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Abstract

Mer is a receptor tyrosine kinase implicated in acute lymphoblastic leukemia (ALL), the most 

common malignancy in children. The currently available data provide a rationale for development 

of Mer kinase inhibitors as cancer therapeutics that can target both cell autologous and immune-

modulatory anti-tumor effects. We have previously reported several series of potent Mer inhibitors 

and the objective of the current report is to identify a chemically dissimilar back-up series that 

might circumvent potential, but currently unknown, flaws inherent to the lead series. To this end, 

we virtually screened a database of ∼3.8 million commercially available compounds using high-

throughput docking followed by a filter involving Structural Protein-Ligand Interaction 

Fingerprints (SPLIF). SPLIF permits a quantitative assessment of whether a docking pose interacts 

with the protein target similarly to an endogenous or known synthetic ligand, and therefore helps 

to improve both sensitivity and specificity with respect to the docking score alone. Of the total of 

62 experimentally tested compounds, 15 demonstrated reliable dose-dependent responses in the 

Mer in vitro kinase activity assay with inhibitory potencies ranging from 0.46 μM to 9.9 μM.

Introduction

Acute lymphoblastic leukemia (ALL) is the most frequent type of cancer in children and 

accounts for nearly 30% of all pediatric cancers[1]. Particularly, the T-cell ALL subtype has 

a poorer prognosis, with a 5-year relapse-free survival rate of 60–75% even with effective 

treatment[2]. Extensive conventional chemotherapeutic treatment often results in toxic side 

effects, such as organ damage, secondary malignancy or emergent chemoresistance[3]. Mer 

receptor tyrosine kinase, ectopically expressed in at least 50% of pediatric T-cell ALL 

samples, has been shown to play a role in ALL genesis[1, 3]. Moreover, Mer is not 

© 2015 Elsevier Ltd. All rights reserved.
*To whom correspondence should be addressed: Center for Integrative Chemical Biology and Drug Discovery, University of North 
Carolina at Chapel Hill, Campus Box 7363, Marsico Hall, room 3205, 125 Mason Farm Road, Chapel Hill, NC, 27599-7363, Office: 
(919) 843-8457, Fax: (919) 843-8465, dmitri.kireev@unc.edu. 

Supporting Information Available: Chemical structures and biological activities of experimentally tested compounds are available in 
SD formats. This material is available free of charge via the Internet at http://www.journals.elsevier.com/bioorganic-and-medicinal-
chemistry.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Bioorg Med Chem. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Bioorg Med Chem. 2015 March 1; 23(5): 1096–1101. doi:10.1016/j.bmc.2015.01.001.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.journals.elsevier.com/bioorganic-and-medicinal-chemistry
http://www.journals.elsevier.com/bioorganic-and-medicinal-chemistry


expressed in normal T- and B-lymphocytes. Overall, the currently available data support a 

hypothesis that Mer kinase inhibitors might be developed into selective therapeutics for 

ALL. We have previously reported several series of potent Mer inhibitors, including 

compound 2 (see Figure 1) [4], resulting from structure-based design[4-9]. While our Mer 

project is progressing through IND enabling studies with an initial clinical candidate from 

this series, we are also working on identifying a chemically dissimilar back-up series that 

might circumvent potential flaws inherent to the current lead series. In such an endeavor, 

often referred to as lead- or scaffold-hopping, virtual screening, either structure- or 

pharmacophore-based, is often a tool of choice.

In Structure-based Virtual Screening (SB-VS), each small-molecule ligand is docked into 

the putative binding pocket of the protein in a number of energetically acceptable binding 

modes called poses [10], for each of which binding affinity is assessed using a scoring 

function [11]. While it is now generally accepted that most of the popular docking 

algorithms perform fairly well in generating sound poses, the scoring functions most often 

fail to adequately evaluate the binding affinity[12-18]. Hence, even the optimistic success 

rates that are generally reported in SB-VS benchmark studies[17, 18] might often be 

insufficient when screening large chemical libraries against a novel target with an objective 

to experimentally test 50 to 100 virtual hits. Therefore, all possible means must be deployed 

to improve the odds of getting a sizable number of confirmed actives out of very small sets 

of virtual hits. Of special interest are scoring approaches that can take advantage of known 

ligand-bound protein structures (e.g., enzyme-bound substrates) as these are likely to capture 

molecular interactions that are most important for high affinity binding. Here we made use 

of an approach termed Structural Protein-Ligand Interaction Fingerprints (SPLIF) that 

exploits this general idea of quantifying and comparing ligand-protein interactions[19]. In 

particular, in SPLIF, 3D-structures of interacting ligand and protein fragments are explicitly 

encoded in the fingerprint. Consequently, all possible interaction types that may occur 

between the fragments (e.g., π–π, CH–π, etc) are implicitly encoded into SPLIF. The 

reported fingerprints are used for calculation a normalized quantitative score that expresses 

the similarity between the interaction profile of a docking pose and that of a reference 

protein-ligand complex.

