-

dium. At the initiation stage, the membrane stiffness might

play an even more important role (4,30,34). In addition to the

filopodial length distribution average, we examined the de-

pendence of the filopodial length distribution variance on sd

FIGURE 7 Dependence of the average filopodial equilibrium length, Æhæ,
on the bare polymerization rate, k0, at the barbed end. Circles represent the

ensemble average obtained from 100 Gillespie trajectories, and the dashed

line represents the mean field solution (Eq. 17).

FIGURE 6 Dependence of the average filopodial equilibrium length, Æhæ,
on the average membrane force, f, on the filament bundle tip. Circles

represent the ensemble average obtained from 100 Gillespie trajectories, and

the dashed line represents the mean field solution (Eq. 17).
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(data not shown). Within the biologically relevant range of

sd, the variance is rather small. Thus, it is unlikely that long

single filaments grow without other filaments catching up. If

this scenario was realized, at some point the filament would

buckle, inducing abnormal conformational changes or, per-

haps, collapse of the filopodium.

DISCUSSION

In this work, we proposed a computational model to explore

the filopodium dynamics that combines complex mechanical,

physical, and biochemical processes. In contrast to prior

works, our model provides a full stochastic treatment of the

polymerization and depolymerization of each individual ac-

tin filament under the stress of the fluctuating membrane,

where actin monomer diffusion and retrograde flow are key

model components. We examined the dependence of the

filopodial length on the membrane force, polymerization rate,

speed of the retrograde flow, and monomeric actin diffusion

constant. We found that for the biologically relevant pa-

rameter values, the length distribution of actin filaments in

one filopodium has a narrow width, as a consequence of the

negative feedback created by the membrane load and mono-

meric G-actin gradient. Thus, the average filopodial length is

a good parameter to characterize the filopodial growth under

normal conditions. We also discovered that filopodial growth

sensitively depends on the retrograde flow rate. The filopodial

length significantly decreases as the membrane fluctuations

increase, which we attributed to the convex shape of the rate of

the filament tip polymerization as a function of loading force.

We derived a mean field approximation to filopodial length

at steady state and compared the results of our extensive

stochastic simulations with the mean field predictions.

Overall, the mean field solution captured major trends, albeit

with significant numerical discrepancies in some cases. Al-

though the filament length fluctuations turned out to be small,

they still significantly influenced the growth dynamics: 1),

unequal loading of membrane force among individual fila-

ments leads to faster filopodial tip polymerization rates, thus

longer filopodia; and 2), very strong diffusional noise of

FIGURE 8 (a) Dependence of the average filopodial equilibrium length, Æhæ, on the speed of the retrograde flow, vretr, at the pointed end. Circles represent the

ensemble average obtained from 1000 Gillespie trajectories, and the dashed line represents the mean field solution (Eq. 17). (b) The absolute mean field error

defined as the difference between the mean field and exact solutions. (c) The relative difference between the mean field and exact solutions (absolute error

divided by filopodial length). (d) Actin flux computed from stochastic simulations (circles) and the mean field (Eq. 13; dashed line).
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G-actin monomer transport (only 0.3 G-actin molecules are

present at the tip in some simulations) results in G-actin

fluxes that are smaller than predicted from the diffusion

equation. Since these two effects work in opposite directions,

a partial cancellation of errors occurs that improves the ac-

curacy of the mean field solution. However, the parameters of

the mean field model become significantly renormalized by

the fast fluctuations. With bare parameters, the error of the

mean field filopodial length prediction can reach nearly 50%.

On the other hand, our model indicates that the large am-

plitude filopodial length fluctuations, observed in the in vivo

experiments, cannot be accounted for by the minimally em-

bedded stochastic processes that include actin polymerization

and depolymerization and G-actin diffusion. Our work sug-

gests that these fluctuations are induced by external or internal

chemical cues through additional cell-signaling cascades. It is

believed that the filopodial growth and retraction is controlled

largely by the protein complex located at its tip. The role of an

external cue can be played by chemical ligands or mechanical

tension. The signaling molecules are transmitted along the

filopodium by diffusion, retrograde flow, or motor proteins

(3,100). Although much progress has been made in charac-

terizing the filopodial machinery (14,15,26,29,31,101), the

exact composition and function of the signaling pathways that

regulate filopodial growth is still not entirely clear (4).

The model reported in this work does not include signaling

by regulatory proteins or binding of cross-linking proteins,

however, it provides a platform for further, more involved and

realistic modeling. Our computations already hint what could

be the key processes that should be regulated by signaling

molecules. For example, we suggest that regulating the ret-

rograde flow rate would be a highly efficient way to control

filopodial extension dynamics. In an ongoing investigation,

we are building into our model a number of additional regu-

latory proteins, such as CAPZ, Ena/Vasp, formin, profilin,

and cofilin, considering their transportation along the filopo-

dial protrusion and interaction with the G-actin monomers

and actin filaments. For some of these large protein molecules,

FIGURE 9 (a) Dependence of the filamental average length on the membrane fluctuation amplitude, sd. (b) Polymerization rate at the filament’s barbed

end as a function of force load. For the same average load, unequal distribution of forces results in faster average growth rates. (c) Ensemble average

of individual polymerization rates, Æknæ, obtained from 1000 Gillespie trajectories. The solid line represents the mean field result, km
n �f � ¼ 21:8�

expð�ð10 pN 3 2:7 nmÞ=ð16 3 4:1 pN 3 nmÞÞ: The inset indicates the force fluctuations among individual filaments, jdf j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æðfn � Æf æÞ2æ

p
: (d) Distribution

of individual filament forces for sd ¼ 60 nm and sd ¼ 1 nm (inset).
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at low copy numbers, stochastic modeling is essential. The

dynamics of the retrograde flow (17), the regulation of the

membrane force (76), and their influence on the filopodial

growth also need to be further investigated. Finally, close

examination of physicochemical experiments on filopodia

will point to additional important biochemical processes that

need to be included in the model.
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84. Döbereiner, H.-G., B. J. Dubin-Thaler, G. Giannone, and M. P.
Sheetz. 2005. Force sensing and generation in cell phases: analyses of
complex functions. J. Appl. Physiol. 98:1542–1546.

85. Girard, P., J. Prost, and P. Bassereau. 2005. Passive or active
fluctuations in membranes containing proteins. Phys. Rev. Lett. 94:
088102.

86. Sheetz, M. P., J. E. Sable, and H.-G. Döbereiner. 2006. Continuous
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