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Abstract

A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), 

Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating 

activity in calcium mobilization assays. Structure-activity relationship studies showed that the 

modulation potency of this series at the CB1 receptor was enhanced by the presence of a 

diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position 

and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had 

an IC50 value of 79 nM which is ~ 2.5 and 10 fold more potent than the parent compounds 3 and 

1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 

receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide 

the basis for further optimization and use of CB1 allosteric modulators.
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1. Introduction

The cannabinoid type 1 (CB1) receptor is a key component of the endocannabinoid system, 

which also includes the CB2 receptor, endocannabinoids and enzymes involved in the 

biosynthesis and degradation of these endogenous ligands.1, 2 Since the cloning of CB1 and 

CB2 receptors in the 1990s, considerable research efforts have been directed at 

understanding their physiological and pathological roles. The endocannabinoid system has 

been shown to be involved in a number of physiological processes, including cardiovascular 

regulation, appetite control, learning and memory, and pain processing.3-5 The CB1 receptor 

is one of the most abundant G-protein coupled receptor (GPCR) expressed in the central 

nervous system (CNS), and is predominantly expressed at pre-synaptic nerve terminals, 

where it plays a key role in inhibition of transmitter release. The CB1 receptor is also found 

in several peripheral tissues, but at much lower concentrations. The CB2 receptor is mainly 

expressed in immune cells, and is involved in modulation of cytokine release and immune 

cell migration. The modulation of the CB1 receptor has been targeted in the treatment of a 

number of disorders such as obesity, drug addiction, pain, inflammation, gastrointestinal 

diseases, multiple sclerosis, psychosis, schizophrenia, and osteoporosis.4, 6

A large number of selective and non-selective agonists and antagonists have been developed 

for the CB1 receptor to date.7-9 More recently, there is convincing evidence suggesting that 

the CB1 receptor also contains allosteric binding site(s) that can be modulated by 

endogenous and/or synthetic small molecules, and the structural requirements of allosteric 

ligands are distinctly different from orthosteric ligands.10-12 A number of novel compounds 

have been reported to be CB1 allosteric modulators, including Org27569, Org29647, 

Org27759 (1-3),13 PSNCBAM-1 (4),14 RTI-371 (5),15 and lipoxin A4 (6).16 Compared to 

orthosteric ligands, allosteric ligands generally do not disrupt physiological signaling 

processes and may provide improved selectivity as allosteric sites are less structurally 

conserved than the corresponding orthosteric site among receptor subtypes. In addition, 

allosteric modulators may offer a significant clinical advantage in drug safety profiles 

because of the “ceiling” effect, the phenomenon in which a drug reaches a maximum effect 

so that increasing the drug dosage does not increase its effectiveness, which results from 

their dependence on endogenous ligands for signaling.17-19 The small molecule CB1 
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allosteric modulators developed to date have been demonstrated to be allosteric enhancers of 

agonist binding and affinity and allosteric inhibitors of agonist signaling efficacy in several 

in vitro functional assays.20, 21 Interestingly, 1 did not enhance or block CB1 agonist-

induced effects in several animal models in mice (antinociception, catalepsy, and 

hypothermia) and appeared to exhibit its anorectic effect through non-CB1 specific 

mechanisms.22 While we have seen similar negative results in catalepsy and antinociception 

in rats, Org27569 attenuated the hypothermic effects of CB1 receptor agonists CP55940 and 

anandamide.23 Moreover, we also found that 1 resulted in a dose-related attenuation of both 

cue- and drug-induced reinstatement of cocaine- and methamphetamine-seeking behavior.24 

Finally, 1 showed high pharmacological selectivity against over forty GPCRs including 

those commonly involved in drug addictions.24 Together, these results suggest that the 

observed effects of 1 were likely mediated through negative modulation of CB1 receptors.

Since the discovery of 1-3, several structure-activity relationship (SAR) studies on the 1H-

indole-2-carboxamide scaffold have been reported. Most of these studies have focused on 

modifications on the indole and phenyl rings A and B (Figure 1). Piscitelli et al examined a 

number of 4-substitutions on the phenyl ring B and discovered that piperidinyl or 

dimethylamino groups at the 4-position of the phenyl ring were preferred for CB1 activity 

and the carboxamide functionality was required (Figure 1).25 Subsequent work found that 

longer alkyl side chains with up to 9 carbon units at the C3 position of indole ring A could 

retain activity, whereas linkers other than an ethylene between the amide bond and the 

phenyl ring B resulted in total loss of activity.26-28 In an attempt to expand our 

understanding of the structure-activity relationship on this scaffold, we have designed 

additional analogs by (i) exploring different substituents at the 4-, 3-, 2-positions of the 

phenyl ring B, (ii) examining several rigid cyclic ring linkers between the phenyl and the 

indole rings, and (iii) investigating the effects of shorter alkyl side chain at the C3 position 

and halogenations at the C5 position of the indole ring A. Here, we report the synthesis of 

these 1H-indole-2-carboxamide analogs and the evaluation of CB1 and CB2 activities in 

fluorometric imaging plate reader (FLIPR) based calcium mobilization assays.

2. Methods

2.1. Chemistry

The target compounds 12, 16-37, 42-49 were synthesized following procedures depicted in 

Schemes 1 and 2. Scheme 1 describes the synthesis of the key intermediate 5-chloro-3-

ethyl-1H-indole-2-carboxylic acid (11) and target compounds 16-37. The commercially 

available 5-chloro-1H-indole-2-carboxylic acid (7) was protected as ethyl ester 8 which 

underwent Friedel Crafts acylation to yield 9.29 Reduction of 9 by triethylsilane in 

trifluoroacetic acid at room temperature gave 10 which was hydrolyzed in aqueous sodium 

hydroxide and ethanol to furnish the intermediate 11.26, 27 Amide coupling between 11 and 

4- or 3-nitrophenylethylamine in the presence of BOP provided 12 and 13 which were 

reduced by Raney nickel-catalyzed transfer hydrogenation using hydrazine in ethanol at 50 

°C to give 14 and 15. Reductive amination of amines 14 and 15 with the corresponding 

aldehydes provided the target compounds 16-20. Compounds 21-23 were obtained by amide 
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coupling of amine 14 and corresponding acids or acid chloride. Similarly, compounds 24-37 
were prepared by standard amide coupling between acid 11 and the appropriate amines.

The N,N-diethylphenylethylamine (40) and 4-piperidinylphenethylamine (41) used to 

synthesize compounds 1 and 42-49 were prepared according to Scheme 2. 4-

Nitrophenethylamine (38) underwent Boc-protection and Raney nickel-catalyzed reduction 

with hydrazine hydrate in ethanol at 50 °C to give 39, which was then converted to 40 by 

reductive amination with acetaldehyde in the presence of sodium triacetoxyborohydride in 

1,2-dichloroethane. Cyclization of 39 with 1,5-dibromopentane in aqueous potassium 

carbonate solution under microwave irradiation furnished 41.30 After removal of the Boc 

protective group, 40 and 41 were coupled with the corresponding 1H-indole-2-carboxylic 

acids to afford the target compounds 1, and 42-49.