The study involved screening a collection of 3.8 million commercially available compounds 

using a popular docking tool Glide[20] followed by a SPLIF-rescoring step and a cluster-

based triage. Eventually, the 62 selected virtual hits were purchased and their inhibitory 

potency was assessed in the Mer Microfluidic Capillary Electrophoresis assay.

Materials and Methods

Small-molecule Dataset

The virtual collection of commercially available compounds was created from 5 large 

catalogs: Asinex, ChemDiv, Enamine, IBS and Life Chemicals. These vendors have been 

selected because they have their own, up-to-date stocks, offer affordable prices and high 

availability rates and are able to satisfy our shipping requirements. The resulting collection 

features ∼3.8 million compounds and is updated on a semi-annual basis via SD files 

provided by the vendors. The files used in this study have been uploaded between July and 
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December of 2011. Virtually all compounds satisfied our usual pre-VS filters, i.e., a 

softened version of the Lipinski rules[21] (2+ violations of Number of H-bond donors < 6, 

Number of H-bond acceptors < 12, Molecular Weight between 200 and 600, ALogP < 5.5) 

and REOS[22]. Chemical structures of all screened compounds were cleaned using 

PipelinePilot software[23]. The cleaning protocol included salt stripping, mixture splitting, 

functional group standardization and charge neutralization. Ionizable compounds were 

converted to their most probable charged species at pH 7.4. Pipeline Pilot was then used for 

3D conversion.

Docking

Small-molecule structures were docked into the active site of the target proteins using the 

Glide program [20] in standard docking precision (Glide SP). The binding region was 

defined by a 20Å × 20Å × 20Å box centered on a reference ligand. A scaling factor of 0.8 

was applied to the van der Waals radii. Default settings were used for all the remaining 

parameters. The top 3 poses were generated for each ligand and subjected to SPLIF scoring.

Structural Protein-Ligand Interaction Fingerprints (SPLIF)

SPLIF scoring consists of two steps: 1) generating SPLIF for the current docking pose and 

2) calculating similarity between the current and reference SPLIFs. The details of the 

technique have been described in our earlier work[19]. In this study, Functional 

Connectivity Fingerprints up to the second closest neighbor (FCFP4) from the Pipeline Pilot 

software[23] were used as SPLIF bits. The SPLIF-based similarity score was calculated as 

follows:

(1)

where NUMLA is the number of Unique Matching Ligand Atoms, i.e., atoms constituting the 

matching circular fragments of the docking pose compared to the reference (on the ligand 

side); NULA is the number of Unique Ligand Atoms, i.e., atoms constituting all interaction 

fingerprints of the docking pose (on the ligand side); NUMPA is the number of Unique 

Matching Protein Atoms, i.e., atoms constituting the matching circular fragments of the 

docking pose compared to the reference (on the protein side); NUPA is the number of Unique 

Protein Atoms, i.e., atoms constituting all interaction fingerprints of the docking pose (on 

the protein side). The whole workflow was implemented in Pipeline Pilot[23]. The 

constituent algorithms were developed in Pipeline Pilot Script. The current implementation 

allows processing of ∼10 poses per second in screening mode.

Reference structures

Three high-resolution crystal structures of the Mer protein kinase domain were used in this 

study: i) in complex with adenosine diphosphate (ADP) (resolution 1.90 Å; PDB code: 

3BRB)[24]; (ii) in complex with a weakly potent inhibitor C-52 (1) (resolution 2.80 Å; PDB 

code: 3BPR)[24]; and in complex with a highly potent inhibitor UNC569 (2), previously 

reported by us (resolution 2.69 Å; PDB code: 3TCP)[4]. Because we did not intend to mimic 
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the phosphate groups of ATP, as ligands including these interactions are highly unlikely to 

be cell penetrant, we stripped them to yield the reference ligand 3. The reference ligand 

structures are shown in Figure 1.

