

NIH Public Access

Author Manuscript

Bioorg Med Chem Lett. Author manuscript; available in PMC 2011 July 15.

Published in final edited form as:

Bioorg Med Chem Lett. 2010 July 15; 20(14): 4053-4056. doi:10.1016/j.bmcl.2010.05.090.

Synthesis and anti-HIV activity of 2'-deoxy-2'-fluoro-4'-C-ethynyl nucleoside analogues

Qiang Wang^a, Yanfeng Li^a, Chuanjun Song^a, Keduo Qian^b, Chin-Ho Chen^c, Kuo-Hsiung Lee^{b,*}, and Junbiao Chang^{a,*}

^a Department of Chemistry, Zhengzhou University, PR. China

^b Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA

^c Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA

Abstract

Based on the favorable antiviral profiles of 4'-substituted nucleosides, novel 1-(2'-deoxy-2'-fluoro-4'-C-ethynyl- β -D-arabinofuranosyl)-uracil (1a), -thymine (1b), and – cytosine (2) analogues were synthesized. Compounds 1b and 2 exhibited potent anti-HIV-1 activity with IC₅₀ values of 86 and 1.34 nM, respectively, without significant cytotoxicity. Compound 2 was 35-fold more potent than AZT against wild-type virus, and also retained nanomolar antiviral activity against resistant strains, NL4-3(K101E) and RTMDR. Thus, 2 merits further development as a novel NRTI drug.

Keywords

2'-Deoxy-2'-fluoro-4'-C-ethynyl nucleosides; anti-HIV activity

Human immunodeficiency virus type-1 (HIV-1) infection affects approximately 40 million individuals worldwide. The HIV-1 reverse transcriptase (RT) enzyme is responsible for converting the genomic single-strand RNA of HIV into double-strand DNA; therefore, it is a major target for anti-HIV drug discovery.1 HIV-1 RT inhibitors fall into two classes: nucleoside RT inhibitors (NRTIs) and non-nucleoside RT inhibitors (NNRTIs). Since the discovery of zidovudine (AZT),2 many nucleoside analogues have been designed and synthesized. Currently, seven NRTIs have been approved by the US FDA for the treatment of HIV infections, including zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC), abacavir (ABC), and emtricitabine [(-)FTC].3 These drugs block the synthesis of double-strand viral DNA from the newly made single-strand DNA, and thus terminate or abort the polymerization process catalyzed by HIV RT.4

^{*}Corresponding authors. For K.H.L. Tel.: +1-919-962-0066. Fax: +1-919-966-3893. khlee@unc.edu; For J.C. Tel.: +86-371-67783017. Fax: +86-371-67783017. changjunbiao@zzu.edu.cn.

Supplementary Data:

Supplementary data (synthesis, ¹H NMR data, bioassay methods, and HPLC/mass spectral purity analyses of final compounds) associated with this article can be found, in the online version, at doi:.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Emerging drug-resistant viral strains as well as long-term toxicity are the main problems in current antiviral chemotherapy.5 Although there are many RT inhibitor-resistant viral strains generated clinically, NRTIs remain the most potent and efficient antiviral drugs and are still used as first-line clinical therapies. Therefore, structurally modified novel nucleosides are needed to overcome the treatment drawbacks.

From a structure-activity relationship (SAR) standpoint, the emergence of highly drugresistant HIV-1 variants suggests that RT is capable of discriminating physiologic 2'deoxynucleosides (dNs) from 2',3'-dideoxynucleosides (ddNs), at least by recognizing the difference in the 3'-position.6 To overcome the resistance issues, novel nucleoside analogues that retain the 3'- α -OH were designed in our study to exert antiviral activity against HIV-1. RT might not be able to discriminate such analogues or, if it does, it may do so less effectively. In addition, a fluorine moiety was also incorporated into the 2' position of the ribose. Thus, in our continued research on NRTIs,7⁻⁹ we report herein the synthesis of 2'deoxy-2'-fluoro-4'-*C*-ethynyl nucleoside analogues (Figure 1) and their potent anti-HIV-1 activity.

1-(2'-Deoxy-2'-fluoro-4'-*C*-ethynyl- β -D-arabinofuranosyl)-uracil (1a) and -thymine (1b) were synthesized from uracil (5a) and thymine (5b) in 15 steps. Compound 18a, the precursor to 1a, was converted to the corresponding 4'-*C*-ethynyl-cytosine analogue 2 in two steps (Scheme 1).