2.2. Biological assays

The activity of the target compounds at CB1 and CB2 receptors was evaluated in FLIPR-

based calcium mobilization functional assays. The calcium mobilization assays have been 

used routinely in our laboratory to characterize cannabinoid compounds and demonstrate 

correlation with other cannabinoid assays such as binding and GTP- -S.31-33 Briefly, CHO-

RD-HGA16 cells stably expressing either human CB1 or CB2 receptors were loaded with 

Calcium 5 dye (Molecular Devices, USA), and treated with test compounds in the presence 

of the EC80 concentration of the agonist CP55,940 (100 nM). For the CB1 receptor, IC50 

values were obtained from the plots of kinetic reduction fluorescence signals against the log 

of compound concentrations. For the CB2 receptor, all compounds were initially screened at 

10 μM as antagonists and IC50 was obtained only if > 50% inhibition was observed. Finally, 

all compounds were also tested for agonist activity at 10 μM at both receptors.

3. Results and discussion

Using 1 as the lead compound (IC50 = 853 nM), we first investigated the effect of 

substitution on the phenyl ring B (Table 1). Previous studies have focused on 4-substitutions 

on this phenyl ring, particularly 4-amino groups such as piperidinyl and dimethylamino.25-27 

Here we introduced a number of other amino groups at several positions. The activity of the 

piperidine ring-opened series (compounds 16-19) was found to be sensitive to the length of 

the alkyl substituent. The activity of the dialkylamino analogs increased from methyl (16) to 

ethyl (17) and then declined as the side chain was extended further to a propyl group (18). 

The hexyl analog 19 was only moderately active. Together, these implicate a limited space 

at this region of the CB1 binding pocket. The most potent analog was 17 with the 

diethylamino group at the 4-position (IC50 483 nM, 2-fold more potent than 1). All three 

acylated analogs (21-23) were devoid of any activity up to 10 μM. The activity also 

decreased with the non-substituted analog (24) or when the nitrogen was replaced by other 

substituents with different electronic properties (12, 24-27), in agreement with earlier 

findings.11 Together, these results suggest that a basic electron-accepting nitrogen was 

preferred at the 4-position for CB1 modulating activity.

While the 4-position on the phenyl ring has been previously investigated, substitutions at the 

other positions have not been reported. Interestingly, we found that the 4- and 3- position on 
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the phenyl ring preferred different substituents. The 4-position appeared to favor the 

dialkylamino substituted series. Switching the dimethylamino group from the 4- to 3-

position resulted in abolishment of CB1 inhibitory activity. 16 had an IC50 of 787 nM, 

whereas the 3-position substituted analog 20 displayed no potency up to 10 μM. However, 

the chloro group preferred a 3-position substitution pattern as 29 had an IC50 of 831 nM 

while 25 and 28 had IC50 values of 2500 nM and 5810 nM, respectively. Methoxy was less 

affected by substituent position with 26 and 30, both displaying moderate potency. This 

substitution difference between the 3 and 4-positions seem to suggest less steric tolerance at 

the 3-psotions where only a chloro, but not the dimethylamino or methoxy groups are 

tolerated. A combination of 3- and 4-substituents did not provide any enhancement to the 

potency (33 and 34), and even reduced the potency as in the case of 32 (3’-OH, 4’-OCH3), 

consistent with earlier observations on limited spatial pocket at these positions.

Compound 2 with a pyrrolidinyl linker between the amide bond and the phenyl ring showed 

significantly reduced potency compared to 1 and 3 (Table 2). Several other linkers were 

briefly examined and none of the phenyl (35) or piperazine (36 and 37) analogs showed CB1 

inhibitory effects at concentrations up to 10 μM. Hence, it appears that a flexible alkyl linker 

is important to CB1 activity, which is in agreement with Khurana et al who showed that the 

ethylene moiety was the optimal linker.27

Next we turned our attention to the indole ring A where we investigated the effect of fluoro 

and chloro groups at the C5 position and the length of the alkyl side chain at the C3 position 

on the indole ring. These analogs have either a piperidinyl group as in 1 or a diethylamino 

group as in 17, the most potent compounds from Table 1, at the 4-position of the phenyl ring 

B. In general, the diethylamino analogs (17, 42-45 having IC50 values ranging from 79 to 

484 nM) were more potent than the piperidinyl analogs (1, 46-49 having IC50 values from 

212 to 853 nM). Compound 45 was the most potent compound in this series with an IC50 

value of 79 nM, 6-fold more potent than compound 17, and 2.5-fold more potent than 

compound 3. The CB1 inhibitory effect seems to be sensitive to the substituent on the C3 

position on the indole ring. A smaller group like H or Me is preferred to an ethyl group. On 

the other hand, F and Cl at the C5 position was not the determining factor in CB1 activity. 

While 45 and 49 with a 5-chloro were more potent than 44 and 48 with a 5-fluoro 

substituent, 17 and 1 were less active than their counterparts 42 and 46.

When tested at the CB2 receptor, none of the compounds showed > 35% of inhibition of the 

EC80 of CP55,940 at concentrations of up to 10 μM and therefore, their IC50 value was not 

determined (Tables 1-3). All compounds were also screened at 10 μM for agonist activity at 

both the CB1 and CB2 receptors. None of the compounds displayed significant agonist 

activity at either receptor (less than 30% of CP55,940 Emax) (Supporting Information). As 

depicted in Figure 2, compound 1, 3 and 45 all dose-dependently decreased the Emax of 

agonist CP55,940 in the same manner. Thus, this suggests that these compounds exerted 

their effects by an allosteric mechanism.20, 21
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4. Conclusions

The identification of the CB1 allosteric binding site and its interesting pharmacological 

response have prompted investigation of its function and development of molecular probes 

to help elucidate the pharmacology of the CB1 receptor. To this end, we have designed and 

synthesized a series of 1H-indole-2-carobxamide derivatives by varying substituents on the 

phenyl ring B, linker between the amide bond and phenyl ring B, as well as modifying the 

halogen substituent at the 5-position and alkyl side chain at the 3-position on the indole ring 

A. In general, an electron-donating group at the 4-position on the phenyl ring, as well as an 

ethylene linker, were important features of CB1 modulating activity. On the indole ring A, a 

small side chain (H or Me) was preferred while the difference in effects of the fluoro and 

chloro on CB1 activity was not significant. These compounds showed excellent selectivity 

against the CB2 receptor and did not have any significant agonist activity at either receptor 

in the calcium mobilization assays. Several compounds showed similar or improved potency 

compared to the parent compounds. Compound 45 had an IC50 of 79 nM, ~ 2.5 and 10 fold 

more potent than 3 and 1, respectively. In conclusion, CB1 allosteric modulators of this 

structural scaffold hold promising potential for further development as effective probes of 

the allosteric site(s) of the CB1 receptor.