The corresponding PDB files were processed as follows. Hydrogen atoms were added to the 

protein, the active site was visually inspected and appropriate corrections were made for 

tautomeric states of histidine residues, orientations of hydroxyl groups, and protonation 

states of basic and acidic residues. The hydrogen atoms were energy minimized in the 

MMFF force field[25] using the Macromodel software with the Maestro graphics 

interface[26] with all the non-hydrogen atoms constrained to their original positions.

Hit analysis and selection

After virtual hits were selected based on a combination of Glide and SPLIF scores, they 

were subjected to a hit triage process. The triage was based upon a number of objective and 

subjective criteria. The objective criteria included (i) redundancy reduction, by dropping 

some ligands belonging to large clusters, i.e., groups of chemically similar compounds; and 

(ii) elimination of compounds that are highly dissimilar from other virtual hits (also called 

singletons). Both redundancy reduction and singleton elimination were performed by means 

of the Pipeline Pilot software[23]. Redundancy reduction consisted of two steps. First, the 

virtual hits were grouped into clusters with members similar at ≥45% (Tanimoto; ECFP4 

fingerprints). The clustering method used at this step was Maximum Dissimilarity clustering 

without limitation on the maximum number of clusters and with the number of re-center 

steps set to zero[23]. In the next step, 20% to 50% of compounds were then selected from 

each cluster in such a way that larger clusters contributed smaller percentages. The output 

ligands were aligned to their respective Maximum Common Substructures to facilitate the 

subsequent visual ad hoc selection. To facilitate an ad hoc hit selection / elimination we 

have created a hit list, in which each cluster was represented by a single (central) compound.

Mer Microfluidic Capillary Electrophoresis assay

Inhibition of Mer kinase activity by analogues was tested using a microfluidic capillary 

electrophoresis (MCE) assay, in which phosphorylated and unphosphorylated substrate 

peptides were separated and analyzed through a LabChip EZ Reader[27, 28].

Compound testing was performed in a 384 well, polypropylene microplate in a final volume 

of 50 μL in 50 mM Hepes, Ph 7.4 containing 0.1% Bovine Serum Albumin (BSA), 0.1% 

Triton X-100, 10 mM MgCl2 and ATP at 5 μM. All reactions were terminated by addition of 

50 μL of 70 mM EDTA. Phosphorylated and unphosphorylated substrate peptides were 

separated following a 180 minute incubation on a LabChip EZ Reader equipped with a 12-

sipper chip in separation buffer supplemented with CR-8 and analyzed using EZ Reader 

software. The reaction was run at 2 nM enzyme concentration. More details can be found in 

our previous work[4, 6].

Quality control of compound samples

Quality control of the purchased and screened compounds was performed by diluting 1 μL 

of DMSO stock solution (10mM concentration) with 49 μL of MeOH. The sealed plate was 
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then directly used to inject 5 μL from each well onto an Agilent 6110 Series LC/MS system 

with the UV detector set to 220 nm. Samples were injected onto an Agilent Eclipse Plus 4.6 

× 50 mm, 1.8 μM, C18 column at room temperature. A mobile phase of A being H2O + 

0.1% acetic acid and B being MeOH + 0.1% acetic acid was used. A linear gradient from 

10% to 100% B in 5.0 min was followed by pumping 100% B for another 2 minutes with a 

flow rate of 1.0 mL/min. Mass spectra (MS) data were acquired in positive ion mode using 

an Agilent 6110 single quadrupole mass spectrometer with an electrospray ionization (ESI) 

source. The purity of all compounds was found to be 95% or higher by UV absorption at 

220 nm, 254 nm and 280 nm and the MS+1 peak was consistent for the purchased structure.

Results and Discussion

Mer[1] is protein kinase belonging to the receptor tyrosine kinase subfamily that might be 

considered – after a long record of success stories[29] – as a “low-hanging-fruit” target. 

However, in our biochemical assay, Mer was sensitive to only a few known kinase 

inhibitors. Moreover, the nanomolar potency Mer inhibitor UNC569 (compound 2) has 

shown significant selectivity when screened against a broad protein kinase panel[4] and the 

outcome of our random diversity screen suggests a very low rate of potent Mer inhibitors in 

diverse sets of commercially available compounds (see detail below). All the above suggests 

that a post-docking filtration of docking poses based on prior knowledge of ligand-protein 

interactions would be of particular interest in order to reduce the false positive and false 

negative rates that characterizes unfiltered structure-based screening[17, 30].