2-Deoxy-2-fluoro-1,3,5-O-tribenzoyl-D-arabinofuranoside (3) was first converted to $1'-\alpha$ bromide 4 with HBr-HOAc in 45% yield. Bromide 4 was then glycosylated with silylated pyrimidines 5 and 6 in CHCl₃ to give the desired dibenzoylated β -nucleoside analogues 7a and **7b** in over 80% yield. Deprotection of the benzoyl groups with saturated methanolic ammonia afforded 2'-deoxy-2'-fluoro- β -D-arabinofuranosyl-uracil (8a) and -thymine (8b) in 90% and 97% yields, respectively. Compounds 8a and 8b were reacted sequentially with 4,4'-dimethoxytrityl chloride (DMTrCl) and *tert*-butyldimethylsilyl chloride (TBDMSCl) to protect the 5'- and 3'-hydroxy groups, respectively. The 5'-DMTr protecting group of the resulting compounds 10a and 10b was then selectively removed with trifluoroacetic acid (TFA) in CH₂Cl₂ to provide the 3'-silvated analogues **11a** and **11b**. The 5'-hydroxymethyl group of **11a** and **11b** was oxidized to an aldehyde by Pfitzner-Moffatt oxidation. The resulting compounds 12a and 12b were then treated with formaldehyde under basic conditions in 1,4-dioxane, followed by sodium borohydride, to yield the corresponding 4'-a-C-hydroxymethyl analogues 13a and 13b. To differentiate the two hydroxymethyl groups of 13a and 13b, the 4'- α -hydroxymethyl group was selectively protected with DMTr, and the remaining β -hydroxymethyl group was then protected with TBDMS.10 Compounds **14a** and 14b were obtained in high yields of 71% and 95%. Selective removal of the DMTr group with TFA afforded **16a** and **16b**, which now had one α -C-hydroxymethyl group open for further modification. Oxidation of the $4'-\alpha$ -hydroxymethyl group of **16a** and **16b** to the formyl derivatives, followed by Wittig olefination with chloromethyl triphenyl phosphonium chloride, afforded chlorovinyl derivatives **17a** and **17b**. The chlorovinyl group of these compounds was directly converted into an ethynyl group by treatment with *n*butyllithium in THF to provide 4-ethynyl analogues 18a and 18b. Finally, removal of the protecting groups with ammonium fluoride in refluxing MeOH provided the target compounds 1a (R = H) and 1b ($R = CH_3$). The uridine analogue 18a was converted to the cytidine derivative **19** by a traditional approach. Deprotection of **19** with the same method as for 1 yielded compound 2.

The chlorovinyl compound **17** from the classical Wittig olefination was predominantly in a *Z*-configuration. In the ¹H NMR spectrum of **17a**, δ 5.95 (1H, d, *J* = 8.05 Hz) was assigned to the *Z*-configured vinyl-H, and δ 6.01 (1H, d, *J* = 13.54 Hz) to the *E*-configured vinyl-H,

based on the coupling constants. The integration values of the two peaks were 0.73 (δ 5.95) and 0.27 (δ 6.01), indicating that the ratio of *Z*- to *E*-isomers was approximately 2.7:1. Both isomers could be converted to **18**.

Compounds **1a**, **1b**, and **2** were evaluated in an anti-HIV (wild type) replication assay and the *in vitro* anti-HIV activity results are listed in Table 1. Cytotoxicity was evaluated by MTT assay. All three compounds did not exhibit significant cytotoxicity at concentrations up to 10 M.

Compound **1b** exhibited potent anti-HIV-1 replication activity with an IC₅₀ value of 86 nM, and thus, was ten-fold more potent than 1-(2'-deoxy-4'-C-ethynyl- β -D-arabinofuranosyl)-thymine without a fluorine atom at the 2'- β -position, which had an IC₅₀ value of 830 nM11 (equivalent to that of AZT). This result confirmed that insertion of an electron-withdrawing atom, such as fluorine, into the nucleoside deoxyribose moiety can lead to dramatically improved anti-HIV activity. Such a modification can greatly affect the electronic properties and conformational shape of the nucleoside,12⁻¹⁵ which often results in better biological activity.

Impressively, compound **2** showed extremely potent antiviral activity with an IC₅₀ value of 1.34 nM, and was 35-fold more potent than AZT, suggesting that dissimilar nucleobase moieities may contribute differently towards the antiviral potency of these nucleoside analogs. We concluded that the base component of NRTIs has a moderate influence on activity, and the anti-HIV-1 activity of our compounds followed the rank order of cytidine > thymidine > uridine. The results with **1b** and **2** also confirmed that compounds carrying a 3'- α -OH could still show significant anti-HIV activity. In the further evaluation of **2**, we discovered that it retained its nanomolar activity against drug-resistant HIV strains including NL4-3 (K101E) and RTMDR (Table 2). K101E tends to decrease viral susceptibility to all nucleoside RT inhibitors, while RTMDR is a multiple RT inhibitor-resistant strain, which is insensitive to AZT, ddI, nevirapine, and other NNRTIs. In our screening, **2** exhibited extremely potent anti-HIV activity against NL4-3 (wild-type), NL4-3 (K101E), and RTMDR, with IC₅₀ values of 0.46, 1.52, and 1.45 nM respectively. These findings indicate that **2** has a great potential to be developed as a novel NRTI that could overcome drug-resistance issues.