5. Experimental

5.1. Chemistry

All solvents and chemicals were reagent grade. Unless otherwise mentioned, all reagents 

and solvents were purchased from commercial vendors and used as received. Flash column 

chromatography was carried out on a Teledyne ISCO CombiFlash Rf system using 

prepacked columns. Solvents used include hexane, ethyl acetate (EtOAc), dichloromethane, 

and, methanol. Microwave reactions were carried out on a CEM Discover microwave 

synthesizer. 1H and 13C NMR spectra were recorded on a Bruker Avance DPX-300 (300 

MHz) spectrometer and were determined in chloroform-d, methanol-d4, or DMSO-d6 with 

tetramethylsilane (TMS) (0.00 ppm) or solvent peaks as the internal reference. Chemical 

shifts are reported in ppm relative to the reference signal and coupling constant (J) values 

are reported in hertz (Hz). Thin layer chromatography (TLC) was performed on EMD 

precoated silica gel 60 F254 plates and spots were visualized with UV light or iodine 

staining. Low resolution mass spectra were obtained using a Waters Alliance HT/Micromass 

ZQ system (ESI). All test compounds were greater than 95% pure as determined by HPLC 

on an Agilent 1100 system using an Agilent Zorbax SB-Phenyl, 2.1 mm × 150 mm, 5 μm 

column with gradient elution using the mobile phases (A) H2O containing 0.1% CF3COOH 

and (B) MeCN, with a flow rate of 1.0 mL/min.

Ethyl 5-chloro-1H-indole-2-carboxylate (8)—To a flask containing 5% HCl solution 

(50 ml) and ethanol (50 ml) was added 5-chloro-1H-indole-2-carboxylic acid (2 g, 10.22 

mmol). The reaction was refluxed for 18 h. After that, the reaction volume was reduced to 

half in vacuo. The product precipitated out and was filtered off. The mother liquor was 

evaporated to dryness and the solid residue was washed with a mixture of acetone and water 

to an additional crop of the product as off-white solid (2.18 g, 95% yield). 1H NMR (CDCl3) 
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1.42 (t, J=7.2, 3H), 4.42 (q, J=7.2, 2H), 7.15 (m, 1H), 7.27 (m, 1H), 7.35 (m, 1H), 7.66 (s, 

1H), 9.03 (br, 1H). MS (ESI) [M-H]− 222.4.

Ethyl 3-acetyl-5-chloro-1H-indole-2-carboxylate (9)—Acetic anhydride (1.1 ml, 8.94 

mmol) was added to an ice-cooled suspension of AlCl3 (1.19 g, 8.94 mmol) in 1,2-

dichloroethane (16 ml) and the reaction was stirred for 5 min under nitrogen. A solution of 7 
(1 g, 4.47 mmol) in 1,2-dichloroethane (16 ml) was added dropwise and the reaction mixture 

was refluxed for 1 h. After cooling to room temperature, the reaction mixture was added ice 

water, extracted with ethyl acetate, dried over anhydrous MgSO4, and purified by column 

chromatography on silica (0-25% ethyl acetate in hexanes) to give the product as off-white 

solid (0.72 g, 60% yield). 1H NMR (CDCl3) 1.46 (t, J=7.1, 3H), 2.74 (s, 3H), 4.49 (q, J=7.2, 

2H), 7.34 (m, 2H), 8.12 (s, 1H), 9.18 (br, 1H).

Ethyl 5-chloro-3-ethyl-1H-indole-2-carboxylate (10)—To a solution of 9 (0.44 g, 

1.66 mmol) in trifluoroacetic aicd (4 ml) was added triethylsilane (1.1 ml, 6.64 mmol). The 

reaction mixture was stirred at room temperature for 3 h. It was then poured into water, 

extracted with ethyl acetate. The organic layer was washed with 1N NaOH, water, and brine, 

dried over anhydrous MgSO4, and concentrated in vacuo to give the desired product as 

yellow solid (0.4 g, 95% yield). 1H NMR (DMSO-d6) 1.17 (t, J=7.4, 3H), 1.35 (t, J=7.1, 

3H), 3.03 (q, J=7.3, 2H), 4.35 (q, J=7.0, 2H), 7.25 (m, 1H), 7.42 (d, J=8.7, 1H), 7.74 (d, 

J=1.7, 1H), 11.68 (br, 1H).

5-Chloro-3-ethyl-1H-indole-2-carboxylic acid (11)—A solution of 10 (0.40 g, 1.58 

mmol) and aqueous 1N NaOH (2.5 ml) in ethanol (30 ml) was refuxed for 3 h. After the 

reaction has completed, solvent was removed in vacuo. The residue was dissolved in 5 ml of 

water and pH was adjusted to 3 by 2N HCl. White precipitate formed during the reaction 

was filtered to give the desired product as off-white solid (0.38 g, quantitative yield). 1H 

NMR (DMSO-d6) 1.17 (t, J=7.3, 3H), 3.02 (q, J=7.3, 2H), 7.23 (dd, J=8.8, 1H), 7.39 (d, 

J=8.7, 1H), 7.71 (d, J=1.7, 1H), 11.58 (s, 1H), 13.06 (s, 1H). MS (ESI) [M-H]− 222.4.

5-Chloro-N-[2-(4-nitrophenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (12)—To a 

solution of 11 (0.02 g, 0.06 mmol) in DMF (2 ml) was added 4-nitrophenylethylamine (5.5 

μL, 0.06 mmol), BOP (0.026 g, 0.06 mmol), and N,N-diisopropylethylamine (26 μL, 0.15 

mmol). The reaction mixture was stirred at room temperature for 16 h, and then diluted with 

water, extracted with ethyl acetate three times. The combined organic layers were washed 

twice with water, and brine, dried over anhydrous MgSO4, concentrated in vacuo, and 

purified by column chromatography on silica to give the desired compound as white solid 

(0.018 g, 54% yield). 1H NMR (CDCl3) 1.19 (t, J=7.6, 3H), 2.82 (q, J=7.7, 2H), 3.10 (t, 

J=6.8, 2H), 3.80 (q, J=6.6, 2H), 5.99 (br, 1H), 7.21 (m, 2H), 7.24 (m, 1H), 7.31 (m, 2H), 

7.42 (s, 1H), 7.58 (d, J=1.9, 1H), 8.96 (br, 1H). MS (ESI) [M+H]+ 361.3, [M-H]− 359.4.