In this study, the generic VS workflow included the following steps: (i) Glide-based docking 

and scoring; (ii) SPLIF-based scoring; (iii) hit selection based on the analysis of the Glide 

and SPLIF scores; and (iv) hit triage. The latter step involved three components: (i) 

diversity-based selection as described in Materials and Methods; (ii) a subjective triage, such 

as dropping clusters that the chemists would not like to follow-up on even if they contain 

some true actives; and (iii) unexpected reasons that result in elimination of some virtual hits 

from the list, such as compound price or stock depletion. The initial pre-filtering of docking 

poses by means of a conventional scoring function (G-score in this study) has been validated 

in our earlier benchmark study [31].

SPLIF Reference System

When characterizing the lead series in our previous study[4], we obtained an X-ray structure 

of the Mer kinase domain in complex with compound 2. In addition to the latter ligand-

protein complex with a highly potent inhibitor, there are two more ligand-bound Mer 

structures: with a weak inhibitor (ca. 10 μM), C-52 (1), and the co-factor ATP (3). We 

merged all three reference ligands into a single superligand, so that any docking pose 

matching one fragment in one reference fingerprint and another fragment in a different 

reference fingerprint would get a higher SPLIF-score than if it is compared to one reference 

ligand at a time. Overall, 1,330 SPLIF bits have been generated for this reference Mer-

bound superligand. The above SPLIF-bits result from 138 FCFP-bits on the protein side 

(constituted by 53 unique atoms) and 139 FCFP-bits on the ligand side (36 unique atoms).
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Screening workflow and statistics

Glide docking of 3.8 million commercial compounds yielded 1.56 million compounds with 

poses showing G-scores better than 0 kcal/mol (see Figure 2a for the G-score probability 

density distribution). The G-score distribution is quasi-normal with a mean at ∼-5 kcal/mol 

and a standard deviation of ∼1 kcal/mol. To start the selection process, we had to set a G-

score threshold that would eliminate the least likely true Mer inhibitors. To this end, we 

made use of probability density distributions of known Mer actives and inactives. By this 

time, our chemical optimization program had generated 385 Mer actives (IC50 < 1 μM) and 

409 inactives (IC50 > 30 μM). Both actives and inactives were docked using the same 

protocol as described in Materials and Methods. Their G-score distributions (see Figure 2b) 

indicate that a G-score threshold of -6 kcal/mol adequately separates actives from inactives 

with optimal false positives vs false negatives rates. Therefore, assuming similar 

distributions for the 1.5 million scored compounds, the G-score threshold for the virtual 

screening campaign was set to -6 kcal/mol, which resulted in a selection of 403,581 

compounds.

All poses resulting from the G-score selection were submitted to SPLIF-score calculation 

with the ultimate goal of obtaining a manageable list of hit-candidates that can be subjected 

to hit triage and, ultimately, experimental testing. Again, we made use of known Mer actives 

and inactives (as described in the previous paragraph) to determine an optimal SPLIF-score 

threshold. As can be seen in Figure 2d, an optimal actives/inactives separation occurs at a 

threshold of ∼0.35. Consistently, the value of 0.35 is where the SPLIF-score distribution for 

403,581 preselected compounds approaches zero (see Figure 2c) and hence hits having 

higher SPLIF-scores may be considered as outliers to the baseline distribution (i.e., 

distribution of inactives). The retained SPLIF-score threshold of 0.35 resulted in a selection 

of 10,862 SPLIF-based hit-candidates. These candidates were subjected to a diversity-based 

selection as described in Materials and Methods. In addition, 544 cluster centers have been 

visually inspected and a few clusters have been dropped as inappropriate lead-candidates 

(e.g., nucleotides, steroids, etc.). A few more selected virtual hits were out of stock. 

Eventually, 62 compounds have been purchased and tested in the Mer microfluidic capillary 

electrophoresis assay.

It is noteworthy that the SPLIF score alone was not enough to efficiently rank docking 

poses. Indeed, more than 40,000 compounds satisfy the SPLIF-score threshold of 0.35. This 

result is consistent with an intuitive anticipation that even if a fraction of a ligand mimics an 

existing x-ray pose, the rest of it may strongly diminish its binding affinity. Therefore, 

SPLIF-scoring should only be applied to likely binders, where “likely” means that they need 

to have a satisfactory preliminary docking score.