In summary, new 2'-deoxy-2'-fluoro-4'-C-ethynyl nucleoside analogues were designed, synthesized, and evaluated for *in vitro* antiviral activity in this study. Compound **2** was extremely potent against HIV-1 wild-type strain without obvious cytotoxicity. It retained nanomolar activity against NRTI-resistant and multi-resistant HIV strains, and merits further development as an anti-AIDS clinical trial candidate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

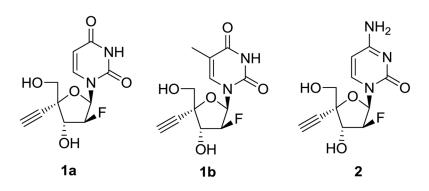
Acknowledgments

J. Chang thanks the National Natural Science Foundation of China (#20672030) and the Outstanding Young Scholarship of NSFC (#30825043) for financial support. The research was also partially supported by Grant AI-33066 from the National Institute of Allergies and Infectious Diseases awarded to K. H. Lee.

Abbreviations

HIV-1

human immunodeficiency virus type-1


reverse transcriptase	
nucleoside reverse transcriptase inhibitor	
non-nucleoside reverse transcriptase inhibitor	
2'-deoxynucleoside	
2',3'-dideoxynucleoside	
zidovudine	
structure-activity relationship	
4,4'-dimethoxytrityl chloride	
tert-butyldimethylsilyl chloride	
thin-layer chromatography	

References and notes

- (a) Aquaro S, Svicher V, Schols D, Pollicita M, Antinori A, Balzarini J, Perno CF. J Leukoc Biol. 2006; 80:1103. [PubMed: 16931601] (b) Meadows DC, Gervay-Hague J. Chem Med Chem. 2006; 1:16. [PubMed: 16892329] (c) Stevens M, De Clercq E, Balzarini J. Med Res Rev. 2006; 26:595. [PubMed: 16838299]
- (a) Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H, Barry DW. Proc Natl Acad Sci U S A. 1986; 83:8333.
 [PubMed: 2430286] (b) Sarin PS. Annu Rev Pharmacol Toxicol. 1988; 28:411. [PubMed: 3289492] (c) De Clercq E. Anticancer Res. 1987; 7:1023. [PubMed: 3324934] (d) Mitsuya H, Weinhold KL, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S. Proc Natl Acad Sci U S A. 1985; 82:7096. [PubMed: 2413459] (e) Yarchoan R, Klecker RW, Weinhold KJ, Markham PD, Lyerly HK, Durack DT, Gelmann E, Lehrman SN, Blum RM, Barry DW. Lancet. 1986; 1:575. [PubMed: 2869302]
- 3. De Clercq E. Int J Antimicrob Agents. 2009; 33:307. [PubMed: 19108994]
- 4. Nicolas J, Franck A, Rapp KL, Schinazi RF, Agrofoglio LA. Tetrahedron. 2008; 64:4444.
- 5. De Clercq E. AIDS Res Hum Retrovir. 1992; 8:119. [PubMed: 1371690]
- 6. Ohrui H, Mitsuya H. Curr Drug Targets: Infect Disord. 2001; 1:1. [PubMed: 12455229]
- 7. Dong CH, Qi XX, Yu XJ, Chang JB. Gaodeng Xuexiao Huaxue Xuebao. 2004; 25:2054.
- 8. Dong CH, Chang JB, Wang Q, Qi XX, Yu XJ. Youji Huaxue. 2004; 24:1099.
- 9. Chu J, Guo H, Chang J, Zhao K. Chin Ch Lett. 2004; 15:785.
- Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, Granycome C, Hang J, Hobbs CJ, Jiang WR, Laxton C, Le Pogam S, Leveque V, Ma H, Maile G, Merrett JH, Pichota A, Sarma K, Smith M, Swallow S, Symons J, Vesey D, Najera I, Cammack N. Bioorg Med Chem Lett. 2007; 17:2570. [PubMed: 17317178]
- 11. Sugimoto I, Shuto S, Mori S, Shigeta S, Matsuda A. Bioorg Med Chem Lett. 1999; 9:385. [PubMed: 10091689]
- 12. Watanabe KA, Reichman U, Hirota K, Lopez C, Fox J. J Med Chem. 1979; 22:21. [PubMed: 218006]
- 13. Hertel LW, Kroin JS, Misner JW, Tustin JM. J Org Chem. 1988; 53:2406.
- Marquez VE, Tseng CK-H, Mitsuya H, Aoki S, Kelley JA, Ford H Jr, Roth JS, Broder S, Johns DG, Driscoll JS. J Med Chem. 1990; 33:978. [PubMed: 2106581]
- 15. Scharer OD, Verdine GL. J Am Chem Soc. 1995; 117:10781.
- He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. J Virol. 1995; 69:6705. [PubMed: 7474080]
- 17. Connor RI, Chen BK, Choe S, Landau NR. Virology. 1995; 206:935. [PubMed: 7531918]
- 18. Rong L, Bates P. J Virol. 1995; 69:4847. [PubMed: 7609052]

- Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Cancer Res. 1987; 47:943. [PubMed: 3802101]
- 20. Qian K, Yu D, Chen CH, Huang L, Morris-Natschke SL, Nitz TJ, Salzwedel K, Reddick M, Allaway GP, Lee KH. J Med Chem. 2009; 52:3248. [PubMed: 19388685]

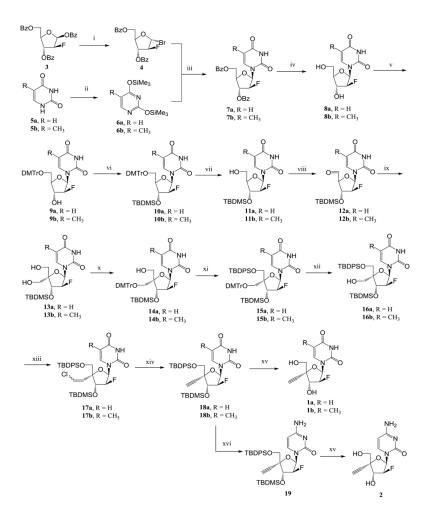

Wang et al.

Figure 1.

Structures of 1-(2'-deoxy-2'-fluoro-4'-*C*-ethynyl- β -D-arabinofuranosyl)-uracil (1a), - thymine (1b), and -cytosine (2).

Wang et al.

Scheme 1.

Reagents and conditions: (i) HBr.HOAc, CH₂Cl₂; (ii) HMDS, (NH₄)₂SO₄; (iii) CHCl₃, reflux; (iv) saturated NH₃/CH₃OH, r.t.; (v) DMTrCl, Pyr, 0 °C; (vi) imidazole, TBDMSCl, CH₂Cl₂; (vii) TFA, CH₂Cl₂; (viii) Pyr, TFA, EDC.HCl, DMSO; (ix) 1) 37% HCHO, 2N NaOH, 1,4-dioxane; 2) HOAc, NaBH₄, EtOH; (x) DMTrCl, CH₂Cl₂, Pyr; (xi) imidazole, TBDPSCl, CH₂Cl₂; (xii) TFA, CH₂Cl₂; (xiii) 1) Pyr, TFA, EDC.HCl, DMSO; 2) chloromethyl triphenyl phosphonium chloride, *n*-BuLi, -78 °C, THF; (xiv) *n*-BuLi, -78 °C, THF; (xv) NH₄F, MeOH, reflux; (xvi) 1) 1,2,4-triazole, POCl₃, Pyr, CH₂Cl₂; 2) NH₄OH, THF.

_

Table 1

Anti-HIV-1 replication activity in MT-2 lymphocytes

compound	$\mathrm{IC}_{50}(\mu\mathrm{M})^{a}$	CC ₅₀ (µM)
1a	6.53	> 10
1b	0.086	> 10
2	0.00134	> 10
AZT	0.047	> 200

 $^{\it a}{\rm IC}_{50}\,(\mu M)$ is the concentration that inhibits HIV by 50%.

Table 2

Anti-HIV activity of 2 against wild-type virus and resistant strains

viral strain	compound 2 (IC ₅₀ , μ M) ^{<i>a</i>}
NL4-3 (wild-type)	0.00046
NL4-3 (K101E)	0.00152
RTMDR ^b	0.00145

 $^{a}\mathrm{IC50}$ (µM) is the concentration that inhibits HIV by 50%.

^bRTMDR is a multiple RT inhibitor-resistant strain, has RT mutations - M41L, L74V, V106A and T215Y, and is resistant to AZT, ddI, Nevirapine, and other NNRTIS.