3-Ethyl-5-chloro-N-[2-(3-nitrophenyl)ethyl]-1H-indole-2-carboxamide (13)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

30% yield. 1H NMR (CDCl3) 1.14 - 1.23 (m, 3H), 3.10 (m, 2H), 3.68 (m, 2H), 3.81 (d, J = 

6.22 Hz, 2H), 6.62 (br, 1H), 7.20 (m, 1H), 7.31 (s, 1H), 7.49 (s, 1H), 7.57 (d, J = 1.70 Hz, 

2H), 8.15 (m, 2H), 9.10 (br, 1H).
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N-[2-(4-Aminophenyl)ethyl]-3-ethyl-5-chloro-1H-indole-2-carboxamide (14)—To 

a suspension of 12 (0.71 g, 1.91 mmol) in ethanol (20 ml) was added hydrazine hydrate (1.4 

ml, 28.6 mmol) and the reaction mixture was stirred at 50 °C for 15 min until the starting 

material is dissolved completely. Excess of Raney Nickel (0.5 g) was added to the reaction 

mixture and the reaction was maintained at 50 °C. After about 1 hour when gas evolution 

ceased, Raney Nickel was filtered under vacuum. The filtrate was concentrated in vacuo to 

give the desired product as white solid (0.3 g, 46% yield). 1H NMR (CDCl3) 1.12 (m, 3H), 

2.72 (q, J=7.6, 2H), 2.86 (t, J=6.6, 2H), 3.76 (q, J=6.5, 2H), 5.97 (br, 1H), 6.68 (m, 2H), 7.05 

(m, 2H), 7.21 (m, 1H), 7.37 (m, 1H), 7.54 (m, 1H), 8.98 (br, 1H).

N-[2-(3-Aminophenyl)ethyl]-3-ethyl-5-chloro-1H-indole-2-carboxamide (15)—
Prepared using the procedure for compound 14 to give the title product as white solid in 

70% yield. 1H NMR (CD3OD) 1.12 (m, 3H), 3.04 (m, 2H), 3.68 (m, 2H), 7.04 (m, 1H), 7.20 

(m, 1H), 7.26 (m, 1H), 7.38 (m, 1H), 7.46 (m, 2H), 7.58 (m, 1H).

5-Chloro-N-{2-[4-(dimethylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-
carboxamide (16)—To a solution of 14 (0.03 g, 0.09 mmol) in methanol (1 mL), 37% 

formaldehyde (1 mL) was added followed by acetic acid (18 μL) and NaCNBH4 (0.027 g, 

0.44 mmol). After stirring at room temperature for 16h, the reaction was quenched with 1N 

HCl and extracted with ethyl acetate three times. The combined organic fractions was 

washed with saturated NaHCO3 and brine, dried over anhydrous MgSO4, concentrated in 

vacuo, and purified by column chromatography on silica (0-10% MeOH in DCM) to give 

the desired product as yellow solid (0.015 mg, 47% yield). 1H NMR (DMSO-d6) 1.12 (t, 

J=7.4, 3H), 2.74 (t, J=7.3, 2H), 2.84 (s, 6H), 2.95 (q, J=7.4, 2H), 3.45 (m, 2H), 6.68 (d, 

J=8.7, 2H), 7.04 (d, J=2.4, 1H), 7.08 (d, J=9.0, 2H), 7.37 (m, 2H), 7.90 (m, 1H), 11.20 (s, 

1H). MS (ESI) [M+H]+ 370.3, [M-H]− 368.5.

5-Chloro-N-{2-[4-(diethylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-carboxamide 
(17)—To a solution of 14 (0.015 g, 0.044 mmol) and acetaldehyde (6.5 μL, 0.11 mmol) in 

1,2-dichloroethane (2 ml) was stirred at room temperature for 30 min before Na(OAc)3BH 

(0.023 g, 0.11 mmol) was added. The reaction continued at room temperature for another 16 

h before it was quenched with 1N NaOH. The reaction mixture was extracted with 

dichloromethane. The organic layer was washed water and brine, dried over anhydrous 

MgSO4, concentrated in vacuo, and purified by column chromatography on silica (0-10% 

MeOH in DCM) to give the desired product as white solid (0.012 g, 69% yield). 1H NMR 

(DMSO-d6) 1.06 (t, J=7.0, 6H), 1.12 (t, J=7.4, 3H), 2.72 (m, 2H), 2.95 (m, 2H), 3.29 (, q 

J=7.2, 4H), 3.43 (m, 2H), 6.60 (d, J=8.5, 2H), 7.04 (d, J=8.5, 2H), 7.18 (dd, J1=1.7, J2=8.7, 

1H), 7.39 (d, J=8.7, 1H), 7.93 (s, 1H). MS (ESI) [M+H]+ 398.3, [M-H]− 396.5.

5-Chloro-N-{2-[4-(dipropylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-
carboxamide (18)—Prepared using the procedure for compound 17 to give the desired 

product as white solid in 65% yield. 1H NMR (CDCl3) 0.92 (t, J=7.3, 6H), 1.06 (t, J=7.9, 

3H), 1.60 (m, 4H), 2.71 (m, 2H), 2.85 (t, J=6.6, 2H), 3.22 (t, J=7.5, 4H), 3.76 (q, J=6.2, 2H), 

5.99 (s, 1H), 6.62 (d, J=8.5, 2H), 7.08 (d, J=8.5, 2H), 7.21 (m, 1H), 7.29 (m, 1H), 7.54 (s, 

1H), 9.11 (s, 1H). MS (ESI) [M]+ 426.3.
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5-Chloro-N-{2-[4-(hexylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-carboxamide 
(19)—Prepared using the procedure for compound 17 to give the desired product as white 

solid in 32% yield. 1H NMR (CDCl3) 0.91 (t, J=7.5, 3H), 1.10 (t, J=7.3, 3H), 1.35 (m, 6H), 

1.62 (m, 2H), 2.71 (q, J=7.8, 2H), 2.85 (t, J=6.5, 2H), 3.10 (t, J=7.1, 2H), 3.76 (q, J=6.0, 

2H), 5.98 (s, 1H), 6.59 (d, J=7.7, 2H), 7.06 (d, J=8.3, 2H), 7.21 (m, 2H), 7.31 (m, 1H), 7.54 

(s, 1H), 8.96 (s, 1H). MS (ESI) [M]+ 426.3.

5-Chloro-N-{2-[3-(dimethylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-
carboxamide (20)—Prepared using the procedure for compound 17 to give the title 

product as light yellow solid in 54% yield. 1H NMR (CDCl3) 1.07 (t, J = 7.6, 3H), 2.70 (d, J 

= 7.5, 2H), 2.84 (s, 6H), 2.95 (t, J = 6.6, 2H), 3.80 (m, 2H), 5.86 (br, 1H), 6.77 - 6.90 (m, 

3H), 7.15 - 7.38 (m, 4H), 7.54 (d, J = 1.9, 1H), 9.04 (br, 1H). MS (ESI) [M+H]+ 370.3.

N-[2-(4-Acetylphenyl)ethyl]-5-chloro-3-ethyl-1H-indole-2-carboxamide (21)—To 

a solution of 14 (0.020 g, 0.058 mmol) in THF (0.3 ml) was added triethylamine (12 μL, 

0.088 mmol) and acetyl chloride (6 μL, 0.088 mmol). The reaction mixture was refluxed for 

4 h. The solvent was removed under vacuum. The residue was dissolved in 

dichloromethane. The solution was then washed with 1N HCl and brine, dried over 

anhydrous MgSO4, and concentrated in vacuo to give the desired product as white solid in 

59% yield. 1H NMR (CDCl3) 1.13 (t, J=7.7, 3H), 2.19 (s, 3H), 2.76 (m, 2H), 2.94 (t, J=6.5, 

2H), 3.79 (q, J=6.2, 2H), 5.97 (s, 1H), 7.13 (m, 1H), 7.22 (d, J=9.0, 2H), 7.29 (m, 1H), 7.47 

(d, J=8.3, 2H), 7.54 (s, 1H), 8.91 (s, 1H). MS (ESI) [M+H]+ 384.4, [M-H]− 382.4.