Hit analysis

Of the total of 62 experimentally tested compounds, 15 demonstrated reliable dose-

dependent responses in the Mer microfluidic capillary electrophoresis assay with inhibitory 

potencies ranging from 0.46 μM to 9.9 µM (see Figure 3 and Table 1). Remarkably, 2 hits, 4 
and 5, demonstrated mid-nanomolar potencies of respectively 0.46 μM and 0.60 μM. 

Despite relatively low potencies of the other hits, they still may be worth consideration as 
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potential leads due to fairly high ligand efficiencies (LE)[32]. The LE values were 

calculated as pIC50 normalized by the number of heavy atoms and are given in Table 1. The 

LE values for the 15 confirmed actives range between 0.17 and 0.34 and are comparable to 

LE of the current lead (compound 2; LE=0.11).

These 15 hits represent distinguishable scaffolds, such as thieno[3,2-c]quinolones (4 and 5), 

pyrimidin-2-amines (6, 7, 8, 10, 11, 15 and 17), pyrimidine-fused heterocycles (9, 13, 16 
and 18), as well as singletons 12 and 14. Their inhibitory potencies are weaker than the 

potency of the reference ligand 2, but most of them demonstrate lead-like[33] profiles and 

may serve as valuable starting points for further chemical optimization. In our previous 

study we showed that on a broad panel of targets SPLIF-scores were not redundant with 

respect to other ranking schemas that could have been used in a similar setting (e.g., G-score 

alone, 2D- or SIFt-similarity to known actives [34]). As can be seen in Table 1, in the 

current study, G-score ranks for the 15 confirmed actives range from 39,335 to 349,812 

(#96,049 for the most potent compound 4), which means that none of them would have been 

shortlisted for purchase using that method alone.

All confirmed hits provide strong evidence that using SPLIF-score as a post-docking filter 

does not undermine the scaffold-hopping capacity of SBVS. Indeed, none of the 15 actives 

feature a chemical scaffold identical to any reference compound (1-3). However, despite the 

clear structural differences between, for example, the most potent hit 4 and the reference 

compound 2, their respective docking poses look intuitively similar (see Figure 4) and make 

the same key interactions.

Finally, we also assessed the overall efficiency of our virtual screening run by comparing its 

hit rate (i.e., 15 hits / 62 tested = 24%) and to that of a random diversity screen. To this end, 

we have screened 10 randomly selected 384-well (320-ligand) plates in a single-dose run (at 

10 μM; in duplicate) in the Mer microfluidic capillary electrophoresis assay. Only six 

compounds of the 3,200 screened have shown activity beyond a threshold of 30% (that is a 

consensus of both statistical and potency significance) resulting in 0.12% hit rate (4 hits / 

3,200 tested). Therefore, our SPLIF-based SBVS has demonstrated a ∼200-fold (24% / 

0.12%) improvement over a random screen.

Conclusions

In this paper, we report new template starting points for inhibitors of Mer, a receptor 

tyrosine kinase and a potential therapeutic target for the treatment of ALL and other 

cancers[35]. We performed SBVS against a database of ∼3.8 million commercially 

available compounds. In order to improve the odds of success, a recently introduced SPLIF-

score [31] was used as a post-docking filter that quantitatively assesses whether a docking 

pose interacts with the protein target similarly to reference ligand. A total of 62 SPLIF-based 

virtual hits have been purchased and tested in the Mer MCE assay. Fifteen tested compounds 

demonstrated reliable dose-dependent inhibitory potencies with IC50's ranging from 0.46 μM 

to 9.9 μM. The hits identified have high ligand efficiencies, show lead-like property profiles 

and represent new chemical motifs that might be used as starting points for further chemical 

optimization. Additionally, this study confirms our previous findings [31] that SPLIF can 
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significantly improve the success rate of SBVS while conserving its inherent scaffold-

hopping ability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reference ligand structures for SPLIF scoring.
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Figure 2. a) The distribution of Gscores of 1.5 million acceptable compounds for virtual 
screening after docking to the Mer active site; b) the distributions of Gscores of in-house 
identified Mer actives and inactives; c) the distribution of SPLIF-scores of remaining 400K 
compounds after the Gscore filter being applied; d) the distribution of SPLIF-scores of in-house 
identified Mer actives and inactives.
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Figure 3. Chemical structures of 15 confirmed Mer actives
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Figure 4. A docking pose of the most potent hit 4 (green) overlaid with the reference ligand 2 
(magenta)
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