N-[2-(4-Butanoylphenyl)ethyl]-5-chloro-3-ethyl-1H-indole-2-carboxamide (22)—
Prepared using the procedure for compound 12 to give the title product as white solid (0.012 

g, 50% yield). 1H NMR (CD3OD) 0.99 (t, J=7.3, 3H), 1.19 (t, J=7.7, 3H), 1.71 (m, 2H), 2.33 

(t, J=7.3, 2H), 2.94 (m, 4H), 3.63 (t, J=7.3, 2H), 7.17 (d, J=8.7, 1H), 7.24 (d, J=8.1, 2H), 

7.33 (d, J=8.7, 1H), 7.49 (d, J=8.3, 2H), 7.58 (s, 1H). MS (ESI) [M+H]+ 412.4, [M+Na]+ 

434.3, [M-H]− 410.6.

5-Chloro-3-ethyl-N-[2-(4-hexanoylphenyl)ethyl]-1H-indole-2-carboxamide (23)
—Prepared using the procedure for compound 12 to give the title product as white solid in 

60% yield. 1H NMR (CDCl3) 0.89 (t, J=7.7, 3H), 1.11 (m, 5H), 1.69 - 1.81 (m, 2H), 2.36 (t, 

J = 7.54 Hz, 2H), 2.67 - 2.89 (m, 4H), 2.94 (t, J = 6.69 Hz, 2H), 3.63 (br, 1H), 3.73 - 3.83 

(m, 2H), 5.96 (br, 1H), 6.68 (d, J=8.3, 1H), 7.08 (d, J=9.0, 2H), 7.23 (m, 1H), 7.49 (d, J=8.3, 

2H), 7.54 (s, 1H), 8.91 (s, 1H). MS (ESI) [M+H]+ 440.2, [M+Na]+ 462.5, [M-H]− 438.5.

5-Chloro-3-ethyl-N-(2-phenylethyl)-1H-indole-2-carboxamide (24)—Prepared 

using the procedure for compound 12 to give the title product as white solid in 60% 

yield. 1H NMR (CDCl3) 0.99 (t, J=7.6, 3H), 2.62 (q, J=7.0, 2H), 2.93 (t, J=6.6, 2H), 3.76 (t, 

J=6.2, 2H), 5.89 (s, 1H), 7.15 (m, 1H), 7.19-7.30 (m, 6H), 7.47 (s, 1H), 9.10 (s, 1H). MS 

(ESI) [M+H]+ 327.3, [M+Na]+ 349.4, [M-H]− 325.3.

5-Chloro-N-[2-(4-chlorophenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (25)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

50% yield. 1H NMR (CDCl3) 1.14 (t, J = 7.68 Hz, 3H), 2.71 - 2.82 (m, 2H), 2.97 (t, J = 6.78 
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Hz, 2H), 3.82 (q, J = 6.56 Hz, 2H), 6.04 (br. s., 1H), 7.26 - 7.39 (m, 6H), 7.58 (d, J = 1.41 

Hz, 1H), 9.30 (br. s., 1H). MS (ESI) [M-H]− 359.5.

5-Chloro-N-[2-(4-methoxyphenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (26)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

50% yield. 1H NMR (CDCl3) 1.09 (t, J=7.7, 3H), 2.71 (q, J=7.7, 2H), 2.92 (t, J=6.7, 2H), 

3.80 (m, 5H), 5.98 (s, 1H), 6.89 (d, J=8.8, 2H), 7.18 (d, J=8.7, 2H), 7.22 (d, J=1.9, 1H), 7.31 

(d, J=8.7, 1H), 7.55 (s, 1H), 9.28 (br, 1H). MS (ESI) [M+H]+ 357.2, [M-H]− 355.4.

5-Chloro-N-[2-(4-tert-butylphenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (27)
—Prepared using the procedure for compound 12 to give the title product as white solid in 

87% yield. 1H NMR (CDCl3) 1.01 (t, J=7.7, 3H), 2.66 (q, J=7.7, 2H), 2.94 (m, 2H), 3.84 (q, 

J=6.3, 2H), 5.99 (s, 1H), 7.19 (m, 3H), 7.34 (m, 3H), 7.53 (d, J=1.9, 1H), 9.73 (s, 1H). MS 

(ESI) [M+H]+ 383.3, [M-H]− 381.5.

5-Chloro-N-[2-(2-chlorophenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (28)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

34% yield. 1H NMR (CDCl3) 1.15 (t, J=7.7, 3H), 2.79 (q, J=7.7, 2H), 3.14 (t, J=6.8, 2H), 

3.85 (q, J=6.6, 2H), 6.01 (br, 1H), 7.20-7.23 (m, 3H), 7.28-7.33 (m, 2H), 7.56 (d, J=1.9, 1H), 

9.23 (br, 1H). MS (ESI) [M+Na]+ 382.5, [M-H]− 359.3.

5-Chloro-N-[2-(3-chlorophenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (29)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

37% yield. 1H NMR (CDCl3) 1.12 (t, J=7.7, 3H), 2.74 (q, J=7.6, 2H), 2.96 (t, J=6.8, 2H), 

3.81 (q, J=6.4, 2H), 5.96 (br, 1H), 7.15 (m, 1H), 7.22 (m, 2H), 7.31 (m, 3H), 7.56 (d, J=2.1, 

1H), 9.07 (br, 1H). MS (ESI) [M+H]+ 361.3, [M-H]− 359.5.

5-Chloro-N-[2-(3-methoxyphenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (30)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

25% yield. 1H NMR (CDCl3) 1.07 (t, J = 7.6, 3H), 2.70 (d, J = 7.5, 2H), 2.95 (t, J = 6.6, 

2H), 3.72 - 3.96 (m, 5H), 5.86 (br, 1H), 6.77 - 6.90 (m, 3H), 7.15 - 7.38 (m, 4H), 7.54 (d, J = 

1.9, 1H), 9.04 (br, 1H). MS (ESI) [M+H]+ 357.2.

5-Chloro-N-[2-(3-hydroxyphenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (31)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

29% yield. 1H NMR (CDCl3) 1.07 (t, J=7.6, 3H), 2.69 (q, J=7.6, 2H), 2.89 (t, J=6.6, 2H), 

3.79 (m, 2H), 6.06 (s, 1H), 6.79 (m, 3H), 7.18 (m, 3H), 7.51 (s, 1H), 9.28 (s, 1H). MS (ESI) 

[M+H]+ 343.5, [M-H]− 341.5.

5-Chloro-N-[2-(3-hydroxy-4-methoxyphenyl)ethyl]-3-ethyl-1H-indole-2-
carboxamide (32)—Prepared using the procedure for compound 12 to give the title 

product as white solid in 36% yield. 1H NMR (CDCl3) 1.09 (t, J=7.6, 3H), 2.73 (m, 2H), 

2.90 (t, J=6.7, 2H), 3.79 (m, 2H), 3.85 (s, 3H), 6.76 (m, 2H), 6.89 (d, J=8.5, 1H), 7.21 (m, 

1H), 7.31 (m, 1H), 7.55 (s, 1H), 9.28 (br, 1H). MS (ESI) [M+H]+ 373.2, [M-H]− 371.4.
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5-Chloro-N-[2-(3,4-dichlorophenyl)ethyl]-3-ethyl-1H-indole-2-carboxamide (33)
—Prepared using the procedure for compound 12 to give the title product as white solid in 

23% yield. 1H NMR (CDCl3) 1.16 (t, J = 7.82 Hz, 3H), 2.79 (q, J = 7.79 Hz, 2H), 3.10 (m, 

2H), 3.85 (q, J = 6.53 Hz, 2H), 6.01 (br. s., 1H), 7.29 - 7.35 (m, 1H), 7.44 (d, J = 8.67 Hz, 

2H), 7.57 (s, 1H), 8.21 (d, J = 8.29 Hz, 2H), 9.01 (br. s., 1H). MS (ESI) [M]+ 394.1.

N-[2-(2H-1,3-Benzodioxol-5-yl)ethyl]-5-chloro-3-ethyl-1H-indole-2-carboxamide 
(34)—Prepared using the procedure for compound 12 to give the title product as white solid 

in 33% yield. 1H NMR (CDCl3) 1.13 (t, J=7.6, 3H), 2.74 (q, J=7.6, 2H), 2.89 (t, J=7.0, 2H), 

3.77 (q, J=6.2, 2H), 5.96 (s, 2H), 6.71 (m, 1H), 6.77 (m, 2H), 7.21 (m, 1H), 7.30 (m, 1H), 

7.55 (d, J=1.9, 1H), 8.99 (br, 1H). MS (ESI) [M+H]+ 371.4, [M-H]− 369.5.

5-Chloro-N-{3-[6-(dimethylamino)pyridin-2-yl]phenyl}-3-ethyl-1H-indole-2-
carboxamide (35)—Prepared using the procedure for compound 12 to give the title 

product as white solid in 40% yield. 1H NMR (CDCl3) 1.46 (t, J = 7.63 Hz, 3H), 3.12 (q, J = 

7.72 Hz, 2H), 3.18 (s, 6H), 6.52 (d, J = 8.29 Hz, 1H), 7.07 (d, J = 7.16 Hz, 1H), 7.24 (d, J = 

2.07 Hz, 1H), 7.32 - 7.38 (m, 1H), 7.47 (t, J = 8.01 Hz, 1H), 7.54 (dd, J = 7.54, 8.48 Hz, 

1H), 7.65 (d, J = 2.07 Hz, 1H), 7.78 (dd, J = 1.22, 8.01 Hz, 1H), 7.84 (d, J = 6.22 Hz, 2H), 

8.20 (t, J = 1.79 Hz, 1H), 9.09 (br. s., 2H). MS (ESI) [M+H]+ 419.7, [M-H]− 417.4.

5-Chloro-3-ethyl-2-(4-phenylpiperazine-1-carbonyl)-1H-indole (36)—Prepared 

using the procedure for compound 12 to give the title product as white solid in 45% 

yield. 1H NMR (CDCl3) 1.31 (t, J=7.6, 3H), 2.81 (q, J=7.5, 2H), 3.22 (m, 2H), 3.86 (m, 2H), 

6.94 (d, J=7.9, 2H), 7.22-7.32 (m, 5H), 7.63 (d, J=1.7, 1H), 8.46 (br, 1H). MS (ESI) [M+H]+ 

368.1, [M-H]− 366.6.

5-Chloro-2-[4-(4-chlorophenyl)piperazine-1-carbonyl]-3-ethyl-1H-indole (37)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

80% yield. 1H NMR (CDCl3) 1.30 (t, J=7.6, 3H), 2.79 (q, J=7.6, 2H), 3.18 (m, 4H), 3.84 (m, 

4H), 6.84 (d, J=9.0, 2H), 7.18-7.29 (m, 4H), 7.61 (s, 1H), 8.78 (s, 1H). MS (ESI) [M]+ 

402.3.

tert-Butyl N-[2-(4-aminophenyl)ethyl]carbamate (39)—To a solution of 2-(4-

nitrophenyl)ethan-1-amine (38, 0.3 g, 1.48 mmol) in 1,4-dioxane (4 ml) and water (1.5 ml), 

1N NaOH was added and the reaction mixture was cooled to 0 °C. Upon addition of Boc2O, 

the reaction was stirred at room temperature for 1h. After no starting material was detected 

on TLC, solvent was removed in vacuo and the solid residue was dissolved in 

dichloromethane, washed with water and brine, dried over anhydrous MgSO4, and 

concentrated in vacuo to give the desired product as white solid (0.386 g, 98% yield). 1H 

NMR (CDCl3) 1.43 (s, 9H), 2.92 (t, J=6.6, 2H), 3.41 (t, J=6.6, 2H), 4.56 (br, 1H), 7.36 (d, 

J=8.5, 2H), 8.17 (d, J=8.7, 2H). This intermediate underwent the reduction procedure for 14 
to give the title product as white solid in 85% yield. 1H NMR (CDCl3) 1.43 (s, 9H), 2.68 (t, 

J=6.9, 2H), 3.32 (t, J=6.2, 2H), 3.59 (br, 2H), 6.64 (d, J=8.3, 2H), 6.98 (d, J=8.1, 2H).

tert-Butyl N-{2-[4-(diethylamino)phenyl]ethyl}maximumcarbamate (40)—
Prepared using the procedure for 17 to give the title product as colorless oil in 85% yield. 1H 
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NMR (CDCl3) 1.14 (t, J=7.1, 6H), 1.43 (s, 9H), 2.67 (t, J=6.9, 2H), 3.33 (m, 6H), 4.56 (br, 

1H), 6.63 (d, J=8.7, 2H), 7.03 (d, J=8.7, 2H).

tert-Butyl N-{2-[4-(piperidin-1-yl)phenyl]ethyl}carbamate (41)—A microwave vial 

containing 39 (0.05 g, 0.21 mmol), 1,5-dibromopentane (31 μL, 0.23 mmol), potassium 

carbonate (0.032 g, 0.23 mmol) in water (2 ml) was irradiated at 120 °C for 20 min 

(maximum pressure: 17 psi, power: 200W, PowerMax: off, ramp: 2 min). The reaction 

mixture was extracted with ethyl acetate, dried over anhydrous MgSO4, and concentrated in 

vacuo to give the desired product as yellow solid (0.03 g, 47% yield). 1H NMR (CDCl3) 

1.43 (s, 9H) 1.57 (m, 2H), 2.17 (m, 4H), 2.70 (t, J=6.9, 2H), 3.12 (m, 4H), 3.32 (m, 2H), 

6.88 (d, J=8.7, 2H), 7.07 (d, J=8.5, 2H).

5-Fluoro-N-{2-[4-(diethylamino)phenyl]ethyl}-3-ethyl-1H-indole-2-carboxamide 
(42)—Prepared using the procedure for compound 12 to give the title product as white solid 

in 54% yield. 1H NMR (CDCl3) 1.08 (t, J=7.6, 3H), 1.15 (t, J=7.1, 6H), 2.69 (m, 2H), 2.86 

(t, J=6.6, 2H), 3.34 (q, J=7.0, 4H), 3.78 (q, J=6.5, 2H), 6.04 (s, 1H), 6.66 (d, J=8.7, 2H), 7.02 

(m, 1H), 7.10 (d, J=8.7, 2H), 7.20 (dd, J1=9.6, J2=2.4, 1H), 7.31 (dd, J1=8.9, J2=4.3, 1H), 

9.40 (br, 1H). MS (ESI) [M+H]+ 382.5, [M-H]− 380.6.

5-Fluoro-N-{2-[4-(diethylamino)phenyl]ethyl}-3-methyl-1H-indole-2-
carboxamide (43)—Prepared using the procedure for compound 12 to give the title 

product as white solid in 53% yield. 1H NMR (CDCl3) 1.15 (t, J=7.0, 6H), 2.29 (s, 3H), 2.86 

(t, J=6.7, 2H), 3.34 (q, J=7.2, 4H), 3.76 (q, J=6.4, 2H), 6.06 (s, 1H), 6.66 (d, J=8.7, 2H), 7.01 

(m, 1H), 7.09 (d, J=8.7, 2H), 7.19 (dd, J1=9.5, J2=2.4, 1H), 7.31 (m, 1H), 9.54 (br, 1H). MS 

(ESI) [M+H]+ 368.4, [M-H]−366.6.

5-Fluoro-N-{2-[4-(diethylamino)phenyl]ethyl}-1H-indole-2-carboxamide (44)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

33% yield. 1H NMR (CDCl3) 1.17 (t, J=7.1, 6H), 2.83 (t, J=6.8, 2H), 3.35 (q, J=7.2, 4H), 

3.69 (q, J=6.6, 2H), 6.19 (s, 1H), 6.67 (m, 3H), 7.02 (m, 1H), 7.08 (m, 2H), 7.25 (m, 1H), 

7.37 (dd, J1=8.9, J2=4.4, 1H), 9.38 (br, 1H). MS (ESI) [M+H]+ 354.5, [M-H]− 352.4.

5-Chloro-N-{2-[4-(diethylamino)phenyl]ethyl}-1H-indole-2-carboxamide (45)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

30% yield. 1H NMR (CDCl3) 1.17 (t, J=7.1, 6H), 2.84 (t, J=6.8, 2H), 3.35 (q, J=7.0, 4H), 

3.69 (m, 2H), 6.25 (s, 1H), 6.65 (m, 3H), 7.09 (d, J=8.7, 2H), 7.22 (m, 1H), 7.38 (m, 1H), 

7.58 (s, 1H), 9.78 (br, 1H). MS (ESI) [M+H]+ 370.3, [M-H]− 368.5.

5-Fluoro-3-ethyl-N-{2-[4-(piperidin-1-yl)phenyl]ethyl}-1H-indole-2-carboxamide 
(46)—Prepared using the procedure for compound 12 to give the title product as white solid 

in 95% yield. 1H NMR (CDCl3) 1.08 (t, J=7.7, 3H), 1.58 (m, 2H), 1.71 (m, 4H), 2.70 (q, 

J=7.7, 2H), 2.89 (t, J=6.6, 2H), 3.12 (m, 4H), 3.79 (q, J=6.4, 2H), 6.02 (s, 1H), 6.91 (d, 

J=8.7, 2H), 7.01 (m, 1H), 7.14 (d, J=8.7, 2H), 7.20 (dd, J1=9.4, J2=2.4, 1H), 7.31 (m, 1H), 

9.46 (br, 1H). MS (ESI) [M+H]+ 394.6, [M-H]− 392.7.
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5-Fluoro-3-methyl-N-{2-[4-(piperidin-1-yl)phenyl]ethyl}-1H-indole-2-
carboxamide (47)—Prepared using the procedure for compound 12 to give the title 

product as white solid in 96% yield. 1H NMR (CDCl3) 1.59 (m, 2H), 1.72 (m, 4H), 2.28 (s, 

3H), 2.88 (t, J=6.6, 2H), 3.13 (m, 4H), 3.77 (q, J=6.3, 2H), 6.02 (s, 1H), 6.92 (d, J=8.5, 2H), 

7.03 (m, 1H), 7.13 (d, J=8.5, 2H), 7.19 (dd, J1=9.5, J2=2.2, 1H), 7.31 (m, 1H), 9.41 (br, 1H). 

MS (ESI) [M+H]+ 380.3, [M-H]− 378.5.

5-Fluoro-N-{2-[4-(piperidin-1-yl)phenyl]ethyl}-1H-indole-2-carboxamide (48)—
Prepared using the procedure for compound 12 to give the title product as white solid in 

55% yield. 1H NMR (CDCl3) 1.26 (m, 2H), 1.72 (m, 4H), 2.85 (t, J=6.8, 2H), 3.13 (m, 4H), 

3.70 (q, J=6.6, 2H), 6.14 (s, 1H), 6.63 (d, J=1.3, 1H), 6.93 (d, J=8.7, 2H), 7.04 (m, 1H), 7.12 

(d, J=8.7, 2H), 7.24 (m, 1H), 7.36 (m, 1H), 9.21 (br, 1H). MS (ESI) [M+H]+ 366.5, [M-H]− 

364.6.

5-Chloro-N-{2-[4-(piperidin-1-yl)phenyl]ethyl}-1H-indole-2-carboxamide (49)—
Prepared using the procedure for compound 14 to give the title product as white solid in 

30% yield. 1H NMR (CDCl3) 1.26 (m, 2H), 1.72 (m, 4H), 2.85 (t, J=6.8, 2H), 3.15 (m, 4H), 

3.70 (q, J=6.6, 2H), 6.15 (s, 1H), 6.61 (d, J=1.5, 1H), 6.92 (d, J=8.7, 2H), 7.12 (d, J=8.7, 

2H), 7.23 (m, 1H), 7.36 (d, J=8.7, 1H), 7.59 (d, J=1.9, 1H), 9.32 (br, 1H). MS (ESI) [M+H]+ 

382.5, [M-H]− 380.5.

5.2. Biological assays

5.2.1. CB1 Calcium Mobilization Assay—CHO-RD-HGA16 cells (Molecular Devices, 

USA) stably expressing the human CB1 receptor were used. The day before the assay, cells 

were plated into 96-well black-walled assay plates at 25,000 cells/well in Ham's F12 

supplemented with 10% fetal bovine serum, 100 units of penicillin, 100 units of 

streptomycin, and 100 μg/mL g/mL Normocin Normocin™. The cells were incubated 

overnight at 37°C, 5% CO2. Prior to the assay, Calcium 5 dye (Molecular Devices, USA) 

was reconstituted according to the manufacturer's instructions. The reconstituted dye was 

diluted 1:40 in pre-warmed (37°C) assay buffer (1X HBSS, 20 mM HEPES, 2.5 mM 

probenecid, pH 7.4 at 37°C). Growth medium was removed and the cells were gently 

washed with 100 μL of pre-warmed (37°C) assay buffer. The cells were incubated for 45 

minutes at 37°C, 5% CO2 in 200 μL of the diluted Calcium 5 dye. For antagonist (IC50) 

assays, the EC80 concentration of CP55,940 was prepared at 10× the desired final 

concentration in 0.25% BSA/0.5% DMSO/0.5% EtOH/assay buffer, aliquoted into 96-well 

polypropylene plates, and warmed to 37°C. Serial dilutions of the test compounds were 

prepared at 10× the desired final concentration in 2.25% BSA/4.5% DMSO/4.5% EtOH/

assay buffer. After the dye-loading incubation period, the cells were pre-treated with 25 μL 

of the test compound serial dilutions and incubated for 15 min at 37°C. After the pre-

treatment incubation period, the plate was read with a FLIPR Tetra (Molecular Devices, 

USA). Calcium-mediated changes in fluorescence were monitored every 1 second over a 90 

second time period, with the Tetra adding 25 μL of the CP55,940 EC80 concentration at the 

10 second time point (excitation at 470-495 nm, detection at 515-575 nm). FLIPR traces 

were normalized by trace alignment at the last time point before agonist addition 

(ScreenWorks software, Molecular Devices, USA). Relative fluorescence units (RFU) were 

Nguyen et al. Page 13

Bioorg Med Chem. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plotted against log compound concentration. Data were fit to a three-parameter logistic 

curve to generate IC50 values (GraphPad Prism 6.0, GraphPad Software, Inc., San Diego, 

CA). For the modulation experiments, the above procedure was followed except that cells 

were pre-treated with a single concentration of test compound (prepared at 10× the desired 

concentration in 2.25% BSA/4.5% DMSO/4.5% EtOH/assay buffer) and the Tetra added 

serial dilutions of CP55,940 (prepared at 10× the desired concentration in 0.25% BSA/0.5% 

DMSO/0.5% EtOH/assay buffer). For agonist screens, the above procedure was followed 

except that cells were pre-treated with 2.25% BSA/4.5% DMSO/4.5% EtOH/assay buffer 

and the Tetra added single concentration dilutions of the test compounds prepared at 10× the 

desired final concentration in 0.25% BSA/0.5% DMSO/0.5% EtOH/assay buffer. Test 

compound RFUs were compared to the CP55,940 Emax RFUs to generate % Emax values.

5.2.2. CB2 Calcium Mobilization Assay—The CB2 assay used CHO-RD-HGA16 cells 

(Molecular Devices, USA) stably expressing the human CB2 receptor. This assay was 

carried out in a similar manner as the CB1 assay except that cells were plated at a density of 

30,000 cells/well.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of several reported CB1 allosteric modulators.
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Scheme 1. 
Synthesis of the key intermediate 11 and target compounds 12, and 16-37.

Nguyen et al. Page 18

Bioorg Med Chem. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 2. 
Synthesis of compounds 1, and 42-49.
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Figure 2. 
Allosteric modulation of compounds 1, 3, and 45 in the CB1 calcium mobilization assay.
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Table 1

Compounds 1, 12, 16-34 and their inhibitory activity at the CB1 receptor.

# R CB1 IC50 (nM)
a

CB2 % Inhibition of CP55,940
b

1 853 ± 130 −16.4 ± 1.8

12 4’-NO2 5740 ± 930 34.8 ± 22.6

16 4’-NMe2 787 ± 110 −12.7 ± 2.8

17 4’-NEt2 483 ± 60 −44 ± 11

18 4’-NHPr2 1800 ± 480 −37.4 ± 6.8

19 4’-NH(CH2)5CH3 3620 ± 790 −35.0 ± 4.6

20 3’-NMe2 >10,000 −3.7 ± 4.3

21 4’-NHCOCH3 >10,000 −3.3 ± 11.7

22 4’-NHCO(CH2)2CH3 >10,000 43.0 ± 3.2

23 4’-NHCO(CH2)4CH3 >10,000 1.0 ± 0.6

24 H 3150±260 −6.2 ± 25.3

25 4’-Cl 2500±410 −4.8 ± 30.0

26 4’-OCH3 2560±110 −11.2 ± 19.6

27 4’-tBu 2430±430 −18.0 ± 35.4

28 2’-Cl 5810±990 28.5 ± 24.0

29 3’-Cl 831±190 24.8 ± 28.6

30 3’-OCH3 2100±170 −6.0 ± 19.0

31 3’-OH >10,000 −0.1 ± 21.4

32 3’-OH,4’-OCH3 >10,000 −7.0 ± 19.6

33 3’,4’-diCl 2170±530 −3.2 ± 10.8

34 4320±190 25.8 ± 22.1

a
Against EC80 (100 nM) of CP55,940. Values are the mean ± SEM of at least three independent experiments in duplicate.
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b
Percent inhibition of CP55,940 EC80 (100 nM). Values are the mean ± SEM of at least two independent experiments in duplicate.
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Table 2

Compounds 2, 35-37 and their inhibitory activity at the CB1 receptor.

# R CB1 IC50 (nM)
a

CB2 % Inhibition of CP55,940
b

2 4760 ± 710 −6.2 ± 2.5

35 >10,000 −19.2 ± 11.5

36 >10,000 −28.0 ± 25.9

37 >10,000 −31.1 ± 18.8

a
Against EC80 (100 nM) of CP55,940. Values are the mean ± SEM of at least three independent experiments in duplicate.

b
Percent inhibition of CP55,940 EC80 (100 nM). Values are the mean ± SEM of at least two independent experiments in duplicate.
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Table 3

Compounds 1, 3, 17, 42-49 and their inhibitory activity at the CB1 receptor.

# X R1 R2 CB1 IC50 (nM)
a

CB2 % Inhibition of CP55,940
b

1 Cl Et 853 ± 130 −16.4 ± 1.8

3 F Et NMe2 205 ± 34 −20.4 ± 2.4

17 Cl Et NEt2 483 ± 60 −44.4 ± 11.1

42 F Et NEt2 361 ± 49 −25.7 ± 10.7

43 F Me NEt2 151 ± 20 −21.8 ± 6.5

44 F H NEt2 318 ± 53 −23.8 ± 5.2

45 Cl H NEt2 79 ± 7 0.7 ± 9.8

46 F Et 605 ± 93 −33.1 ± 16.3

47 F Me 279 ± 51 −8.2 ± 5.8

48 F H 319 ± 76 20.8 ± 5.9

49 Cl H 212 ± 41 15.0 ± 9.8

a
Against EC80 (100 nM) of CP55,940. Values are the mean ± SEM of at least three independent experiments in duplicate.

b
Percent inhibition of CP55,940 EC80 (100 nM). Values are the mean ± SEM of at least two independent experiments in duplicate.
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